A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities

The formation of a metal–organic framework (MOF) with nodes that have single‐molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single‐ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM‐MOFs. Here we present a r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 20; číslo 34; s. 10695 - 10702
Hlavní autoři: Baldoví, José J., Coronado, Eugenio, Gaita-Ariño, Alejandro, Gamer, Christoph, Giménez-Marqués, Mónica, Mínguez Espallargas, Guillermo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim WILEY-VCH Verlag 18.08.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The formation of a metal–organic framework (MOF) with nodes that have single‐molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single‐ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM‐MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square‐antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM‐MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non‐innocent anions. SIMs to be in (3D) order: The formation of a single‐ion magnet/metal–organic framework (SIM‐MOF) is presented, which enormously simplifies the challenging issue of making SMM‐MOFs. The incorporation of bulky polyoxometalates (POMs) into the cavities does not interfere with the slow magnetic relaxation, demonstrating the robustness of the frameworks and opening the possibility of incorporating non‐innocent anions.
AbstractList The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.
The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO) sub(4)](TfO) sub(3) x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions. SIMs to be in (3D) order: The formation of a single-ion magnet/metal-organic framework (SIM-MOF) is presented, which enormously simplifies the challenging issue of making SMM-MOFs. The incorporation of bulky polyoxometalates (POMs) into the cavities does not interfere with the slow magnetic relaxation, demonstrating the robustness of the frameworks and opening the possibility of incorporating non-innocent anions.
The formation of a metal–organic framework (MOF) with nodes that have single‐molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single‐ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM‐MOFs. Here we present a rational design of a family of MOFs, [ Ln(bipyNO) 4 ](TfO) 3 ⋅ x solvent (Ln=Tb ( 1 ); Dy ( 2 ); Ho ( 3 ); Er ( 4 ); TfO=triflate), in which the lanthanoid centres have an square‐antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM‐MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non‐innocent anions.
The formation of a metal–organic framework (MOF) with nodes that have single‐molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single‐ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM‐MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square‐antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM‐MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non‐innocent anions. SIMs to be in (3D) order: The formation of a single‐ion magnet/metal–organic framework (SIM‐MOF) is presented, which enormously simplifies the challenging issue of making SMM‐MOFs. The incorporation of bulky polyoxometalates (POMs) into the cavities does not interfere with the slow magnetic relaxation, demonstrating the robustness of the frameworks and opening the possibility of incorporating non‐innocent anions.
The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.
The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3xsolvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions. [PUBLICATION ABSTRACT]
Author Giménez-Marqués, Mónica
Gamer, Christoph
Coronado, Eugenio
Gaita-Ariño, Alejandro
Mínguez Espallargas, Guillermo
Baldoví, José J.
Author_xml – sequence: 1
  givenname: José J.
  surname: Baldoví
  fullname: Baldoví, José J.
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
– sequence: 2
  givenname: Eugenio
  surname: Coronado
  fullname: Coronado, Eugenio
  email: eugenio.coronado@uv.es
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
– sequence: 3
  givenname: Alejandro
  surname: Gaita-Ariño
  fullname: Gaita-Ariño, Alejandro
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
– sequence: 4
  givenname: Christoph
  surname: Gamer
  fullname: Gamer, Christoph
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
– sequence: 5
  givenname: Mónica
  surname: Giménez-Marqués
  fullname: Giménez-Marqués, Mónica
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
– sequence: 6
  givenname: Guillermo
  surname: Mínguez Espallargas
  fullname: Mínguez Espallargas, Guillermo
  email: guillermo.minguez@uv.es
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán, 2, 46980 Paterna (Spain)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24804629$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v0zAYhy20iXWDK0cUiQsXd_6MY25V1m1FDT1sCMTFOMmb1iN1Spxq23-Pt44KTUI7Wa_8PP74_Y7Rge88IPSOkjElhJ1WK1iPGaGCMCblKzSiklHMVSoP0IhooXAquT5CxyHcEEJ0yvlrdMRERkTK9Aj9nCRXswIXi_NPyfWqB8Bnbg0-uM7bNln0S-tdsEMck65JrpxftoBncSrs0sMQkls3rJKJjwCe3lUr65eQ5HZjS9e6wUF4gw4b2wZ4-7SeoK_n0-v8Es8XF7N8MseVyKjEWVo1UDMhSwuCcyB1xa2N789q1iioVS1LqeoMspSKstSsirvaqsbWjNZK8RP0cXfupu9-byEMZu1CBW1rPXTbYKhS8c-CsexlVEohUk00jeiHZ-hNt-1jNI9UTJwQqiP1_onalmuozaZ3a9vfm78xR2C8A6q-C6GHZo9QYh56NA89mn2PURDPhMoNjzUMvXXt_zW9025dC_cvXGLyy2nxr4t3rgsD3O1d2_8yqeJKmm9fLow--1HMc_LZfOd_AHjVv3g
CODEN CEUJED
CitedBy_id crossref_primary_10_1039_C8QI00814K
crossref_primary_10_1002_chem_201903230
crossref_primary_10_1038_s41578_019_0146_8
crossref_primary_10_1002_slct_202400720
crossref_primary_10_1039_C6CC00498A
crossref_primary_10_1002_anie_201609172
crossref_primary_10_3390_polym8020039
crossref_primary_10_1002_chem_201905290
crossref_primary_10_3390_polym8050171
crossref_primary_10_1080_00958972_2016_1198477
crossref_primary_10_3390_inorganics8120066
crossref_primary_10_1039_C7CS00653E
crossref_primary_10_1039_D2SC00763K
crossref_primary_10_1002_chem_201902855
crossref_primary_10_1016_j_jinorgbio_2020_111051
crossref_primary_10_1039_C5CS00770D
crossref_primary_10_3390_molecules26185503
crossref_primary_10_1039_D4QI01549E
crossref_primary_10_1021_jacs_7b03123
crossref_primary_10_1002_ejic_202000798
crossref_primary_10_3389_fchem_2022_974914
crossref_primary_10_1002_ange_201609172
crossref_primary_10_1007_s11426_015_5318_9
crossref_primary_10_1002_ejic_201900188
crossref_primary_10_1016_j_molstruc_2022_133439
crossref_primary_10_1039_D0QI01197E
crossref_primary_10_3390_magnetochemistry6040066
crossref_primary_10_1016_j_ccr_2017_03_004
crossref_primary_10_1016_j_inoche_2023_111872
crossref_primary_10_1002_pssa_201901000
crossref_primary_10_3389_fchem_2021_714851
crossref_primary_10_1002_chem_201604285
crossref_primary_10_1002_ejic_201500825
crossref_primary_10_1039_C8QI00266E
crossref_primary_10_1002_ejic_201801183
crossref_primary_10_1039_C5CC05694B
crossref_primary_10_1016_j_ccr_2015_08_007
crossref_primary_10_1039_C5QI00142K
crossref_primary_10_1039_D2SC00769J
crossref_primary_10_1039_D3QI00925D
crossref_primary_10_1107_S2052252515000147
crossref_primary_10_1039_D4SC07042A
crossref_primary_10_3390_magnetochemistry9070190
crossref_primary_10_3390_cryst10100893
crossref_primary_10_1002_jssc_202001172
crossref_primary_10_3390_magnetochemistry7010008
crossref_primary_10_1002_smll_202301966
crossref_primary_10_1039_D0RA01263G
crossref_primary_10_1002_chem_201504176
crossref_primary_10_1039_C6QI00137H
crossref_primary_10_1039_C5QI00296F
crossref_primary_10_3390_magnetochemistry7030041
crossref_primary_10_1002_chem_201800095
crossref_primary_10_1002_cjoc_70015
Cites_doi 10.1039/c2dt31421e
10.1021/cr960395y
10.1021/ja200198v
10.1039/c2cs35205b
10.1039/b718443c
10.1039/c2cc32518g
10.1038/nature03852
10.1021/ja029629n
10.1002/chem.201202600
10.1002/ange.201308047
10.1039/B407554D
10.1002/anie.201308047
10.1021/ja1009019
10.1021/ja3075314
10.1038/35071024
10.1021/ar040174b
10.1002/ange.201301007
10.1103/PhysRevLett.76.3830
10.1002/anie.200353093
10.1557/mrs2000.226
10.1039/c3tc00925d
10.1002/anie.201208015
10.1126/science.261.5128.1569
10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C
10.1002/anie.201301007
10.1002/ange.200353093
10.1002/ange.201208015
10.1021/ja105291x
10.1039/B617898G
10.1021/ja0574062
10.1039/b807083k
10.1021/nl1009603
10.1039/c2cc16430b
10.1002/ange.201006619
10.1039/C2CS35278H
10.1039/c2cs90094g
10.1002/anie.201006619
10.1039/c2dt31400b
10.1021/cr400018q
10.1021/ja909560d
10.1002/ange.200351753
10.1038/nnano.2006.174
10.1002/anie.200351753
10.1021/ja052431t
10.1002/ange.200352625
10.1093/acprof:oso/9780198567530.001.0001
10.1021/ic2010425
10.1002/1521-3757(20010702)113:13<2509::AID-ANGE2509>3.0.CO;2-N
10.1021/cr200190s
10.1021/ja00082a055
10.1002/anie.200352625
10.1039/c2dt31411h
10.1021/ja203845x
10.1038/nature10314
10.1107/S0108768102003890
10.1021/ja801659m
10.1038/383145a0
10.1126/science.1067208
10.1002/anie.201000431
10.1126/science.284.5411.133
10.1021/ja204562m
10.1016/j.jssc.2005.05.008
10.1021/cr300014x
10.1021/ja305163t
10.1021/ic302068c
10.1002/jcc.23341
10.1038/35010088
10.1002/ange.201000431
10.1039/b807080f
10.1021/ja2100142
10.1039/b906666g
10.1021/ja0428661
10.1021/ja4015138
10.1039/B810634G
10.1038/nmat2133
10.1021/ja906012u
10.1107/S0108767307043930
10.1039/c2dt30906h
10.1039/B706207A
10.1103/PhysRevLett.101.217201
10.1126/science.1090082
10.1039/c1sc00513h
10.1002/chem.201003288
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201402255
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10702
ExternalDocumentID 3399167961
24804629
10_1002_chem_201402255
CHEM201402255
ark_67375_WNG_9DZMLC0J_X
Genre article
Journal Article
GrantInformation_xml – fundername: Spanish MECD
– fundername: FEDER
– fundername: European Union
– fundername: Spanish MINECO
  funderid: MAT2011‐22785; CTQ2011‐26507
– fundername: Generalidad Valenciana
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4815-86cfed245bae433e0dc3aa9478d2f7ed7d5b57d8e8614bb92caa99a7fad21d773
IEDL.DBID DRFUL
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340505500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 16:12:05 EDT 2025
Fri Jul 11 15:29:33 EDT 2025
Sat Nov 29 14:32:55 EST 2025
Thu Apr 03 07:04:29 EDT 2025
Sat Nov 29 07:16:00 EST 2025
Tue Nov 18 22:13:20 EST 2025
Wed Jan 22 16:39:09 EST 2025
Sun Sep 21 06:18:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords magnetic properties
anions
polyoxometalates
metal-organic frameworks
single-molecule studies
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4815-86cfed245bae433e0dc3aa9478d2f7ed7d5b57d8e8614bb92caa99a7fad21d773
Notes European Union
ark:/67375/WNG-9DZMLC0J-X
Generalidad Valenciana
Spanish MINECO - No. MAT2011-22785; No. CTQ2011-26507
FEDER
SIM-MOF=single-ion magnet/metal-organic framework.
Spanish MECD
ArticleID:CHEM201402255
istex:5D438C3422173F83DD76F7DB09B7D35DB93BD505
SIM‐MOF=single‐ion magnet/metal–organic framework.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24804629
PQID 1552550019
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_1778044228
proquest_miscellaneous_1554469091
proquest_journals_1552550019
pubmed_primary_24804629
crossref_primary_10_1002_chem_201402255
crossref_citationtrail_10_1002_chem_201402255
wiley_primary_10_1002_chem_201402255_CHEM201402255
istex_primary_ark_67375_WNG_9DZMLC0J_X
PublicationCentury 2000
PublicationDate August 18, 2014
PublicationDateYYYYMMDD 2014-08-18
PublicationDate_xml – month: 08
  year: 2014
  text: August 18, 2014
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Chem. Soc. Rev. 2012, 41, 7464.
E. Coronado, C. Giménez-Saiz, A. Recuenco, A. Tarazón, F. M. Romero, A. Camón, F. Luis, Inorg. Chem. 2011, 50, 7370
D. M. King, F. Tuna, J. McMaster, W. Lewis, A. J. Blake, E. J. L. McInnes, S. T. Liddle, Angew. Chem. 2013, 125, 5021
E. Coronado, G. Mínguez Espallargas, Chem. Soc. Rev. 2013, 42, 1525.
C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940
L. Malavolti, M. Mannini, P.-E. Car, G. Campo, F. Pineider, R. Sessoli, J. Mater. Chem. C 2013, 1, 2935
J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982
G. Poneti, K. Bernot, L. Bogani, A. Caneschi, R. Sessoli, W. Wernsdorfer, D. Gatteschi, Chem. Commun. 2007, 1807
T. Jurca, A. Farghal, P.-H. Lin, I. Korobkov, M. Murugesu, D. S. Richardson, J. Am. Chem. Soc. 2011, 133, 15814
S. Jiang, B. Wang, H. Sun, Z. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730.
M. J. Ingleson, J. P. Barrio, J. Basca, C. Dickinson, H. Park, M. J. Rosseinsky, Chem. Commun. 2008, 1287.
S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, B. Barbara, Nat. Nanotechnol. 2007, 2, 39.
Angew. Chem. Int. Ed. 2013, 52, 3430
S. Takahashi, I. S. Tupitsyn, J. van Tol, C. C. Beedle, D. N. Hendrickson, P. C. E. Stamp, Nature 2011, 476, 76
N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650
P.-H. Lin, N. C. Smythe, S. I. Gorelsky, S. Maguire, N. J. Henson, I. Korobkov, B. L. Scott, J. C. Gordon, R. T. Baker, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 15806
J. Lehmann, A. Gaita-Ariño, E. Coronado, D. Loss, J. Mater. Chem. 2009, 19, 1672
C. R. Ganivet, B. Ballesteros, G. de La Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. Eur. J. 2013, 19, 1457
J. D. Rinehart, J. R. Long, J. Am. Chem. Soc. 2009, 131, 12558
D. Weismann, Y. Sun, Y. Lan, G. Wolmershäuser, A. K. Powell, H. Sitzmann, Chem. Eur. J. 2011, 17, 4700
W. Wernsdorfer, R. Sessoli, Science 1999, 284, 133.
(BICVOZ, BICVUF) R. J. Hill, D.-L. Long, M. S. Turvey, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, M. Schröder, Chem. Commun. 2004, 1792
M. Trif, F. Troiani, D. Stepanenko, D. Loss, Phys. Rev. Lett. 2008, 101, 217201
X. Lin, J. Jia, P. Hubberstey, M. Schröder, N. R. Champness, CrystEngComm 2007, 9, 438
I.-R. Jeon, R. Clerac, Dalton Trans. 2012, 41, 9569.
J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Palii, Inorg. Chem. 2012, 51, 12565
Angew. Chem. Int. Ed. 2010, 49, 6058.
F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380.
Angew. Chem. Int. Ed. 2004, 43, 707.
R. J. Hill, D.-L. Long, P. Hubberstey, M. Schröder, N. R. Champness, J. Solid State Chem. 2005, 178, 2414.
S. Gomez-Coca, E. Cremades, N. Aliaga-Alcalde, E. Ruiz, J. Am. Chem. Soc. 2013, 135, 7010
Angew. Chem. Int. Ed. 2011, 50, 1696
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe, O. M. Yaghi, Science 2002, 295, 469
N. Magnani, C. Apostolidis, A. Morgenstern, E. Colineau, J. C. Griveau, H. Bolvin, O. Walter, R. Caciuffo, Angew. Chem. 2011, 123, 1734
H. Miyasaka, K. Nakata, K.-i. Sugiura, M. Yamashita, R. Clérac, Angew. Chem. 2004, 116, 725
See the themed issues on POMs: Chem. Soc. Rev. 2012, 41, 7325-7648
G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
Angew. Chem. Int. Ed. 2003, 42, 4653.
F. Moro, D. P. Mills, S. T. Liddle, J. van Slageren, Angew. Chem. 2013, 125, 3514
J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Dalton Trans. 2012, 41, 13705.
R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238
Angew. Chem. Int. Ed. 2001, 40, 2443
W. G. Klemperer, Tetrabutylammonium Isopolyoxometalates, Wiley, 2007, pp. 74-85.
L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248
M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151
Angew. Chem. Int. Ed. 2013, 52, 4921.
A. S. Zyazin, J. W. G. van den Berg, E. A. Osorio, H. S. J. van der Zant, N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli, A. Cornia, Nano Lett. 2010, 10, 3307.
J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
J. M. Zadrozny, J. Liu, N. A. Piro, C. J. Chang, S. Hill, J. R. Long, Chem. Commun. 2012, 48, 3927
L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 1996, 383, 145.
J. M. Zadrozny, J. R. Long, J. Am. Chem. Soc. 2011, 133, 20732
M. N. Leuenberger, D. Loss, Nature 2001, 410, 789.
S. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 2003, 302, 1015
H. Miyasaka, K. Nakata, L. Lecren, C. Coulon, Y. Nakazawa, T. Fijisaki, K.-i. Sugiura, M. Yamashita, R. Clérac, J. Am. Chem. Soc. 2006, 128, 3770.
(IXEDIY, IXEDUK, IXEFAS) D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, D. M. Proserpio, C. Wilson, M. Schröder, Angew. Chem. 2004, 116, 1887
K. Katoh, Y. Horii, N. Yasuda, W. Wernsdorfer, K. Toriumi, B. K. Breedlove, M. Yamashita, Dalton Trans. 2012, 41, 13582.
M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 2008, 130, 8874.
D. M. D′Alessandro, B. Smit, J. R. Long, Angew. Chem. 2010, 122, 6194
J. D. Rinehart, K. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2010, 132, 7572
G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, MRS Bull. 2000, 25, 66.
Angew. Chem. Int. Ed. 2004, 43, 1851.
J. Ruiz, A. J. Mota, A. Rodríguez-Diéguez, S. Titos, J. M. Herrera, E. Ruiz, E. Cremades, J. P. Costes, E. Colacio, Chem. Commun. 2012, 48, 7916.
J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078
W. H. Harman, T. D. Harris, D. E. Freedman, H. Fong, A. Chang, J. D. Rinehart, A. Ozarowski, M. T. Sougrati, F. Grandjean, G. J. Long, J. R. Long, C. J. Chang, J. Am. Chem. Soc. 2010, 132, 18115
J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450
J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Palii, J. Comput. Chem. 2013, 34, 1961.
J. R. Friedman, M. P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 1996, 76, 3830
Chem. Rev. 1998, 98, 1-390.
Single-Molecule Magnets and Related Phenomena Vol. 122 (Ed.: R. Winpenny), Springer, New York, 2006.
J. Vallejo, I. Castro, R. Ruiz-García, J. Cano, M. Julve, F. Lloret, G. De Munno, W. Wernsdorfer, E. Pardo, J. Am. Chem. Soc. 2012, 134, 15704
S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M. J. Martínez-Pérez, J. Sesé, J. Am. Chem. Soc. 2012, 134, 14982
J. Vallejo, A. Pascual-Alvarez, J. Cano, I. Castro, M. Julve, F. Lloret, J. Krzystek, G. De Munno, D. Armentano, W. Wernsdorfer, R. Ruiz-García, E. Pardo, Angew. Chem. 2013, 125, 14325
(IBOTEY) D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schröder, Angew. Chem. 2001, 113, 2509
M. Murrie, S. J. Teat, H. Stoeckli-Evans, H. Güdel, Angew. Chem. 2003, 115, 4801
L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179
R. J. Hill, D.-L. Long, N. R. Champness, P. Hubberstey, M. Schröder, Acc. Chem. Res. 2005, 38, 335.
J. T. Coutinho, M. A. Antunes, L. C. J. Pereira, H. Bolvin, J. Marçalo, M. Mazzanti, M. Almeida, Dalton Trans. 2012, 41, 13568
Angew. Chem. Int. Ed. 2013, 52, 14075.
D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long, C. J. Chang, J. R. Long, J. Am. Chem. Soc. 2010, 132, 1224
S. Lloyd, Science 1993, 261, 1569
2010; 10
2002; 58
2011; 476
2013; 1
2005; 178
2012 1998; 41 98
2010 2010; 122 49
2008; 7
1999; 284
2011 2011; 123 50
1996; 383
2008; 101
2011; 17
1996; 76
2012; 51
2013; 19
2001; 410
2012; 134
2001 2001; 113 40
2000; 404
2007; 9
2013; 113
2007; 2
2008; 64
2009; 19
2003; 125
2005; 38
2006; 128
2004 2004; 116 43
1994; 116
2011; 2
2000; 25
2002; 295
2013; 42
2005; 436
2013 2013; 125 52
2008
2007
2006
1993; 261
2004
2009; 131
2011; 133
2003 2003; 115 42
2012; 112
2013; 34
2005; 127
2011; 50
2010; 132
2013; 135
2012; 48
2003; 302
2009; 38
2008; 130
2012; 41
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_76_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
(e_1_2_6_3_2) 2006
e_1_2_6_60_3
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_31_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_42_3
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_2
e_1_2_6_51_2
Klemperer W. G. (e_1_2_6_89_2) 2007
e_1_2_6_74_2
e_1_2_6_70_2
e_1_2_6_17_3
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_59_3
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_85_3
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_7_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_71_3
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_75_3
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_56_3
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_44_3
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – reference: J. M. Zadrozny, J. R. Long, J. Am. Chem. Soc. 2011, 133, 20732;
– reference: L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179;
– reference: T. Jurca, A. Farghal, P.-H. Lin, I. Korobkov, M. Murugesu, D. S. Richardson, J. Am. Chem. Soc. 2011, 133, 15814;
– reference: K. Katoh, Y. Horii, N. Yasuda, W. Wernsdorfer, K. Toriumi, B. K. Breedlove, M. Yamashita, Dalton Trans. 2012, 41, 13582.
– reference: See the themed issues on POMs: Chem. Soc. Rev. 2012, 41, 7325-7648;
– reference: Chem. Rev. 1998, 98, 1-390.
– reference: M. Murrie, S. J. Teat, H. Stoeckli-Evans, H. Güdel, Angew. Chem. 2003, 115, 4801;
– reference: W. G. Klemperer, Tetrabutylammonium Isopolyoxometalates, Wiley, 2007, pp. 74-85.
– reference: S. Takahashi, I. S. Tupitsyn, J. van Tol, C. C. Beedle, D. N. Hendrickson, P. C. E. Stamp, Nature 2011, 476, 76;
– reference: J. Ruiz, A. J. Mota, A. Rodríguez-Diéguez, S. Titos, J. M. Herrera, E. Ruiz, E. Cremades, J. P. Costes, E. Colacio, Chem. Commun. 2012, 48, 7916.
– reference: N. Magnani, C. Apostolidis, A. Morgenstern, E. Colineau, J. C. Griveau, H. Bolvin, O. Walter, R. Caciuffo, Angew. Chem. 2011, 123, 1734;
– reference: C. R. Ganivet, B. Ballesteros, G. de La Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. Eur. J. 2013, 19, 1457;
– reference: S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, B. Barbara, Nat. Nanotechnol. 2007, 2, 39.
– reference: R. J. Hill, D.-L. Long, P. Hubberstey, M. Schröder, N. R. Champness, J. Solid State Chem. 2005, 178, 2414.
– reference: Angew. Chem. Int. Ed. 2004, 43, 1851.
– reference: J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450;
– reference: R. J. Hill, D.-L. Long, N. R. Champness, P. Hubberstey, M. Schröder, Acc. Chem. Res. 2005, 38, 335.
– reference: M. N. Leuenberger, D. Loss, Nature 2001, 410, 789.
– reference: D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
– reference: J. D. Rinehart, K. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2010, 132, 7572;
– reference: J. T. Coutinho, M. A. Antunes, L. C. J. Pereira, H. Bolvin, J. Marçalo, M. Mazzanti, M. Almeida, Dalton Trans. 2012, 41, 13568;
– reference: M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe, O. M. Yaghi, Science 2002, 295, 469;
– reference: J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Palii, Inorg. Chem. 2012, 51, 12565;
– reference: H. Miyasaka, K. Nakata, K.-i. Sugiura, M. Yamashita, R. Clérac, Angew. Chem. 2004, 116, 725;
– reference: D. Weismann, Y. Sun, Y. Lan, G. Wolmershäuser, A. K. Powell, H. Sitzmann, Chem. Eur. J. 2011, 17, 4700;
– reference: N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650;
– reference: Angew. Chem. Int. Ed. 2013, 52, 14075.
– reference: J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982;
– reference: D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long, C. J. Chang, J. R. Long, J. Am. Chem. Soc. 2010, 132, 1224;
– reference: Angew. Chem. Int. Ed. 2013, 52, 4921.
– reference: Angew. Chem. Int. Ed. 2010, 49, 6058.
– reference: M. Trif, F. Troiani, D. Stepanenko, D. Loss, Phys. Rev. Lett. 2008, 101, 217201;
– reference: S. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 2003, 302, 1015;
– reference: D. M. D′Alessandro, B. Smit, J. R. Long, Angew. Chem. 2010, 122, 6194;
– reference: N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
– reference: J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Dalton Trans. 2012, 41, 13705.
– reference: J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Chem. Soc. Rev. 2012, 41, 7464.
– reference: Angew. Chem. Int. Ed. 2003, 42, 4653.
– reference: D. M. King, F. Tuna, J. McMaster, W. Lewis, A. J. Blake, E. J. L. McInnes, S. T. Liddle, Angew. Chem. 2013, 125, 5021;
– reference: Angew. Chem. Int. Ed. 2001, 40, 2443;
– reference: L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 1996, 383, 145.
– reference: S. Gomez-Coca, E. Cremades, N. Aliaga-Alcalde, E. Ruiz, J. Am. Chem. Soc. 2013, 135, 7010;
– reference: M. J. Ingleson, J. P. Barrio, J. Basca, C. Dickinson, H. Park, M. J. Rosseinsky, Chem. Commun. 2008, 1287.
– reference: J. D. Rinehart, J. R. Long, J. Am. Chem. Soc. 2009, 131, 12558;
– reference: F. Moro, D. P. Mills, S. T. Liddle, J. van Slageren, Angew. Chem. 2013, 125, 3514;
– reference: J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078;
– reference: G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
– reference: Single-Molecule Magnets and Related Phenomena Vol. 122 (Ed.: R. Winpenny), Springer, New York, 2006.
– reference: J. R. Friedman, M. P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 1996, 76, 3830;
– reference: S. Jiang, B. Wang, H. Sun, Z. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730.
– reference: E. Coronado, C. Giménez-Saiz, A. Recuenco, A. Tarazón, F. M. Romero, A. Camón, F. Luis, Inorg. Chem. 2011, 50, 7370;
– reference: M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151;
– reference: R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238;
– reference: L. Malavolti, M. Mannini, P.-E. Car, G. Campo, F. Pineider, R. Sessoli, J. Mater. Chem. C 2013, 1, 2935;
– reference: (IBOTEY) D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schröder, Angew. Chem. 2001, 113, 2509;
– reference: J. Vallejo, A. Pascual-Alvarez, J. Cano, I. Castro, M. Julve, F. Lloret, J. Krzystek, G. De Munno, D. Armentano, W. Wernsdorfer, R. Ruiz-García, E. Pardo, Angew. Chem. 2013, 125, 14325;
– reference: J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
– reference: J. Lehmann, A. Gaita-Ariño, E. Coronado, D. Loss, J. Mater. Chem. 2009, 19, 1672;
– reference: J. Vallejo, I. Castro, R. Ruiz-García, J. Cano, M. Julve, F. Lloret, G. De Munno, W. Wernsdorfer, E. Pardo, J. Am. Chem. Soc. 2012, 134, 15704;
– reference: G. Poneti, K. Bernot, L. Bogani, A. Caneschi, R. Sessoli, W. Wernsdorfer, D. Gatteschi, Chem. Commun. 2007, 1807;
– reference: M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 2008, 130, 8874.
– reference: I.-R. Jeon, R. Clerac, Dalton Trans. 2012, 41, 9569.
– reference: H. Miyasaka, K. Nakata, L. Lecren, C. Coulon, Y. Nakazawa, T. Fijisaki, K.-i. Sugiura, M. Yamashita, R. Clérac, J. Am. Chem. Soc. 2006, 128, 3770.
– reference: Angew. Chem. Int. Ed. 2004, 43, 707.
– reference: X. Lin, J. Jia, P. Hubberstey, M. Schröder, N. R. Champness, CrystEngComm 2007, 9, 438;
– reference: W. H. Harman, T. D. Harris, D. E. Freedman, H. Fong, A. Chang, J. D. Rinehart, A. Ozarowski, M. T. Sougrati, F. Grandjean, G. J. Long, J. R. Long, C. J. Chang, J. Am. Chem. Soc. 2010, 132, 18115;
– reference: F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380.
– reference: L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248;
– reference: J. M. Zadrozny, J. Liu, N. A. Piro, C. J. Chang, S. Hill, J. R. Long, Chem. Commun. 2012, 48, 3927;
– reference: Angew. Chem. Int. Ed. 2011, 50, 1696;
– reference: P.-H. Lin, N. C. Smythe, S. I. Gorelsky, S. Maguire, N. J. Henson, I. Korobkov, B. L. Scott, J. C. Gordon, R. T. Baker, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 15806;
– reference: (BICVOZ, BICVUF) R. J. Hill, D.-L. Long, M. S. Turvey, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, M. Schröder, Chem. Commun. 2004, 1792;
– reference: S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M. J. Martínez-Pérez, J. Sesé, J. Am. Chem. Soc. 2012, 134, 14982;
– reference: A. S. Zyazin, J. W. G. van den Berg, E. A. Osorio, H. S. J. van der Zant, N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli, A. Cornia, Nano Lett. 2010, 10, 3307.
– reference: Angew. Chem. Int. Ed. 2013, 52, 3430;
– reference: W. Wernsdorfer, R. Sessoli, Science 1999, 284, 133.
– reference: C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940;
– reference: (IXEDIY, IXEDUK, IXEFAS) D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, D. M. Proserpio, C. Wilson, M. Schröder, Angew. Chem. 2004, 116, 1887;
– reference: S. Lloyd, Science 1993, 261, 1569;
– reference: G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, MRS Bull. 2000, 25, 66.
– reference: E. Coronado, G. Mínguez Espallargas, Chem. Soc. Rev. 2013, 42, 1525.
– reference: J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Palii, J. Comput. Chem. 2013, 34, 1961.
– volume: 50
  start-page: 7370
  year: 2011
  publication-title: Inorg. Chem.
– volume: 284
  start-page: 133
  year: 1999
  publication-title: Science
– volume: 112
  start-page: 869
  year: 2012
  publication-title: Chem. Rev.
– volume: 116 43
  start-page: 1887 1851
  year: 2004 2004
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 101
  start-page: 217201
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 113 40
  start-page: 2509 2443
  year: 2001 2001
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 38
  start-page: 1450
  year: 2009
  publication-title: Chem. Soc. Rev.
– start-page: 1807
  year: 2007
  publication-title: Chem. Commun.
– volume: 10
  start-page: 3307
  year: 2010
  publication-title: Nano Lett.
– volume: 125 52
  start-page: 3514 3430
  year: 2013 2013
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 261
  start-page: 1569
  year: 1993
  publication-title: Science
– volume: 122 49
  start-page: 6194 6058
  year: 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 436
  start-page: 238
  year: 2005
  publication-title: Nature
– volume: 127
  start-page: 3650
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 1224
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 116 43
  start-page: 725 707
  year: 2004 2004
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 17
  start-page: 4700
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 1457
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 125 52
  start-page: 14325 14075
  year: 2013 2013
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 132
  start-page: 7572
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 1525
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 123 50
  start-page: 1734 1696
  year: 2011 2011
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 404
  start-page: 982
  year: 2000
  publication-title: Nature
– volume: 130
  start-page: 8874
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 12565
  year: 2012
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 335
  year: 2005
  publication-title: Acc. Chem. Res.
– volume: 128
  start-page: 3770
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 7464
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 115 42
  start-page: 4801 4653
  year: 2003 2003
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 125 52
  start-page: 5021 4921
  year: 2013 2013
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– start-page: 74
  year: 2007
  end-page: 85
– volume: 302
  start-page: 1015
  year: 2003
  publication-title: Science
– volume: 132
  start-page: 18115
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 380
  year: 2002
  publication-title: Acta Crystallogr. Sect. B
– start-page: 1792
  year: 2004
  publication-title: Chem. Commun.
– volume: 133
  start-page: 15806
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7010
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 7916
  year: 2012
  publication-title: Chem. Commun.
– volume: 41
  start-page: 9569
  year: 2012
  publication-title: Dalton Trans.
– volume: 48
  start-page: 3927
  year: 2012
  publication-title: Chem. Commun.
– volume: 134
  start-page: 15704
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 5110
  year: 2013
  publication-title: Chem. Rev.
– start-page: 1287
  year: 2008
  publication-title: Chem. Commun.
– volume: 76
  start-page: 3830
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 13705
  year: 2012
  publication-title: Dalton Trans.
– volume: 41
  start-page: 13568
  year: 2012
  publication-title: Dalton Trans.
– volume: 476
  start-page: 76
  year: 2011
  publication-title: Nature
– volume: 116
  start-page: 1151
  year: 1994
  publication-title: J. Am. Chem. Soc.
– volume: 178
  start-page: 2414
  year: 2005
  publication-title: J. Solid State Chem.
– volume: 9
  start-page: 438
  year: 2007
  publication-title: CrystEngComm
– volume: 2
  start-page: 39
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 133
  start-page: 4730
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 410
  start-page: 789
  year: 2001
  publication-title: Nature
– volume: 134
  start-page: 14982
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 1961
  year: 2013
  publication-title: J. Comput. Chem.
– volume: 127
  start-page: 8940
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 112
  year: 2008
  publication-title: Acta Crystallogr. Sect. A
– volume: 19
  start-page: 1672
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 41
  start-page: 13582
  year: 2012
  publication-title: Dalton Trans.
– volume: 41 98
  start-page: 7325 1
  year: 2012 1998
  end-page: 7648 390
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 133
  start-page: 20732
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 179
  year: 2008
  publication-title: Nat. Mater.
– volume: 1
  start-page: 2935
  year: 2013
  publication-title: J. Mater. Chem. C
– year: 2006
– volume: 38
  start-page: 1248
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 12558
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2078
  year: 2011
  publication-title: Chem. Sci.
– volume: 133
  start-page: 15814
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 66
  year: 2000
  publication-title: MRS Bull.
– volume: 125
  start-page: 8694
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 383
  start-page: 145
  year: 1996
  publication-title: Nature
– volume: 295
  start-page: 469
  year: 2002
  publication-title: Science
– ident: e_1_2_6_19_2
– ident: e_1_2_6_58_2
  doi: 10.1039/c2dt31421e
– ident: e_1_2_6_85_3
  doi: 10.1021/cr960395y
– ident: e_1_2_6_52_2
  doi: 10.1021/ja200198v
– ident: e_1_2_6_35_2
  doi: 10.1039/c2cs35205b
– ident: e_1_2_6_25_2
  doi: 10.1039/b718443c
– ident: e_1_2_6_84_2
  doi: 10.1039/c2cc32518g
– ident: e_1_2_6_16_2
  doi: 10.1038/nature03852
– ident: e_1_2_6_46_2
  doi: 10.1021/ja029629n
– ident: e_1_2_6_29_2
  doi: 10.1002/chem.201202600
– ident: e_1_2_6_71_2
  doi: 10.1002/ange.201308047
– ident: e_1_2_6_74_2
  doi: 10.1039/B407554D
– ident: e_1_2_6_71_3
  doi: 10.1002/anie.201308047
– ident: e_1_2_6_55_2
  doi: 10.1021/ja1009019
– ident: e_1_2_6_68_2
  doi: 10.1021/ja3075314
– ident: e_1_2_6_12_2
  doi: 10.1038/35071024
– ident: e_1_2_6_77_2
  doi: 10.1021/ar040174b
– ident: e_1_2_6_36_2
– ident: e_1_2_6_60_2
  doi: 10.1002/ange.201301007
– ident: e_1_2_6_8_2
  doi: 10.1103/PhysRevLett.76.3830
– ident: e_1_2_6_42_3
  doi: 10.1002/anie.200353093
– volume-title: Single‐Molecule Magnets and Related Phenomena Vol. 122
  year: 2006
  ident: e_1_2_6_3_2
– ident: e_1_2_6_11_2
  doi: 10.1557/mrs2000.226
– ident: e_1_2_6_28_2
  doi: 10.1039/c3tc00925d
– ident: e_1_2_6_59_3
  doi: 10.1002/anie.201208015
– ident: e_1_2_6_87_2
  doi: 10.1126/science.261.5128.1569
– ident: e_1_2_6_75_3
  doi: 10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C
– ident: e_1_2_6_60_3
  doi: 10.1002/anie.201301007
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.200353093
– start-page: 74
  volume-title: Tetrabutylammonium Isopolyoxometalates
  year: 2007
  ident: e_1_2_6_89_2
– ident: e_1_2_6_59_2
  doi: 10.1002/ange.201208015
– ident: e_1_2_6_63_2
  doi: 10.1021/ja105291x
– ident: e_1_2_6_73_2
– ident: e_1_2_6_83_2
  doi: 10.1039/B617898G
– ident: e_1_2_6_43_2
  doi: 10.1021/ja0574062
– ident: e_1_2_6_21_2
  doi: 10.1039/b807083k
– ident: e_1_2_6_48_2
– ident: e_1_2_6_40_2
  doi: 10.1021/nl1009603
– ident: e_1_2_6_69_2
  doi: 10.1039/c2cc16430b
– ident: e_1_2_6_56_2
  doi: 10.1002/ange.201006619
– ident: e_1_2_6_26_2
  doi: 10.1039/C2CS35278H
– ident: e_1_2_6_85_2
  doi: 10.1039/c2cs90094g
– ident: e_1_2_6_4_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_7_2
– ident: e_1_2_6_56_3
  doi: 10.1002/anie.201006619
– ident: e_1_2_6_86_2
– ident: e_1_2_6_30_2
  doi: 10.1039/c2dt31400b
– ident: e_1_2_6_45_2
  doi: 10.1021/cr400018q
– ident: e_1_2_6_62_2
  doi: 10.1021/ja909560d
– ident: e_1_2_6_27_2
– ident: e_1_2_6_44_2
  doi: 10.1002/ange.200351753
– ident: e_1_2_6_39_2
  doi: 10.1038/nnano.2006.174
– ident: e_1_2_6_44_3
  doi: 10.1002/anie.200351753
– ident: e_1_2_6_24_2
  doi: 10.1021/ja052431t
– ident: e_1_2_6_76_2
  doi: 10.1002/ange.200352625
– ident: e_1_2_6_2_2
  doi: 10.1093/acprof:oso/9780198567530.001.0001
– ident: e_1_2_6_61_2
– ident: e_1_2_6_13_2
– ident: e_1_2_6_51_2
  doi: 10.1021/ic2010425
– ident: e_1_2_6_75_2
  doi: 10.1002/1521-3757(20010702)113:13<2509::AID-ANGE2509>3.0.CO;2-N
– ident: e_1_2_6_88_2
– ident: e_1_2_6_18_2
  doi: 10.1021/cr200190s
– ident: e_1_2_6_22_2
  doi: 10.1021/ja00082a055
– ident: e_1_2_6_76_3
  doi: 10.1002/anie.200352625
– ident: e_1_2_6_80_2
  doi: 10.1039/c2dt31411h
– ident: e_1_2_6_65_2
  doi: 10.1021/ja203845x
– ident: e_1_2_6_37_2
  doi: 10.1038/nature10314
– ident: e_1_2_6_72_2
  doi: 10.1107/S0108768102003890
– ident: e_1_2_6_47_2
  doi: 10.1021/ja801659m
– ident: e_1_2_6_9_2
  doi: 10.1038/383145a0
– ident: e_1_2_6_15_2
  doi: 10.1126/science.1067208
– ident: e_1_2_6_17_3
  doi: 10.1002/anie.201000431
– ident: e_1_2_6_10_2
  doi: 10.1126/science.284.5411.133
– ident: e_1_2_6_66_2
  doi: 10.1021/ja204562m
– ident: e_1_2_6_78_2
  doi: 10.1016/j.jssc.2005.05.008
– ident: e_1_2_6_6_2
  doi: 10.1021/cr300014x
– ident: e_1_2_6_49_2
  doi: 10.1021/ja305163t
– ident: e_1_2_6_50_2
  doi: 10.1021/ic302068c
– ident: e_1_2_6_79_2
  doi: 10.1002/jcc.23341
– ident: e_1_2_6_23_2
  doi: 10.1038/35010088
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.201000431
– ident: e_1_2_6_20_2
  doi: 10.1039/b807080f
– ident: e_1_2_6_81_2
– ident: e_1_2_6_67_2
  doi: 10.1021/ja2100142
– ident: e_1_2_6_5_2
  doi: 10.1039/b906666g
– ident: e_1_2_6_82_2
  doi: 10.1021/ja0428661
– ident: e_1_2_6_70_2
  doi: 10.1021/ja4015138
– ident: e_1_2_6_31_2
– ident: e_1_2_6_34_2
  doi: 10.1039/B810634G
– ident: e_1_2_6_53_2
– ident: e_1_2_6_33_2
  doi: 10.1038/nmat2133
– ident: e_1_2_6_54_2
  doi: 10.1021/ja906012u
– ident: e_1_2_6_90_2
  doi: 10.1107/S0108767307043930
– ident: e_1_2_6_41_2
  doi: 10.1039/c2dt30906h
– ident: e_1_2_6_14_2
  doi: 10.1039/B706207A
– ident: e_1_2_6_32_2
  doi: 10.1103/PhysRevLett.101.217201
– ident: e_1_2_6_38_2
  doi: 10.1126/science.1090082
– ident: e_1_2_6_57_2
  doi: 10.1039/c1sc00513h
– ident: e_1_2_6_64_2
  doi: 10.1002/chem.201003288
SSID ssj0009633
Score 2.4732194
Snippet The formation of a metal–organic framework (MOF) with nodes that have single‐molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid...
The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10695
SubjectTerms Acetal resins
Anion exchange
Anions
Chemistry
Holes
Magnetic fields
magnetic properties
Magnetic relaxation
Magnets
metal-organic frameworks
Metalorganic compounds
polyoxometalates
Polyoxometallates
Robustness
single-molecule studies
Three dimensional
Title A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities
URI https://api.istex.fr/ark:/67375/WNG-9DZMLC0J-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201402255
https://www.ncbi.nlm.nih.gov/pubmed/24804629
https://www.proquest.com/docview/1552550019
https://www.proquest.com/docview/1554469091
https://www.proquest.com/docview/1778044228
Volume 20
WOSCitedRecordID wos000340505500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFgle-B7LGJOREDxFS5wPO7xV7QpDbUFsExUvlh07MG1Kp7ZDe9yfwN_IX8JdkmZU4kOCt1i-JPZ95M6O73cAz22QOR3owLfOOT-WNvMzXnA_TIs8MyY3sqgShUdiMpHTafb-pyz-Gh-i3XAjy6i-12Tg2iz2rkFDcU6USY4LBFTJZAO6HJU36UB38GF4PLoG3k2bcvKx8AmGdQXcGPC99SesOaYu8fjyV1HnehBbeaHh3f8f_z2400SgrFerzH244coHcKu_Kvz2EL702OHB-PvVt_G74St2hMJ22BhQGYAawoPVCZz1OSA2K9gh-r8zIjrA9lh_Lt1ywWiHl_VKJMGO_cs6w5j10TlX53Fxhf4Ijof7R_03flOQwc8J08WXaV44y-PEaBdHkQtsHmmNnJWWF8JZYROTCCudRKdvTMZz7M20KLTloRUi2oROOSvdFrA0D12CzxBFFMWRS41EWgJGTnC9XpjUA38lDZU3aOVUNONM1TjLXBH_VMs_D1629Oc1TsdvKV9Uwm3J9PyUTreJRH2cvFbZ4NN41A_eqqkHOyvpq8awF4oQ63BRh4GxB8_abhQQ_WfRpZtdVDQx7Tpk4R9oBCE_Ef6aB49rzWoHxGNJKcP4Bl4p0F8mpAg8o21t_8tNT-A2XdNeeSh3oLOcX7incDP_ujxZzHdhQ0zlbmNYPwAycyVT
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BirS9jO8RGGAkBE_REufDDm9Vu7JCUhDrRMWL5cQOoE0paju0R_4E_kb-Eu6SNFMlPiTEo-OLE9-dc_bl7ncAT42XWO1pzzXWWjeUJnETXnLXj8siyfMil2WdKJyKyUTOZsnbNpqQcmEafIjO4UYro_5e0wInh_TBJWooTopSyfGEgDoZXYVeiLqESt4bvhudpJfIu3FbTz4ULuGwrpEbPX6wOcKGZeoRky9-te3c3MXWZmh0_T9M4AbstntQ1m-U5iZcsdUt2B6sS7_dhk99djzOfnz7nr0ZvWBTFLfFxpAKATQgHqxJ4Wwigdi8ZMdoAc-IaIztTH-s7GrJyMfL-hWSYMfhRZNjzAZonuuIXDyj34GT0eF0cOS2JRncglBdXBkXpTU8jHJtwyCwnikCrZG10vBSWCNMlEfCSCvR7Od5wgvsTbQoteG-ESK4C1vVvLL3gMWFbyMcQ5RBEAY2ziXSEjRyhCf2Mo8dcNfiUEWLV05lM85Ug7TMFfFPdfxz4HlH_6VB6vgt5bNauh2ZXpxSfJuI1PvJS5UMP2TpwHulZg7sr8Wv2qW9VIRZh8c63Bo78KTrRgHRnxZd2fl5TROS3yHx_0AjCPuJENgc2GtUq3shHkpKGsYn8FqD_jIhRfAZXev-v9z0GLaPplmq0vHk9QPYoevkOfflPmytFuf2IVwrvq4-LxeP2vX1E85VKFs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5Bi4AL70dhASMhOEWbOA873Kp2A4W2rNhdbcXFcmJ7F7FKV20X7ZGfwG_klzCTpFlV4iEhjo6_OLHHzngmnm8AXhg_tdrXvmestV4kTeql3HEvSFyR5nmRS1cFCo_FdCpns3S3OU1IsTA1P0TrcKOVUX2vaYHbU-O2L1hDsVMUSo4WAs7J-DJ0I8ok04Hu8GN2ML5g3k2afPKR8IiHdc3c6PPtzRY2NFOXBvn8V9vOzV1spYaym_-hA7fgRrMHZf160tyGS7a8A9cG69Rvd-G4z_ZGkx_fvk8-ZK_ZPorbYmFIiQBqEg9Wh3DWJ4HY3LE91IAnBBpheaKPSrtaMvLxsn6JEKzYOa9jjNkA1XN1Ihdt9HtwkO3sD956TUoGryBWF08mhbOGR3GubRSG1jdFqDUOrTTcCWuEifNYGGklqv08T3mBtakWThseGCHC-9Ap56V9CCwpAhtjG8KFYRTaJJeIJWrkGC12lyc98NbiUEXDV05pM05UzbTMFY2fasevB69a_GnN1PFb5MtKui1ML77Q-TYRq8PpG5UOP03GA_-dmvVgay1-1SztpSLOOjTrcGvcg-dtNQqI_rTo0s7PKkxEfoc0-ANGEPcTMbD14EE9tdoX4pGkoGF8Aq9m0F86pIg-oy09-pebnsHV3WGmxqPp-8dwnS6T4zyQW9BZLc7sE7hSfF19Xi6eNsvrJx7SJ9Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SIM-MOF%3A+Three-Dimensional+Organisation+of+Single-Ion+Magnets+with+Anion-Exchange+Capabilities&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Baldovi%2C+Jose+J&rft.au=Coronado%2C+Eugenio&rft.au=Gaita-Arino%2C+Alejandro&rft.au=Gamer%2C+Christoph&rft.date=2014-08-18&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=34&rft.spage=10695&rft.epage=10702&rft_id=info:doi/10.1002%2Fchem.201402255&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon