A comparison of deep‐learning‐based inpainting techniques for experimental X‐ray scattering

The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography Jg. 55; H. 5; S. 1277 - 1288
Hauptverfasser: Chavez, Tanny, Roberts, Eric J., Zwart, Petrus H., Hexemer, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.10.2022
Blackwell Publishing Ltd
International Union of Crystallography (IUCr)
Schlagworte:
ISSN:1600-5767, 0021-8898, 1600-5767
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground‐truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U‐Net and mixed‐scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. A number of machine‐learning‐based algorithms are presented for the reconstruction of gaps in experimental X‐ray scattering images through inpainting approaches.
AbstractList The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground‐truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U‐Net and mixed‐scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. A number of machine‐learning‐based algorithms are presented for the reconstruction of gaps in experimental X‐ray scattering images through inpainting approaches.
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
A number of machine-learning-based algorithms are presented for the reconstruction of gaps in experimental X-ray scattering images through inpainting approaches. The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
Author Chavez, Tanny
Hexemer, Alexander
Roberts, Eric J.
Zwart, Petrus H.
Author_xml – sequence: 1
  givenname: Tanny
  surname: Chavez
  fullname: Chavez, Tanny
  organization: Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Eric J.
  surname: Roberts
  fullname: Roberts, Eric J.
  organization: Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Petrus H.
  surname: Zwart
  fullname: Zwart, Petrus H.
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Alexander
  surname: Hexemer
  fullname: Hexemer, Alexander
  email: ahexemer@lbl.gov
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/biblio/1890010$$D View this record in Osti.gov
BookMark eNqFUcuKFDEUDTKCM60f4C7oxk3rzaMq1RthaMbH0CD4AHchlbrVk6E6KZO02js_wW_0S0zoEXQEXd3Lueec-zojJz54JOQhg6eMgXr2jrUAjWoV5wCKQXOHnFZoWbGT3_J75CylawBWqafEnFMbdrOJLgVPw0gHxPnHt-8Tmuid35a0NwkH6vxsnM8FohntlXef9pjoGCLFrzNGt0OfzUQ_FkE0B5qsybnAfnuf3B3NlPDBTVyQDy8u3q9fLTdvXr5en2-WVnYMlgi2QyHY2CsrOVrRdaLtu66g7dgJYONKDaBKQZXM9FL2RilseiNRtIMSC_L86Dvv-x0OtswTzaTnMpqJBx2M039WvLvS2_BZrxohlOTF4NHRIKTsdLKu7mmD92izZt2q3AwK6clNlxjqBbLeuWRxmozHsE-aK95IKarngjy-Rb0O--jLDSqLcSE5VJY6smwMKUUcdWlssgt1SDdpBro-WP_14KJkt5S_dv2XZnXUfHETHv4v0Jfrt_xy04AE8ROzeL2w
CitedBy_id crossref_primary_10_1107_S1600576724001390
crossref_primary_10_1107_S1600576722010913
crossref_primary_10_1107_S1600576724004163
crossref_primary_10_1107_S2052252523009521
crossref_primary_10_1107_S1600576723010476
crossref_primary_10_1107_S1600576725000494
crossref_primary_10_1107_S1600576725005047
crossref_primary_10_1109_LAWP_2023_3299224
crossref_primary_10_1016_j_progpolymsci_2024_101828
crossref_primary_10_3390_photonics12070636
crossref_primary_10_1063_5_0246111
crossref_primary_10_1107_S1600576725002328
Cites_doi 10.1007/978-3-030-50641-4_10
10.1038/s42254-021-00345-y
10.3390/jimaging4110128
10.1109/LSP.2020.2988596
10.1109/5.726791
10.33218/001c.17211
10.1109/ACCESS.2019.2960087
10.1371/journal.pone.0229839
10.1007/s10489-020-01971-2
10.1007/978-3-319-46723-8_49
10.1016/j.image.2021.116378
10.1107/S2052252517006212
10.1016/j.foodres.2021.110527
10.1007/s11263-019-01223-y
10.1007/978-3-030-00889-5_1
10.1109/TIP.2006.887728
10.1073/pnas.1715832114
10.1016/j.bbamem.2020.183448
10.1107/S1600576721012371
10.1557/mrc.2019.26
10.1109/ACCESS.2021.3064819
10.1107/S1600576721001369
10.1016/j.cmpb.2019.06.030
10.1007/s11517-019-02008-8
10.1088/2057-1976/ab501c
10.1016/j.foodres.2021.110451
10.1016/j.cviu.2020.103147
10.1016/j.matt.2020.01.020
10.1007/s12551-017-0275-5
10.1109/TMI.2019.2959609
10.1016/j.neucom.2018.03.080
10.1107/S1600576715004306
10.1038/srep33079
10.1016/j.trac.2021.116181
10.1038/s41570-018-0148
10.1007/s11063-019-10163-0
10.1002/adma.201802031
10.1073/pnas.1812064115
10.7551/mitpress/5237.001.0001
10.1515/EJNM.2010.3.1.30
10.1155/2018/3950312
10.1080/08940886.2019.1608120
10.1038/s41467-021-22719-7
10.1037/h0042519
10.1063/5.0049111
10.1007/978-3-642-46466-9_18
10.1088/1742-6596/247/1/012007
10.1109/TCI.2016.2644865
10.3390/molecules25051030
10.1016/j.oceaneng.2021.108803
ContentType Journal Article
Copyright 2022 Tanny Chavez et al. published by IUCr Journals.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Tanny Chavez et al. 2022.
Tanny Chavez et al. 2022 2022
Copyright_xml – notice: 2022 Tanny Chavez et al. published by IUCr Journals.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Tanny Chavez et al. 2022.
– notice: Tanny Chavez et al. 2022 2022
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
5PM
DOI 10.1107/S1600576722007105
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef


Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
DocumentTitleAlternate Deep-learning-based inpainting
EISSN 1600-5767
EndPage 1288
ExternalDocumentID PMC9533742
1890010
10_1107_S1600576722007105
JCR2JL5040
Genre article
GrantInformation_xml – fundername: National Institutes of Health, National Institute of General Medical Sciences
  grantid: 5R21GM129649-02
– fundername: U.S. Department of Energy, Office of Science
  grantid: 107514; DE-AC02-05CH11231
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
1Y6
24P
29J
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCJ
RIWAO
RJQFR
RNS
ROL
RX1
SUPJJ
TN5
UB1
UPT
V8K
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XG1
YCJ
YQT
ZCG
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
5PM
ID FETCH-LOGICAL-c4810-e0c8e331fb7c42ec38836b88c8e6f8301f97d07ec37f97ab44ba77e5ba4e36d73
IEDL.DBID 24P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865949300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1600-5767
0021-8898
IngestDate Tue Nov 04 02:07:18 EST 2025
Mon Apr 01 04:54:51 EDT 2024
Sun Nov 09 14:36:57 EST 2025
Mon Nov 10 02:46:03 EST 2025
Sat Nov 29 01:54:54 EST 2025
Tue Nov 18 21:02:15 EST 2025
Wed Jan 22 16:25:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4810-e0c8e331fb7c42ec38836b88c8e6f8301f97d07ec37f97ab44ba77e5ba4e36d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231; 5R21GM129649-02
National Institutes of Health (NIH)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
ORCID 0000-0002-5269-0125
0000-0003-3315-4092
0000000252690125
0000000333154092
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722007105
PQID 2721234203
PQPubID 29562
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9533742
osti_scitechconnect_1890010
proquest_miscellaneous_2725443953
proquest_journals_2721234203
crossref_citationtrail_10_1107_S1600576722007105
crossref_primary_10_1107_S1600576722007105
wiley_primary_10_1107_S1600576722007105_JCR2JL5040
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: Oxford
– name: Denmark
PublicationTitle Journal of applied crystallography
PublicationYear 2022
Publisher International Union of Crystallography
Blackwell Publishing Ltd
International Union of Crystallography (IUCr)
Publisher_xml – name: International Union of Crystallography
– name: Blackwell Publishing Ltd
– name: International Union of Crystallography (IUCr)
References Schwarz (jl5040_bb62) 2019; 32(3)
Liu (jl5040_bb37) 2016; 6
jl5040_bb42
Hexemer (jl5040_bb22) 2010; 247
Su (jl5040_bb65) 2021; 11915
Zhao (jl5040_bb73) 2017; 3
Bellisario (jl5040_bb3) 2022; 55
Zhou (jl5040_bb76) 2020; 39
Christiansen (jl5040_bb9) 2021; 147
Wickramasinghe (jl5040_bb67) 2021; 9
Lecun (jl5040_bb32) 1998; 86
Noh (jl5040_bb50) 2019; 178
Satapathy (jl5040_bb60) 2021; 98
Müller (jl5040_bb46) 2021; 11886
Georgiadis (jl5040_bb16) 2021; 12
jl5040_bb77
jl5040_bb31
jl5040_bb75
Liu (jl5040_bb39) 2020; 2
Munjal (jl5040_bb47) 2021; 136
jl5040_bb30
jl5040_bb74
jl5040_bb71
Yang (jl5040_bb69) 2021; 147
jl5040_bb72
Xu (jl5040_bb68) 2019; 328
Ni (jl5040_bb48) 2018; 30
jl5040_bb36
Pielawski (jl5040_bb56) 2020; 15
Cui (jl5040_bb11) 2019; 57
Innamorati (jl5040_bb23) 2019; 128
Heberle (jl5040_bb21) 2017; 9
Jam (jl5040_bb26) 2020; 203
Pande (jl5040_bb52) 2018; 115
Srivastava (jl5040_bb64) 2014; 15(1)
jl5040_bb66
Noack (jl5040_bb49) 2021; 3
jl5040_bb20
jl5040_bb63
Li (jl5040_bb33) 2021; 54
jl5040_bb28
jl5040_bb27
jl5040_bb25
jl5040_bb4
Liu (jl5040_bb38) 2017; 4
Bertozzi (jl5040_bb5) 2006; 16
Chen (jl5040_bb7) 2021; 2
Amaro (jl5040_bb1) 2018; 2
Li (jl5040_bb34) 2020; 27
jl5040_bb70
Damelin (jl5040_bb12) 2018; 2018
Elharrouss (jl5040_bb14) 2020; 51
Schulz (jl5040_bb61) 2020; 3
Pelt (jl5040_bb54) 2018; 4
Ioffe (jl5040_bb24) 2015; 37
jl5040_bb53
jl5040_bb10
jl5040_bb51
Liu (jl5040_bb40) 2019; 9
jl5040_bb19
jl5040_bb18
jl5040_bb15
Liang (jl5040_bb35) 2021; 225
jl5040_bb59
jl5040_bb13
jl5040_bb57
Matsui (jl5040_bb43) 2020; 8
Liu (jl5040_bb41) 2021; 30
Rosenblatt (jl5040_bb58) 1958; 65
Khondker (jl5040_bb29) 2021; 1863
Chen (jl5040_bb6) 2021; 51
Ashiotis (jl5040_bb2) 2015; 48
Pelt (jl5040_bb55) 2018; 115
Maveyraud (jl5040_bb44) 2020; 25
Choi (jl5040_bb8) 2021; 7
Müller (jl5040_bb45) 2010; 3
References_xml – ident: jl5040_bb28
  doi: 10.1007/978-3-030-50641-4_10
– volume: 3
  start-page: 685
  year: 2021
  ident: jl5040_bb49
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00345-y
– volume: 4
  start-page: 128
  year: 2018
  ident: jl5040_bb54
  publication-title: J. Imaging
  doi: 10.3390/jimaging4110128
– ident: jl5040_bb77
– ident: jl5040_bb31
– volume: 27
  start-page: 680
  year: 2020
  ident: jl5040_bb34
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2988596
– volume: 86
  start-page: 2278
  year: 1998
  ident: jl5040_bb32
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 3
  start-page: 656
  year: 2020
  ident: jl5040_bb61
  publication-title: Precision Nanomed.
  doi: 10.33218/001c.17211
– ident: jl5040_bb25
– volume: 8
  start-page: 38846
  year: 2020
  ident: jl5040_bb43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960087
– volume: 15
  start-page: e0229839
  year: 2020
  ident: jl5040_bb56
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0229839
– volume: 51
  start-page: 3460
  year: 2021
  ident: jl5040_bb6
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01971-2
– ident: jl5040_bb10
  doi: 10.1007/978-3-319-46723-8_49
– volume: 98
  start-page: 116378
  year: 2021
  ident: jl5040_bb60
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2021.116378
– volume: 4
  start-page: 455
  year: 2017
  ident: jl5040_bb38
  publication-title: IUCrJ
  doi: 10.1107/S2052252517006212
– volume: 147
  start-page: 110527
  year: 2021
  ident: jl5040_bb69
  publication-title: Food. Res. Int.
  doi: 10.1016/j.foodres.2021.110527
– volume: 128
  start-page: 773
  year: 2019
  ident: jl5040_bb23
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01223-y
– ident: jl5040_bb75
  doi: 10.1007/978-3-030-00889-5_1
– volume: 16
  start-page: 285
  year: 2006
  ident: jl5040_bb5
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.887728
– volume: 115
  start-page: 254
  year: 2018
  ident: jl5040_bb55
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1715832114
– volume: 1863
  start-page: 183448
  year: 2021
  ident: jl5040_bb29
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2020.183448
– volume: 55
  start-page: 122
  year: 2022
  ident: jl5040_bb3
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576721012371
– volume: 9
  start-page: 586
  year: 2019
  ident: jl5040_bb40
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.26
– volume: 9
  start-page: 40511
  year: 2021
  ident: jl5040_bb67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064819
– volume: 54
  start-page: 680
  year: 2021
  ident: jl5040_bb33
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576721001369
– volume: 178
  start-page: 237
  year: 2019
  ident: jl5040_bb50
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.030
– volume: 57
  start-page: 2027
  year: 2019
  ident: jl5040_bb11
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02008-8
– volume: 7
  start-page: 015008
  year: 2021
  ident: jl5040_bb8
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab501c
– volume: 147
  start-page: 110451
  year: 2021
  ident: jl5040_bb9
  publication-title: Food. Res. Int.
  doi: 10.1016/j.foodres.2021.110451
– volume: 203
  start-page: 103147
  year: 2020
  ident: jl5040_bb26
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.103147
– volume: 2
  start-page: 816
  year: 2020
  ident: jl5040_bb39
  publication-title: Matter
  doi: 10.1016/j.matt.2020.01.020
– ident: jl5040_bb4
– volume: 9
  start-page: 353
  year: 2017
  ident: jl5040_bb21
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0275-5
– volume: 37
  start-page: 448
  year: 2015
  ident: jl5040_bb24
  publication-title: Proc. Mach. Learn. Res.
– volume: 39
  start-page: 1856
  year: 2020
  ident: jl5040_bb76
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– ident: jl5040_bb63
– volume: 328
  start-page: 69
  year: 2019
  ident: jl5040_bb68
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.080
– volume: 30
  start-page: 1
  year: 2021
  ident: jl5040_bb41
  publication-title: J. Electron. Imaging
– volume: 48
  start-page: 510
  year: 2015
  ident: jl5040_bb2
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576715004306
– ident: jl5040_bb36
– volume: 6
  start-page: 33079
  year: 2016
  ident: jl5040_bb37
  publication-title: Sci. Rep.
  doi: 10.1038/srep33079
– ident: jl5040_bb57
– ident: jl5040_bb70
– volume: 136
  start-page: 116181
  year: 2021
  ident: jl5040_bb47
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2021.116181
– volume: 2
  start-page: 0148
  year: 2018
  ident: jl5040_bb1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0148
– ident: jl5040_bb19
– ident: jl5040_bb53
– ident: jl5040_bb74
– volume: 51
  start-page: 2007
  year: 2020
  ident: jl5040_bb14
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10163-0
– volume: 30
  start-page: 1802031
  year: 2018
  ident: jl5040_bb48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802031
– volume: 115
  start-page: 11772
  year: 2018
  ident: jl5040_bb52
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1812064115
– ident: jl5040_bb27
– ident: jl5040_bb18
– ident: jl5040_bb42
– ident: jl5040_bb66
– ident: jl5040_bb59
  doi: 10.7551/mitpress/5237.001.0001
– volume: 3
  start-page: 30
  year: 2010
  ident: jl5040_bb45
  publication-title: Eur. J. Nanomed.
  doi: 10.1515/EJNM.2010.3.1.30
– volume: 2018
  start-page: 3950312
  year: 2018
  ident: jl5040_bb12
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/2018/3950312
– volume: 32(3)
  start-page: 13
  year: 2019
  ident: jl5040_bb62
  publication-title: Synchrotron Rad. News
  doi: 10.1080/08940886.2019.1608120
– ident: jl5040_bb71
– volume: 15(1)
  start-page: 1929
  year: 2014
  ident: jl5040_bb64
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 2941
  year: 2021
  ident: jl5040_bb16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22719-7
– ident: jl5040_bb30
– volume: 65
  start-page: 386
  year: 1958
  ident: jl5040_bb58
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 2
  start-page: 031301
  year: 2021
  ident: jl5040_bb7
  publication-title: Chem. Phys. Rev.
  doi: 10.1063/5.0049111
– ident: jl5040_bb15
  doi: 10.1007/978-3-642-46466-9_18
– ident: jl5040_bb20
– volume: 11886
  start-page: 1188613
  year: 2021
  ident: jl5040_bb46
  publication-title: Proc. SPIE
– volume: 247
  start-page: 012007
  year: 2010
  ident: jl5040_bb22
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/247/1/012007
– volume: 3
  start-page: 47
  year: 2017
  ident: jl5040_bb73
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2644865
– ident: jl5040_bb13
– volume: 25
  start-page: 1030
  year: 2020
  ident: jl5040_bb44
  publication-title: Molecules
  doi: 10.3390/molecules25051030
– volume: 225
  start-page: 108803
  year: 2021
  ident: jl5040_bb35
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108803
– volume: 11915
  start-page: 28
  year: 2021
  ident: jl5040_bb65
  publication-title: Proc. SPIE
– ident: jl5040_bb51
– ident: jl5040_bb72
SSID ssj0016722
Score 2.4760923
Snippet The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use...
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use...
A number of machine-learning-based algorithms are presented for the reconstruction of gaps in experimental X-ray scattering images through inpainting...
SourceID pubmedcentral
osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1277
SubjectTerms Algorithms
Artificial neural networks
Computer architecture
Correlation coefficient
Correlation coefficients
Deep learning
Harmonic functions
image inpainting
Image reconstruction
Machine learning
MATHEMATICS AND COMPUTING
mixed-scale dense networks
Neural networks
Research Papers
Scattering
tunable U-Nets
X-ray scattering
Title A comparison of deep‐learning‐based inpainting techniques for experimental X‐ray scattering
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722007105
https://www.proquest.com/docview/2721234203
https://www.proquest.com/docview/2725443953
https://www.osti.gov/biblio/1890010
https://pubmed.ncbi.nlm.nih.gov/PMC9533742
Volume 55
WOSCitedRecordID wos000865949300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1600-5767
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016722
  issn: 1600-5767
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED-6dLDtYVu7jWbtigZ9GpjakuyTH0u2MEoopX8gb8aSlTVQnJCkg77tI-wz7pPsTnFMssIKYy9GWCejP3e6kyX9fgBHaFONVayiNLFZpEkrIuvJ8FBZ6bPYGXQBxHWAZ2dmOMzPt6C3uguzxIdof7ixZYT5mg28tA0LSdjXv0wyvkmZoZTBT6ZPYDtJFLJqS33ebiVkSzRElo5YvNnapI8cP_jEhnPqTMjINgLPP49NroezwR_1X_2XlryGl004Kk6W-rMDW77ehWe9FQvcLrxYAyx8A-WJcC1xoZiMROX99NePnw33xDdKslusxLieluNAQiFalNi5oABZrFMKiCEVmJX3Yu4CzCeJv4Xr_per3teoIWmInDY0h3saT69UMrLotPROGaMyawy9zUaGpo9RTrqAlIGUKq3WtkT0qS21V1mF6h106knt90DoyhjrSEC5XOckYr0kvUmdSwMhSBfi1egUrkEwZyKN2yKsZGIsHvRkFz61RaZL-I6_Ce_zkBcUe3DXOD5p5BZFYnJeOXfhYKUJRWPn80Iiu34tY6rcxzabhoi3XcraT-6CDIMM5inJ4IYGtVVijO_NnHp8E7C--fQvatkFGTTo8UYUp70LeTpIaXJ-_y-F9uG55Bse4bziAXQWszv_AZ6674vxfHYYTIueODSHsP35on89-A2SSSTY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-NDmnjgT-DibINjMQTUkRqO7HzOHWrxggVGpvUNyt2XKiE0qrtkHjjI_AZ-STcOWnUbtKQEG9WfGfF9p3vbJ9_B_BG2USqMhZR0rNpJFEqIutR8ZSw3Kex08oFENdcDYd6NMo-bcHJ6i1MjQ_RHriRZoT1mhScDqRrLQ8X-597KT2lTBXnwVAm92BbojglHdg-uRhc5e1tQloDIhJ9RAzN7SY28-5WIxv2qTNFPdvwPW9GTq57tMEkDR79n848hoeNS8qOaxl6Alu-2oOd_ioT3B48WAMtfArFMXNt8kI2HbPS-9nvn7-a_BNfsEimsWSTalZMQiIK1iLFLhg6yWw9rQAbIcO8-MEWLkB9IvkzuBqcXvbPoiZRQ-SkxnXc45x6IXpjq5zk3gmtRWq1xq_pWOMSMs5QHhRWKCwVVkpbKOUTW0gv0lKJfehU08o_ByZLra1DAuEymSGJ9RxlJ3EuCUlBuhCvpse4BsWckml8M2E3EytzayS78LZlmdUQHncRH9CcG_Q_aGgcRRu5penpjHbPXThciYJpdH1huCLzL3mMP_e6rcYpoquXovLT60BDQINZgjRqQ4TaXyKc782aavI14H1TBLCSvAs8iNDfO2HO-xf8PE9wgX7xL0yvYOfs8mNu8vfDDwewy-nFR4hfPITOcn7tj-C--76cLOYvG037Azm3J80
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFD6sVbw8eFkV664awSdh2Gkuk8zj0rXoWkrxAn0Lk0xGCzItbVfwzZ_gb_SXeE5mOrQuKIhvYXISkpxrJsl3AF5op6QuU5GogcsSiVKRuICKp4XjIUu90T6CuI71ZGJms3x6AGfbtzANPkT3w400I9prUvCwLKtGy-PB_vtBRk8pM815dJTqClyVCm0t4TvLaXeWkDVwiESdEHl7tomdnFzqYs879RaoZXuR5-_3Jnfj2eiQRnf-z1Tuwu02IGWnjQTdg4NQH8KN4TYP3CHc2oEsvA_FKfNd6kK2qFgZwvLn9x9t9olPWCTHWLJ5vSzmMQ0F63Bi1wxDZLabVIDNsMGq-MbWPgJ9IvkD-Dh69WH4OmnTNCReGrTiATkahBhUTnvJgxfGiMwZg1-zyqABqXKUBo0VGkuFk9IVWgflChlEVmrxEHr1og6PgMnSGOeRQPhc5kjiAkfJUd6rmBKkD-mWPda3GOaUSuOLjXuZVNtLK9mHl12TZQPg8SfiI-K5xeiDlsbTXSO_sQOT0965D8dbUbCtpq8t1-T8JU9xcM-7amQRHbwUdVhcRBqCGcwV0ug9EeqGRCjf-zX1_HNE-6b7v1ryPvAoQn-fhD0fvuPnY4Xm-fG_NHoG16dnIzt-M3l7BDc5PfeIlxePobdZXYQncM1_3czXq6dRzX4BRyQltg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+deep-learning-based+inpainting+techniques+for+experimental+X-ray+scattering&rft.jtitle=Journal+of+applied+crystallography&rft.au=Chavez%2C+Tanny&rft.au=Roberts%2C+Eric+J.&rft.au=Zwart%2C+Petrus+H.&rft.au=Hexemer%2C+Alexander&rft.date=2022-10-01&rft.issn=1600-5767&rft.eissn=1600-5767&rft.volume=55&rft.issue=5&rft.spage=1277&rft.epage=1288&rft_id=info:doi/10.1107%2FS1600576722007105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S1600576722007105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon