A comparison of deep‐learning‐based inpainting techniques for experimental X‐ray scattering
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐s...
Gespeichert in:
| Veröffentlicht in: | Journal of applied crystallography Jg. 55; H. 5; S. 1277 - 1288 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.10.2022
Blackwell Publishing Ltd International Union of Crystallography (IUCr) |
| Schlagworte: | |
| ISSN: | 1600-5767, 0021-8898, 1600-5767 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground‐truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U‐Net and mixed‐scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
A number of machine‐learning‐based algorithms are presented for the reconstruction of gaps in experimental X‐ray scattering images through inpainting approaches. |
|---|---|
| AbstractList | The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U‐Nets, partial convolution neural networks and mixed‐scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground‐truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U‐Net and mixed‐scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. A number of machine‐learning‐based algorithms are presented for the reconstruction of gaps in experimental X‐ray scattering images through inpainting approaches. The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. A number of machine-learning-based algorithms are presented for the reconstruction of gaps in experimental X-ray scattering images through inpainting approaches. The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980. |
| Author | Chavez, Tanny Hexemer, Alexander Roberts, Eric J. Zwart, Petrus H. |
| Author_xml | – sequence: 1 givenname: Tanny surname: Chavez fullname: Chavez, Tanny organization: Lawrence Berkeley National Laboratory – sequence: 2 givenname: Eric J. surname: Roberts fullname: Roberts, Eric J. organization: Lawrence Berkeley National Laboratory – sequence: 3 givenname: Petrus H. surname: Zwart fullname: Zwart, Petrus H. organization: Lawrence Berkeley National Laboratory – sequence: 4 givenname: Alexander surname: Hexemer fullname: Hexemer, Alexander email: ahexemer@lbl.gov organization: Lawrence Berkeley National Laboratory |
| BackLink | https://www.osti.gov/biblio/1890010$$D View this record in Osti.gov |
| BookMark | eNqFUcuKFDEUDTKCM60f4C7oxk3rzaMq1RthaMbH0CD4AHchlbrVk6E6KZO02js_wW_0S0zoEXQEXd3Lueec-zojJz54JOQhg6eMgXr2jrUAjWoV5wCKQXOHnFZoWbGT3_J75CylawBWqafEnFMbdrOJLgVPw0gHxPnHt-8Tmuid35a0NwkH6vxsnM8FohntlXef9pjoGCLFrzNGt0OfzUQ_FkE0B5qsybnAfnuf3B3NlPDBTVyQDy8u3q9fLTdvXr5en2-WVnYMlgi2QyHY2CsrOVrRdaLtu66g7dgJYONKDaBKQZXM9FL2RilseiNRtIMSC_L86Dvv-x0OtswTzaTnMpqJBx2M039WvLvS2_BZrxohlOTF4NHRIKTsdLKu7mmD92izZt2q3AwK6clNlxjqBbLeuWRxmozHsE-aK95IKarngjy-Rb0O--jLDSqLcSE5VJY6smwMKUUcdWlssgt1SDdpBro-WP_14KJkt5S_dv2XZnXUfHETHv4v0Jfrt_xy04AE8ROzeL2w |
| CitedBy_id | crossref_primary_10_1107_S1600576724001390 crossref_primary_10_1107_S1600576722010913 crossref_primary_10_1107_S1600576724004163 crossref_primary_10_1107_S2052252523009521 crossref_primary_10_1107_S1600576723010476 crossref_primary_10_1107_S1600576725000494 crossref_primary_10_1107_S1600576725005047 crossref_primary_10_1109_LAWP_2023_3299224 crossref_primary_10_1016_j_progpolymsci_2024_101828 crossref_primary_10_3390_photonics12070636 crossref_primary_10_1063_5_0246111 crossref_primary_10_1107_S1600576725002328 |
| Cites_doi | 10.1007/978-3-030-50641-4_10 10.1038/s42254-021-00345-y 10.3390/jimaging4110128 10.1109/LSP.2020.2988596 10.1109/5.726791 10.33218/001c.17211 10.1109/ACCESS.2019.2960087 10.1371/journal.pone.0229839 10.1007/s10489-020-01971-2 10.1007/978-3-319-46723-8_49 10.1016/j.image.2021.116378 10.1107/S2052252517006212 10.1016/j.foodres.2021.110527 10.1007/s11263-019-01223-y 10.1007/978-3-030-00889-5_1 10.1109/TIP.2006.887728 10.1073/pnas.1715832114 10.1016/j.bbamem.2020.183448 10.1107/S1600576721012371 10.1557/mrc.2019.26 10.1109/ACCESS.2021.3064819 10.1107/S1600576721001369 10.1016/j.cmpb.2019.06.030 10.1007/s11517-019-02008-8 10.1088/2057-1976/ab501c 10.1016/j.foodres.2021.110451 10.1016/j.cviu.2020.103147 10.1016/j.matt.2020.01.020 10.1007/s12551-017-0275-5 10.1109/TMI.2019.2959609 10.1016/j.neucom.2018.03.080 10.1107/S1600576715004306 10.1038/srep33079 10.1016/j.trac.2021.116181 10.1038/s41570-018-0148 10.1007/s11063-019-10163-0 10.1002/adma.201802031 10.1073/pnas.1812064115 10.7551/mitpress/5237.001.0001 10.1515/EJNM.2010.3.1.30 10.1155/2018/3950312 10.1080/08940886.2019.1608120 10.1038/s41467-021-22719-7 10.1037/h0042519 10.1063/5.0049111 10.1007/978-3-642-46466-9_18 10.1088/1742-6596/247/1/012007 10.1109/TCI.2016.2644865 10.3390/molecules25051030 10.1016/j.oceaneng.2021.108803 |
| ContentType | Journal Article |
| Copyright | 2022 Tanny Chavez et al. published by IUCr Journals. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Tanny Chavez et al. 2022. Tanny Chavez et al. 2022 2022 |
| Copyright_xml | – notice: 2022 Tanny Chavez et al. published by IUCr Journals. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Tanny Chavez et al. 2022. – notice: Tanny Chavez et al. 2022 2022 |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OTOTI 5PM |
| DOI | 10.1107/S1600576722007105 |
| DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| DocumentTitleAlternate | Deep-learning-based inpainting |
| EISSN | 1600-5767 |
| EndPage | 1288 |
| ExternalDocumentID | PMC9533742 1890010 10_1107_S1600576722007105 JCR2JL5040 |
| Genre | article |
| GrantInformation_xml | – fundername: National Institutes of Health, National Institute of General Medical Sciences grantid: 5R21GM129649-02 – fundername: U.S. Department of Energy, Office of Science grantid: 107514; DE-AC02-05CH11231 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 1Y6 24P 29J 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ H~9 I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCJ RIWAO RJQFR RNS ROL RX1 SUPJJ TN5 UB1 UPT V8K VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WYISQ XG1 YCJ YQT ZCG ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI 5PM |
| ID | FETCH-LOGICAL-c4810-e0c8e331fb7c42ec38836b88c8e6f8301f97d07ec37f97ab44ba77e5ba4e36d73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865949300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1600-5767 0021-8898 |
| IngestDate | Tue Nov 04 02:07:18 EST 2025 Mon Apr 01 04:54:51 EDT 2024 Sun Nov 09 14:36:57 EST 2025 Mon Nov 10 02:46:03 EST 2025 Sat Nov 29 01:54:54 EST 2025 Tue Nov 18 21:02:15 EST 2025 Wed Jan 22 16:25:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4810-e0c8e331fb7c42ec38836b88c8e6f8301f97d07ec37f97ab44ba77e5ba4e36d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; 5R21GM129649-02 National Institutes of Health (NIH) USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division |
| ORCID | 0000-0002-5269-0125 0000-0003-3315-4092 0000000252690125 0000000333154092 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722007105 |
| PQID | 2721234203 |
| PQPubID | 29562 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9533742 osti_scitechconnect_1890010 proquest_miscellaneous_2725443953 proquest_journals_2721234203 crossref_citationtrail_10_1107_S1600576722007105 crossref_primary_10_1107_S1600576722007105 wiley_primary_10_1107_S1600576722007105_JCR2JL5040 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
| PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: Oxford – name: Denmark |
| PublicationTitle | Journal of applied crystallography |
| PublicationYear | 2022 |
| Publisher | International Union of Crystallography Blackwell Publishing Ltd International Union of Crystallography (IUCr) |
| Publisher_xml | – name: International Union of Crystallography – name: Blackwell Publishing Ltd – name: International Union of Crystallography (IUCr) |
| References | Schwarz (jl5040_bb62) 2019; 32(3) Liu (jl5040_bb37) 2016; 6 jl5040_bb42 Hexemer (jl5040_bb22) 2010; 247 Su (jl5040_bb65) 2021; 11915 Zhao (jl5040_bb73) 2017; 3 Bellisario (jl5040_bb3) 2022; 55 Zhou (jl5040_bb76) 2020; 39 Christiansen (jl5040_bb9) 2021; 147 Wickramasinghe (jl5040_bb67) 2021; 9 Lecun (jl5040_bb32) 1998; 86 Noh (jl5040_bb50) 2019; 178 Satapathy (jl5040_bb60) 2021; 98 Müller (jl5040_bb46) 2021; 11886 Georgiadis (jl5040_bb16) 2021; 12 jl5040_bb77 jl5040_bb31 jl5040_bb75 Liu (jl5040_bb39) 2020; 2 Munjal (jl5040_bb47) 2021; 136 jl5040_bb30 jl5040_bb74 jl5040_bb71 Yang (jl5040_bb69) 2021; 147 jl5040_bb72 Xu (jl5040_bb68) 2019; 328 Ni (jl5040_bb48) 2018; 30 jl5040_bb36 Pielawski (jl5040_bb56) 2020; 15 Cui (jl5040_bb11) 2019; 57 Innamorati (jl5040_bb23) 2019; 128 Heberle (jl5040_bb21) 2017; 9 Jam (jl5040_bb26) 2020; 203 Pande (jl5040_bb52) 2018; 115 Srivastava (jl5040_bb64) 2014; 15(1) jl5040_bb66 Noack (jl5040_bb49) 2021; 3 jl5040_bb20 jl5040_bb63 Li (jl5040_bb33) 2021; 54 jl5040_bb28 jl5040_bb27 jl5040_bb25 jl5040_bb4 Liu (jl5040_bb38) 2017; 4 Bertozzi (jl5040_bb5) 2006; 16 Chen (jl5040_bb7) 2021; 2 Amaro (jl5040_bb1) 2018; 2 Li (jl5040_bb34) 2020; 27 jl5040_bb70 Damelin (jl5040_bb12) 2018; 2018 Elharrouss (jl5040_bb14) 2020; 51 Schulz (jl5040_bb61) 2020; 3 Pelt (jl5040_bb54) 2018; 4 Ioffe (jl5040_bb24) 2015; 37 jl5040_bb53 jl5040_bb10 jl5040_bb51 Liu (jl5040_bb40) 2019; 9 jl5040_bb19 jl5040_bb18 jl5040_bb15 Liang (jl5040_bb35) 2021; 225 jl5040_bb59 jl5040_bb13 jl5040_bb57 Matsui (jl5040_bb43) 2020; 8 Liu (jl5040_bb41) 2021; 30 Rosenblatt (jl5040_bb58) 1958; 65 Khondker (jl5040_bb29) 2021; 1863 Chen (jl5040_bb6) 2021; 51 Ashiotis (jl5040_bb2) 2015; 48 Pelt (jl5040_bb55) 2018; 115 Maveyraud (jl5040_bb44) 2020; 25 Choi (jl5040_bb8) 2021; 7 Müller (jl5040_bb45) 2010; 3 |
| References_xml | – ident: jl5040_bb28 doi: 10.1007/978-3-030-50641-4_10 – volume: 3 start-page: 685 year: 2021 ident: jl5040_bb49 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00345-y – volume: 4 start-page: 128 year: 2018 ident: jl5040_bb54 publication-title: J. Imaging doi: 10.3390/jimaging4110128 – ident: jl5040_bb77 – ident: jl5040_bb31 – volume: 27 start-page: 680 year: 2020 ident: jl5040_bb34 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.2988596 – volume: 86 start-page: 2278 year: 1998 ident: jl5040_bb32 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 3 start-page: 656 year: 2020 ident: jl5040_bb61 publication-title: Precision Nanomed. doi: 10.33218/001c.17211 – ident: jl5040_bb25 – volume: 8 start-page: 38846 year: 2020 ident: jl5040_bb43 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960087 – volume: 15 start-page: e0229839 year: 2020 ident: jl5040_bb56 publication-title: PLoS One doi: 10.1371/journal.pone.0229839 – volume: 51 start-page: 3460 year: 2021 ident: jl5040_bb6 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01971-2 – ident: jl5040_bb10 doi: 10.1007/978-3-319-46723-8_49 – volume: 98 start-page: 116378 year: 2021 ident: jl5040_bb60 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116378 – volume: 4 start-page: 455 year: 2017 ident: jl5040_bb38 publication-title: IUCrJ doi: 10.1107/S2052252517006212 – volume: 147 start-page: 110527 year: 2021 ident: jl5040_bb69 publication-title: Food. Res. Int. doi: 10.1016/j.foodres.2021.110527 – volume: 128 start-page: 773 year: 2019 ident: jl5040_bb23 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01223-y – ident: jl5040_bb75 doi: 10.1007/978-3-030-00889-5_1 – volume: 16 start-page: 285 year: 2006 ident: jl5040_bb5 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.887728 – volume: 115 start-page: 254 year: 2018 ident: jl5040_bb55 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1715832114 – volume: 1863 start-page: 183448 year: 2021 ident: jl5040_bb29 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2020.183448 – volume: 55 start-page: 122 year: 2022 ident: jl5040_bb3 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576721012371 – volume: 9 start-page: 586 year: 2019 ident: jl5040_bb40 publication-title: MRS Commun. doi: 10.1557/mrc.2019.26 – volume: 9 start-page: 40511 year: 2021 ident: jl5040_bb67 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064819 – volume: 54 start-page: 680 year: 2021 ident: jl5040_bb33 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576721001369 – volume: 178 start-page: 237 year: 2019 ident: jl5040_bb50 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.06.030 – volume: 57 start-page: 2027 year: 2019 ident: jl5040_bb11 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-02008-8 – volume: 7 start-page: 015008 year: 2021 ident: jl5040_bb8 publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab501c – volume: 147 start-page: 110451 year: 2021 ident: jl5040_bb9 publication-title: Food. Res. Int. doi: 10.1016/j.foodres.2021.110451 – volume: 203 start-page: 103147 year: 2020 ident: jl5040_bb26 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2020.103147 – volume: 2 start-page: 816 year: 2020 ident: jl5040_bb39 publication-title: Matter doi: 10.1016/j.matt.2020.01.020 – ident: jl5040_bb4 – volume: 9 start-page: 353 year: 2017 ident: jl5040_bb21 publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0275-5 – volume: 37 start-page: 448 year: 2015 ident: jl5040_bb24 publication-title: Proc. Mach. Learn. Res. – volume: 39 start-page: 1856 year: 2020 ident: jl5040_bb76 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 – ident: jl5040_bb63 – volume: 328 start-page: 69 year: 2019 ident: jl5040_bb68 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.080 – volume: 30 start-page: 1 year: 2021 ident: jl5040_bb41 publication-title: J. Electron. Imaging – volume: 48 start-page: 510 year: 2015 ident: jl5040_bb2 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576715004306 – ident: jl5040_bb36 – volume: 6 start-page: 33079 year: 2016 ident: jl5040_bb37 publication-title: Sci. Rep. doi: 10.1038/srep33079 – ident: jl5040_bb57 – ident: jl5040_bb70 – volume: 136 start-page: 116181 year: 2021 ident: jl5040_bb47 publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2021.116181 – volume: 2 start-page: 0148 year: 2018 ident: jl5040_bb1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0148 – ident: jl5040_bb19 – ident: jl5040_bb53 – ident: jl5040_bb74 – volume: 51 start-page: 2007 year: 2020 ident: jl5040_bb14 publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10163-0 – volume: 30 start-page: 1802031 year: 2018 ident: jl5040_bb48 publication-title: Adv. Mater. doi: 10.1002/adma.201802031 – volume: 115 start-page: 11772 year: 2018 ident: jl5040_bb52 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1812064115 – ident: jl5040_bb27 – ident: jl5040_bb18 – ident: jl5040_bb42 – ident: jl5040_bb66 – ident: jl5040_bb59 doi: 10.7551/mitpress/5237.001.0001 – volume: 3 start-page: 30 year: 2010 ident: jl5040_bb45 publication-title: Eur. J. Nanomed. doi: 10.1515/EJNM.2010.3.1.30 – volume: 2018 start-page: 3950312 year: 2018 ident: jl5040_bb12 publication-title: Int. J. Math. Math. Sci. doi: 10.1155/2018/3950312 – volume: 32(3) start-page: 13 year: 2019 ident: jl5040_bb62 publication-title: Synchrotron Rad. News doi: 10.1080/08940886.2019.1608120 – ident: jl5040_bb71 – volume: 15(1) start-page: 1929 year: 2014 ident: jl5040_bb64 publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 2941 year: 2021 ident: jl5040_bb16 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22719-7 – ident: jl5040_bb30 – volume: 65 start-page: 386 year: 1958 ident: jl5040_bb58 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 2 start-page: 031301 year: 2021 ident: jl5040_bb7 publication-title: Chem. Phys. Rev. doi: 10.1063/5.0049111 – ident: jl5040_bb15 doi: 10.1007/978-3-642-46466-9_18 – ident: jl5040_bb20 – volume: 11886 start-page: 1188613 year: 2021 ident: jl5040_bb46 publication-title: Proc. SPIE – volume: 247 start-page: 012007 year: 2010 ident: jl5040_bb22 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/247/1/012007 – volume: 3 start-page: 47 year: 2017 ident: jl5040_bb73 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2644865 – ident: jl5040_bb13 – volume: 25 start-page: 1030 year: 2020 ident: jl5040_bb44 publication-title: Molecules doi: 10.3390/molecules25051030 – volume: 225 start-page: 108803 year: 2021 ident: jl5040_bb35 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108803 – volume: 11915 start-page: 28 year: 2021 ident: jl5040_bb65 publication-title: Proc. SPIE – ident: jl5040_bb51 – ident: jl5040_bb72 |
| SSID | ssj0016722 |
| Score | 2.4760923 |
| Snippet | The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X‐ray scattering data. The proposed methods use... The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use... A number of machine-learning-based algorithms are presented for the reconstruction of gaps in experimental X-ray scattering images through inpainting... |
| SourceID | pubmedcentral osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1277 |
| SubjectTerms | Algorithms Artificial neural networks Computer architecture Correlation coefficient Correlation coefficients Deep learning Harmonic functions image inpainting Image reconstruction Machine learning MATHEMATICS AND COMPUTING mixed-scale dense networks Neural networks Research Papers Scattering tunable U-Nets X-ray scattering |
| Title | A comparison of deep‐learning‐based inpainting techniques for experimental X‐ray scattering |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576722007105 https://www.proquest.com/docview/2721234203 https://www.proquest.com/docview/2725443953 https://www.osti.gov/biblio/1890010 https://pubmed.ncbi.nlm.nih.gov/PMC9533742 |
| Volume | 55 |
| WOSCitedRecordID | wos000865949300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1600-5767 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016722 issn: 1600-5767 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED-6dLDtYVu7jWbtigZ9GpjakuyTH0u2MEoopX8gb8aSlTVQnJCkg77tI-wz7pPsTnFMssIKYy9GWCejP3e6kyX9fgBHaFONVayiNLFZpEkrIuvJ8FBZ6bPYGXQBxHWAZ2dmOMzPt6C3uguzxIdof7ixZYT5mg28tA0LSdjXv0wyvkmZoZTBT6ZPYDtJFLJqS33ebiVkSzRElo5YvNnapI8cP_jEhnPqTMjINgLPP49NroezwR_1X_2XlryGl004Kk6W-rMDW77ehWe9FQvcLrxYAyx8A-WJcC1xoZiMROX99NePnw33xDdKslusxLieluNAQiFalNi5oABZrFMKiCEVmJX3Yu4CzCeJv4Xr_per3teoIWmInDY0h3saT69UMrLotPROGaMyawy9zUaGpo9RTrqAlIGUKq3WtkT0qS21V1mF6h106knt90DoyhjrSEC5XOckYr0kvUmdSwMhSBfi1egUrkEwZyKN2yKsZGIsHvRkFz61RaZL-I6_Ce_zkBcUe3DXOD5p5BZFYnJeOXfhYKUJRWPn80Iiu34tY6rcxzabhoi3XcraT-6CDIMM5inJ4IYGtVVijO_NnHp8E7C--fQvatkFGTTo8UYUp70LeTpIaXJ-_y-F9uG55Bse4bziAXQWszv_AZ6674vxfHYYTIueODSHsP35on89-A2SSSTY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-NDmnjgT-DibINjMQTUkRqO7HzOHWrxggVGpvUNyt2XKiE0qrtkHjjI_AZ-STcOWnUbtKQEG9WfGfF9p3vbJ9_B_BG2USqMhZR0rNpJFEqIutR8ZSw3Kex08oFENdcDYd6NMo-bcHJ6i1MjQ_RHriRZoT1mhScDqRrLQ8X-597KT2lTBXnwVAm92BbojglHdg-uRhc5e1tQloDIhJ9RAzN7SY28-5WIxv2qTNFPdvwPW9GTq57tMEkDR79n848hoeNS8qOaxl6Alu-2oOd_ioT3B48WAMtfArFMXNt8kI2HbPS-9nvn7-a_BNfsEimsWSTalZMQiIK1iLFLhg6yWw9rQAbIcO8-MEWLkB9IvkzuBqcXvbPoiZRQ-SkxnXc45x6IXpjq5zk3gmtRWq1xq_pWOMSMs5QHhRWKCwVVkpbKOUTW0gv0lKJfehU08o_ByZLra1DAuEymSGJ9RxlJ3EuCUlBuhCvpse4BsWckml8M2E3EytzayS78LZlmdUQHncRH9CcG_Q_aGgcRRu5penpjHbPXThciYJpdH1huCLzL3mMP_e6rcYpoquXovLT60BDQINZgjRqQ4TaXyKc782aavI14H1TBLCSvAs8iNDfO2HO-xf8PE9wgX7xL0yvYOfs8mNu8vfDDwewy-nFR4hfPITOcn7tj-C--76cLOYvG037Azm3J80 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFD6sVbw8eFkV664awSdh2Gkuk8zj0rXoWkrxAn0Lk0xGCzItbVfwzZ_gb_SXeE5mOrQuKIhvYXISkpxrJsl3AF5op6QuU5GogcsSiVKRuICKp4XjIUu90T6CuI71ZGJms3x6AGfbtzANPkT3w400I9prUvCwLKtGy-PB_vtBRk8pM815dJTqClyVCm0t4TvLaXeWkDVwiESdEHl7tomdnFzqYs879RaoZXuR5-_3Jnfj2eiQRnf-z1Tuwu02IGWnjQTdg4NQH8KN4TYP3CHc2oEsvA_FKfNd6kK2qFgZwvLn9x9t9olPWCTHWLJ5vSzmMQ0F63Bi1wxDZLabVIDNsMGq-MbWPgJ9IvkD-Dh69WH4OmnTNCReGrTiATkahBhUTnvJgxfGiMwZg1-zyqABqXKUBo0VGkuFk9IVWgflChlEVmrxEHr1og6PgMnSGOeRQPhc5kjiAkfJUd6rmBKkD-mWPda3GOaUSuOLjXuZVNtLK9mHl12TZQPg8SfiI-K5xeiDlsbTXSO_sQOT0965D8dbUbCtpq8t1-T8JU9xcM-7amQRHbwUdVhcRBqCGcwV0ug9EeqGRCjf-zX1_HNE-6b7v1ryPvAoQn-fhD0fvuPnY4Xm-fG_NHoG16dnIzt-M3l7BDc5PfeIlxePobdZXYQncM1_3czXq6dRzX4BRyQltg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+deep-learning-based+inpainting+techniques+for+experimental+X-ray+scattering&rft.jtitle=Journal+of+applied+crystallography&rft.au=Chavez%2C+Tanny&rft.au=Roberts%2C+Eric+J.&rft.au=Zwart%2C+Petrus+H.&rft.au=Hexemer%2C+Alexander&rft.date=2022-10-01&rft.issn=1600-5767&rft.eissn=1600-5767&rft.volume=55&rft.issue=5&rft.spage=1277&rft.epage=1288&rft_id=info:doi/10.1107%2FS1600576722007105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S1600576722007105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon |