A comparison of deep‐learning‐based inpainting techniques for experimental X‐ray scattering
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐s...
Uloženo v:
| Vydáno v: | Journal of applied crystallography Ročník 55; číslo 5; s. 1277 - 1288 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.10.2022
Blackwell Publishing Ltd International Union of Crystallography (IUCr) |
| Témata: | |
| ISSN: | 1600-5767, 0021-8898, 1600-5767 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground‐truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U‐Net and mixed‐scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
A number of machine‐learning‐based algorithms are presented for the reconstruction of gaps in experimental X‐ray scattering images through inpainting approaches. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; 5R21GM129649-02 National Institutes of Health (NIH) USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division |
| ISSN: | 1600-5767 0021-8898 1600-5767 |
| DOI: | 10.1107/S1600576722007105 |