Moving Least Squares Coordinates

We propose a new family of barycentric coordinates that have closed‐forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 29; číslo 5; s. 1517 - 1524
Hlavní autori: Manson, Josiah, Schaefer, Scott
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.07.2010
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose a new family of barycentric coordinates that have closed‐forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon. We also show how to extend these coordinates to interpolate derivatives specified on the boundary.
Bibliografia:istex:AFE9380D382146B82C8F03C1AA1EB5533D350E4E
ark:/67375/WNG-FQN9JKD9-C
ArticleID:CGF1760
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2010.01760.x