Climate consequences of hydrogen emissions
Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero-...
Gespeichert in:
| Veröffentlicht in: | Atmospheric chemistry and physics Jg. 22; H. 14; S. 9349 - 9368 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
20.07.2022
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Given the urgency to decarbonize global energy systems,
governments and industry are moving ahead with efforts to increase
deployment of hydrogen technologies, infrastructure, and applications at an
unprecedented pace, including USD billions in national incentives and direct
investments. While zero- and low-carbon hydrogen hold great promise to help
solve some of the world's most pressing energy challenges, hydrogen is also
an indirect greenhouse gas whose warming impact is both widely overlooked
and underestimated. This is largely because hydrogen's atmospheric warming
effects are short-lived – lasting only a couple decades – but standard
methods for characterizing climate impacts of gases consider only the
long-term effect from a one-time pulse of emissions. For gases whose impacts
are short-lived, like hydrogen, this long-term framing masks a much stronger
warming potency in the near to medium term. This is of concern because
hydrogen is a small molecule known to easily leak into the atmosphere, and
the total amount of emissions (e.g., leakage, venting, and purging) from existing
hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a
decarbonization strategy, especially over timescales of several decades,
remains unclear. This paper evaluates the climate consequences of hydrogen
emissions over all timescales by employing already published data to assess
its potency as a climate forcer, evaluate the net warming impacts from
replacing fossil fuel technologies with their clean hydrogen alternatives,
and estimate temperature responses to projected levels of hydrogen demand.
We use the standard global warming potential metric, given its acceptance to
stakeholders, and incorporate newly published equations that more fully
capture hydrogen's several indirect effects, but we consider the effects of
constant rather than pulse emissions over multiple time horizons. We account
for a plausible range of hydrogen emission rates and include methane
emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue”
hydrogen) as opposed to renewables and water (“green” hydrogen). For the
first time, we show the strong timescale dependence when evaluating the
climate change mitigation potential of clean hydrogen alternatives, with the
emission rate determining the scale of climate benefits or disbenefits. For
example, green hydrogen applications with higher-end emission rates (10 %)
may only cut climate impacts from fossil fuel technologies in half over the
first 2 decades, which is far from the common perception that green
hydrogen energy systems are climate neutral. However, over a 100-year
period, climate impacts could be reduced by around 80 %. On the other
hand, lower-end emissions (1 %) could yield limited impacts on the climate
over all timescales. For blue hydrogen, associated methane emissions can
make hydrogen applications worse for the climate than fossil fuel
technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to
evaluate the warming impact of hydrogen emissions for specific end-use cases
and value-chain pathways, it is clear that hydrogen emissions matter for the
climate and warrant further attention from scientists, industry, and
governments. This is critical to informing where and how to deploy hydrogen
effectively in the emerging decarbonized global economy. |
|---|---|
| AbstractList | Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy. Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy. Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy. |
| Audience | Academic |
| Author | Ocko, Ilissa B. Hamburg, Steven P. |
| Author_xml | – sequence: 1 givenname: Ilissa B. orcidid: 0000-0001-8617-2249 surname: Ocko fullname: Ocko, Ilissa B. – sequence: 2 givenname: Steven P. surname: Hamburg fullname: Hamburg, Steven P. |
| BookMark | eNp1UU1rGzEQFSWFJmnvPRpyamGTGa1WKx2DaRJDINCPs9BKs46Ms3IlGZp_H7lOaFxadJAYvfdm5r0TdjTFiRj7iHDeoRYX1m0azhvdCt1w4PwNO0apoOlbLo5evd-xk5xXALwDFMfs83wdHmyhmYtTpp9bmhzlWRxn948-xSVNM3oIOYf6-569He0604fn-5T9uPryfX7T3N5dL-aXt40TCkpDWnCB0A5ccY_UexxIQ687LwepLHeKCxqclNKPjpB816JXfWs7rVA6bE_ZYq_ro12ZTarzpUcTbTC_CzEtjU0luDUZP0oCh4PoLQkt5EBCdnwA4bUC6kTVOttrbVKsy-ViVnGbpjq-4VKj7JVquz-opa2iYRpjSdbVvZ257BE0AuAOdf4PVD2-WlTtozHU-gHh0wGhYgr9Kku7zdksvn09xMo91qWYc6LRuFBsqb7XJmFtEMwuZlNjNpybXcxmF3Mlwl_EF8f-S3kCi7eoTg |
| CitedBy_id | crossref_primary_10_3389_fenrg_2023_1207208 crossref_primary_10_1016_j_ijhydene_2024_08_004 crossref_primary_10_1016_j_jclepro_2024_142345 crossref_primary_10_1016_j_psep_2023_07_036 crossref_primary_10_1088_1755_1315_1499_1_012040 crossref_primary_10_5194_acp_23_13451_2023 crossref_primary_10_3390_pr13092909 crossref_primary_10_1016_j_fuel_2025_134394 crossref_primary_10_1016_j_ijhydene_2024_04_073 crossref_primary_10_1038_s44359_025_00050_4 crossref_primary_10_1021_acsami_5c09600 crossref_primary_10_5194_amt_17_4803_2024 crossref_primary_10_1016_j_fuel_2024_131684 crossref_primary_10_1016_j_ijhydene_2025_03_314 crossref_primary_10_3168_jds_2024_25568 crossref_primary_10_3389_fenrg_2024_1463450 crossref_primary_10_1146_annurev_earth_032320_090307 crossref_primary_10_1016_j_actaastro_2024_05_009 crossref_primary_10_1016_j_scitotenv_2024_176101 crossref_primary_10_1016_j_energy_2023_127673 crossref_primary_10_3389_fenrg_2025_1548309 crossref_primary_10_1016_j_ijhydene_2024_11_152 crossref_primary_10_1002_slct_202301571 crossref_primary_10_1016_j_enconman_2022_116403 crossref_primary_10_1016_j_fuel_2023_129357 crossref_primary_10_1016_j_apenergy_2023_122152 crossref_primary_10_1162_crcj_a_00013 crossref_primary_10_1039_D3EE02789A crossref_primary_10_1162_crcj_a_00019 crossref_primary_10_33063_agc_v1i2_738 crossref_primary_10_5194_acp_25_7369_2025 crossref_primary_10_1016_j_enconman_2024_119369 crossref_primary_10_5194_acp_23_6011_2023 crossref_primary_10_1016_j_ijhydene_2024_02_166 crossref_primary_10_1016_j_rineng_2025_106844 crossref_primary_10_1016_j_rser_2025_116124 crossref_primary_10_1039_D2SE00444E crossref_primary_10_1134_S0040579525700204 crossref_primary_10_1088_2516_1083_ade7ec crossref_primary_10_1021_acs_est_4c13616 crossref_primary_10_5194_bg_22_3449_2025 crossref_primary_10_1016_j_jclepro_2022_135545 crossref_primary_10_1088_1748_9326_acdae7 crossref_primary_10_3390_hydrogen5020018 crossref_primary_10_1016_j_rser_2025_115725 crossref_primary_10_1038_s41467_022_35419_7 crossref_primary_10_1016_j_ijhydene_2025_04_203 crossref_primary_10_1016_j_ijhydene_2023_04_242 crossref_primary_10_1038_s43247_022_00626_z crossref_primary_10_1016_j_ijhydene_2025_150411 crossref_primary_10_3390_eng5030067 crossref_primary_10_1002_nadc_20224132633 crossref_primary_10_1016_j_scenv_2025_100224 crossref_primary_10_1016_j_ijhydene_2024_08_480 crossref_primary_10_1016_j_isci_2025_113323 crossref_primary_10_1016_j_apenergy_2025_126388 crossref_primary_10_1016_j_jclepro_2025_145776 crossref_primary_10_29328_journal_ijpra_1001121 crossref_primary_10_3390_pr12112434 crossref_primary_10_1088_1748_9326_aca553 crossref_primary_10_3389_fsci_2024_1349770 crossref_primary_10_1016_j_ijhydene_2025_03_230 crossref_primary_10_1038_s41467_024_48197_1 crossref_primary_10_1016_j_jclepro_2023_139927 crossref_primary_10_1038_s41598_024_76373_2 crossref_primary_10_1016_j_erss_2024_103685 crossref_primary_10_1016_j_jclepro_2024_140757 crossref_primary_10_1016_j_egyr_2025_06_044 crossref_primary_10_1039_D3EE02283H crossref_primary_10_1016_j_oneear_2023_10_016 crossref_primary_10_1002_ese3_1861 crossref_primary_10_1016_j_joule_2023_07_001 crossref_primary_10_1016_j_ijhydene_2024_12_266 crossref_primary_10_3390_jmse10091222 crossref_primary_10_1016_j_joule_2023_12_004 crossref_primary_10_1016_j_compchemeng_2024_108820 crossref_primary_10_1016_j_ijhydene_2022_11_044 crossref_primary_10_1016_j_ijhydene_2023_05_012 crossref_primary_10_5194_acp_24_1743_2024 crossref_primary_10_1016_j_gee_2025_08_002 crossref_primary_10_1016_j_rser_2023_113810 crossref_primary_10_1007_s00216_025_06014_8 crossref_primary_10_1016_j_renene_2024_120465 crossref_primary_10_1007_s10904_024_03483_9 crossref_primary_10_1016_j_rser_2023_113930 crossref_primary_10_1038_s43247_025_02141_3 crossref_primary_10_32604_ee_2024_047555 crossref_primary_10_1016_j_ijhydene_2023_12_010 crossref_primary_10_1016_j_ijhydene_2025_06_103 crossref_primary_10_1080_10962247_2025_2495811 crossref_primary_10_1016_j_ijhydene_2025_150202 crossref_primary_10_1016_j_nexres_2025_100658 crossref_primary_10_1016_j_paerosci_2022_100876 crossref_primary_10_1038_s41560_024_01563_1 crossref_primary_10_1021_acs_est_4c13135 crossref_primary_10_1016_j_jclepro_2022_133289 crossref_primary_10_1063_5_0148248 crossref_primary_10_1016_j_ecmx_2025_100996 crossref_primary_10_1016_j_egycc_2024_100133 crossref_primary_10_1002_adfm_202420087 crossref_primary_10_1016_j_seppur_2023_123807 crossref_primary_10_1038_s41558_022_01485_4 crossref_primary_10_1016_j_eist_2024_100817 crossref_primary_10_1016_j_renene_2025_122832 crossref_primary_10_5194_acp_24_4217_2024 crossref_primary_10_3390_resources13070092 crossref_primary_10_1051_e3sconf_202458002013 crossref_primary_10_1088_1748_9326_adeb9d crossref_primary_10_2514_1_B39405 crossref_primary_10_1063_5_0257977 crossref_primary_10_1086_733764 crossref_primary_10_1038_s41467_023_41527_9 crossref_primary_10_1016_j_psep_2023_04_042 |
| Cites_doi | 10.1016/j.jpowsour.2005.05.092 10.1017/CBO9781107415324.018 10.1016/j.ijhydene.2021.06.120 10.1038/nature01917 10.1126/science.aar7204 10.1021/acs.est.6b05343 10.1039/D1EA00037C 10.1016/j.ijhydene.2010.10.016 10.1088/1748-9326/abf9c8 10.1016/j.gloenvcha.2011.03.013 10.1002/ese3.956 10.1016/0360-3199(92)90025-R 10.1029/2003GL019224 10.1023/A:1010648913655 10.1126/science.1085169 10.1038/s41558-020-0891-0 10.1038/s41558-018-0328-1 10.1126/science.aaj2350 10.26717/BJSTR.2019.21.003670 10.1039/C8EM00414E 10.2172/1219920 10.1038/nclimate2998 10.5194/acp-13-6083-2013 10.3390/app12020781 10.1021/acs.est.5b00412 10.1016/j.rse.2021.112461 10.1073/pnas.1202407109 10.5194/acp-19-14949-2019 10.1029/2010JD014234 10.1016/j.biombioe.2015.08.019 10.5194/acp-13-6139-2013 10.1021/acsenergylett.1c01375 10.1126/science.1089527 10.2172/1044180 10.1021/acs.est.9b05083 10.1088/1748-9326/ab6d7e 10.1016/j.scitotenv.2022.154624 10.1038/s41558-021-01032-7 10.1016/j.jclepro.2021.128124 10.1039/c2ee03181g 10.1029/2008GL035102 10.1017/9781009157896.009 10.1016/j.ijhydene.2020.01.125 10.1016/S0360-3199(96)00201-7 10.1016/j.ijhydene.2018.07.145 10.1098/rsta.2007.2050 10.1504/IJNHPA.2006.009869 10.1016/j.ijhydene.2021.01.088 10.1038/s41612-019-0086-4 10.1088/1748-9326/ab6039 10.1126/science.1091060 10.1016/j.ijhydene.2019.12.159 10.1038/s41558-021-01092-9 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
| DOI | 10.5194/acp-22-9349-2022 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1680-7324 |
| EndPage | 9368 |
| ExternalDocumentID | oai_doaj_org_article_df6e0c1b47ae4946be4652b04d980e54 A710910015 10_5194_acp_22_9349_2022 |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c480t-e9424103b282d1e7d1be90795d6b68a2c824ebc666dfce1ed531d873a59816c13 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Fri Oct 03 12:37:01 EDT 2025 Fri Sep 12 15:35:03 EDT 2025 Sat Nov 29 13:07:49 EST 2025 Sat Nov 29 09:47:57 EST 2025 Wed Nov 26 10:35:16 EST 2025 Sat Nov 29 06:47:48 EST 2025 Tue Nov 18 22:17:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-e9424103b282d1e7d1be90795d6b68a2c824ebc666dfce1ed531d873a59816c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8617-2249 |
| OpenAccessLink | https://doaj.org/article/df6e0c1b47ae4946be4652b04d980e54 |
| PQID | 2691678835 |
| PQPubID | 105744 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_df6e0c1b47ae4946be4652b04d980e54 proquest_journals_2691678835 gale_infotracmisc_A710910015 gale_infotracacademiconefile_A710910015 gale_incontextgauss_ISR_A710910015 crossref_citationtrail_10_5194_acp_22_9349_2022 crossref_primary_10_5194_acp_22_9349_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-20 |
| PublicationDateYYYYMMDD | 2022-07-20 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref15 doi: 10.1016/j.jpowsour.2005.05.092 – ident: ref37 – ident: ref62 – ident: ref45 doi: 10.1017/CBO9781107415324.018 – ident: ref25 doi: 10.1016/j.ijhydene.2021.06.120 – ident: ref52 doi: 10.1038/nature01917 – ident: ref3 doi: 10.1126/science.aar7204 – ident: ref5 – ident: ref14 doi: 10.1021/acs.est.6b05343 – ident: ref41 doi: 10.1039/D1EA00037C – ident: ref10 doi: 10.1016/j.ijhydene.2010.10.016 – ident: ref49 doi: 10.1088/1748-9326/abf9c8 – ident: ref66 doi: 10.1016/j.gloenvcha.2011.03.013 – ident: ref29 doi: 10.1002/ese3.956 – ident: ref61 doi: 10.1016/0360-3199(92)90025-R – ident: ref72 – ident: ref70 doi: 10.1029/2003GL019224 – ident: ref19 doi: 10.1023/A:1010648913655 – ident: ref9 – ident: ref63 doi: 10.1126/science.1085169 – ident: ref65 doi: 10.1038/s41558-020-0891-0 – ident: ref24 doi: 10.1038/s41558-018-0328-1 – ident: ref48 doi: 10.1126/science.aaj2350 – ident: ref46 doi: 10.26717/BJSTR.2019.21.003670 – ident: ref4 doi: 10.1039/C8EM00414E – ident: ref53 – ident: ref34 – ident: ref44 doi: 10.2172/1219920 – ident: ref1 doi: 10.1038/nclimate2998 – ident: ref30 – ident: ref36 – ident: ref74 doi: 10.5194/acp-13-6083-2013 – ident: ref75 doi: 10.3390/app12020781 – ident: ref13 doi: 10.1021/acs.est.5b00412 – ident: ref57 doi: 10.1016/j.rse.2021.112461 – ident: ref2 doi: 10.1073/pnas.1202407109 – ident: ref23 – ident: ref38 doi: 10.5194/acp-19-14949-2019 – ident: ref67 doi: 10.1029/2010JD014234 – ident: ref11 doi: 10.1016/j.biombioe.2015.08.019 – ident: ref69 doi: 10.5194/acp-13-6139-2013 – ident: ref71 – ident: ref6 doi: 10.1021/acsenergylett.1c01375 – ident: ref54 doi: 10.1126/science.1089527 – ident: ref33 – ident: ref73 doi: 10.2172/1044180 – ident: ref47 doi: 10.1021/acs.est.9b05083 – ident: ref42 doi: 10.1088/1748-9326/ab6d7e – ident: ref7 – ident: ref17 doi: 10.1016/j.scitotenv.2022.154624 – ident: ref64 doi: 10.1038/s41558-021-01032-7 – ident: ref60 doi: 10.1016/j.jclepro.2021.128124 – ident: ref22 – ident: ref68 doi: 10.1039/c2ee03181g – ident: ref39 doi: 10.1029/2008GL035102 – ident: ref32 – ident: ref27 doi: 10.1017/9781009157896.009 – ident: ref20 doi: 10.1016/j.ijhydene.2020.01.125 – ident: ref55 – ident: ref58 doi: 10.1016/S0360-3199(96)00201-7 – ident: ref40 doi: 10.1016/j.ijhydene.2018.07.145 – ident: ref28 – ident: ref59 doi: 10.1098/rsta.2007.2050 – ident: ref21 doi: 10.1504/IJNHPA.2006.009869 – ident: ref50 doi: 10.1016/j.ijhydene.2021.01.088 – ident: ref12 doi: 10.1038/s41612-019-0086-4 – ident: ref16 doi: 10.1088/1748-9326/ab6039 – ident: ref8 – ident: ref51 doi: 10.1126/science.1091060 – ident: ref56 – ident: ref18 – ident: ref43 doi: 10.1016/j.ijhydene.2019.12.159 – ident: ref35 – ident: ref26 doi: 10.1038/s41558-021-01092-9 – ident: ref31 |
| SSID | ssj0025014 |
| Score | 2.679602 |
| Snippet | Given the urgency to decarbonize global energy systems,
governments and industry are moving ahead with efforts to increase
deployment of hydrogen technologies,... Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 9349 |
| SubjectTerms | Air pollution Air quality management Alternative fuels Carbon Carbon capture and storage Carbon dioxide Carbon sequestration Clean energy Climate Climate change Climate change mitigation Councils Decarbonization Efficiency Emissions Emissions (Pollution) Energy Energy minerals Environmental aspects Environmental policy Evaluation Fossil fuels Fuel technology Gases Global economy Global warming Global warming potential Green energy Green hydrogen Greenhouse effect Greenhouse gases Hydrogen Hydrogen as fuel Hydrogen-based energy Incentives International agreements Methane Methane emissions Mitigation Natural gas Renewable resources Storage Stratosphere System effectiveness Value chain |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEF5EPHgprbU0rUooxdLC8jb7K7tHlYoeKmJb8LZkdyetIC_y8hT633cmyRPfoe2lx00mIflmNjOzO_mGsfdaYoytvOEWnOXamobHZB0XRqSY0WUnH4dmE_XFhbu-9pdPWn1RTdhIDzwCN8utBZGqqOsGtNc2At5QRqGzdwLMwAQqar9KpqZUi3bLKNWyTnDqzTRuUGK0omdNuuOYgHmlPZqIlGsOaeDt_9PXeXA5p8_ZsylWLI_GZ3zBNmC-w4ovGOZ2i2E1vDwsT25vMOYcRi_Zp3EEZXpSI112bfnzV150aColdXej9bF-l30__fzt5IxPzRB40k4sOXiNzlaoiDlSrqDOVQRMbL3JNlrXyOSkBoTZ2twmqCDj5MquVo3xrrKpUq_Y5rybw2tWJoVJo1ESfLLagHImtlaJJkJVR5dkwWYrREKamMKpYcVtwIyBMAyIYZAyEIaBMCzYx8cr7kaWjL_IHhPIj3LEbz0cQK2HSevhX1ov2DtSUSAGizmVyPxo7vs-nH-9CkdUXUrMUqZgHyahtsPnT830xwGiQKRXa5J7a5Koi7R-emUJYZrifZAWI-vaYQT75n-80Vu2TejQsrEUe2xzubiHfbaVHpY3_eJgsO7f1nX49g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest advanced technologies & aerospace journals dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSykukLVWEEAgkax2_Yp9QW1HBgariIVVcrPiRUqnabJNtpf57ZrLehT20F46OJ5LjbzwvT2YIeSM52NjCKqqT0VRq1VAftKFMseAjqOxg_dhsoj4-Nqen9iQH3IacVrmUiaOgjl3AGPmEazBkwF8T6uPskmLXKLxdzS007pMHWCUBWzecqF8rhwvvzNDh0oZR7NC0uKYEm0VOmjCj4IZZIS0wCudramms3n-bjB4Vz9Hj_13yFtnMJme5v-CRJ-Remj4lxVewlrt-DKqXb8vDi3MwXcfRM_JhMUpl-CfVuuza8vdN7DvguBKbxGGYbXhOfh59-nH4meaeCjRIw-Y0WQk6mwkPrlasUh0rn8A_tipqr03Dg-EyAVpaxzakKkU4o9HUolHWVDpU4gXZmHbT9JKUQYDvqQRPNmipkjDKt1qwxqeq9ibwgkyWW-pCLjiOfS8uHDgeCIIDEBznDkFwCEJB3q_emC2KbdxBe4AoreiwTPb4oOvPXD51LrY6sVB5WTdJWql9Am7knsloDUtKFuQ1YuywEMYUM23OmqthcF--f3P7mKSKBapUQd5loraD9Ycm_7gAu4C1s9Yod9coAYuwPr3kE5clxeD-Msn23dM75BF-N8aVOdslG_P-Kr0iD8P1_Hzo90bG_wOWGQc0 priority: 102 providerName: ProQuest |
| Title | Climate consequences of hydrogen emissions |
| URI | https://www.proquest.com/docview/2691678835 https://doaj.org/article/df6e0c1b47ae4946be4652b04d980e54 |
| Volume | 22 |
| WOSCitedRecordID | wos000827462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus - journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Collection customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4cAFyksEShUhBALJWsev2Mdt1YoedhUtRSpcrPiRUqnaVJstEv--M0ladQ_QQ7nEijOOnG_8mLGdbwj5IDnY2MIqqpPRVGpVUx-0oUyx4CNM2cH6PthEOZ-bkxNb3Qr1hWfCBnrgAbhJbHRiofCyrJO0UvsEL-SeyWgNSwqZQKEZYpdcYAy30dXC3TJ0tbRhFGMzDRuUYK3ISR0uKDhgVkgLTYTzjQmp5-3_2-jcTzmHT-9R2W3yZLQz8-lQ5Bl5kJbPSTYDE7ld9Svp-cd8__wM7NX-7gX5MtylPNw6X523Tf7rT1y10MxyjAyHa2vdS_L98OB4_ysdAynQIA1b02QlTNRMePCvYpHKWPgETrFVUXttah4MlwlUpHVsQipShI4ZTSlqZU2hQyFeka1lu0yvSR4EOJxK8GSDlioJo3yjBat9KkpvAs_I5BpNF0aWcQx2ce7A20D8HeDvOHeIv0P8M_L5psTFwLDxD9k9xPxGDrmx-wxQghuV4O5SQkbeo3odsl8s8XjNaX3Zde7o28JN8WQqslKpjHwahZoW6h_q8W8FQAEJszYkdzYkQRdh8_F1K3Lj8NA5rsEqLw1Yv2_-xxe9JY8RHVxy5myHbK1Xl-kdeRR-r8-61S55uHcwrxa7_XIDXCv1E_Kq6fHsB6ZHswpS7D1Xng4SKw |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDom98I0oDIgQHwIpauLYjv2A0BhMq7ZWFQxpezLxR7dJU1OSDrR_ir-RuzQt9IG97YHHxJfI8v3su5_PvgN4wRn62JkWsQxKxlyKIrZOqjgRibMeTbbTtik2kQ-H6vBQj9bg1-IuDB2rXKyJzULtS0d75D0m0ZFBvpaJ99PvMVWNoujqooTGHBZ74eInUrb6Xf8j6vclYzufDrZ347aqQOy4SmZx0BytVpJZJBs-DblPbUCGqIWXVqqCOcV4wP5K6ccupMEjSr3Ks0JolUqXZvjfa7DOCewdWB_1B6OjJcWjKB1RPKmSmGpCzQOj6CXxXuGmMRI_nXGN0GRsxRA29QL-ZRUaU7dz638bpNtws3Wqo635LLgDa2FyF7oD5ANl1YQNolfR9tkpOufN0z14O38KkfvrMHlUjqOTC1-VOKciKoNHG4n1ffh6JV1_AJ1JOQkPIXIZsmuRsaCd5CJkStixzJLChjS3yrEu9BYqNK5NqU6VPc4MUitSukGlG8YMKd2Q0rvwZvnFdJ5O5BLZD4SKpRwlAm9elNWxadcV48cyJC61PC8C11zagPON2YR7rZIgeBeeE6YMpfqY0Fmi4-K8rk3_y2ezRcdwKQWX6MLrVmhcYv9d0V7NwFGg7GArkpsrkqgLt9q8wKVp18La_AHlo8ubn8GN3YPBvtnvD_cewwaNAe2is2QTOrPqPDyB6-7H7LSunrbTLoJvVw3i3xvQZMM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceCMCBSLEQyBFmzi2Yx8Q6oMVq9JVeVT0ZuJHSqVqs2y2oP41fh0z2ezCHuitB46JJ5Flf56Zzx7PADzlDH3sXItEBiUTLkWZWCdVkorUWY8m22nbFpsoRiN1eKj31-DX4i4MhVUudGKrqH3taI-8zyQ6MsjXctGvurCI_Z3Bm8n3hCpI0UnropzGHCK74ewn0rfm9XAH5_oZY4O3n7ffJV2FgcRxlc6SoDlasDS3SDx8Fgqf2YBsUQsvrVQlc4rxgH2X0lcuZMEjYr0q8lJolUmX5fjfS7CupFRpD9a3BnsfvizpHp3YEd3DtoTqQ80PSdFj4v3STRIkgTrnGmHK2IpRbGsH_MtCtGZvcP1_HrAbcK1ztuPN-eq4CWthfAuiPeQJ9bQ9Toifx9snx-i0t0-34dX8KcTuryDzuK7ib2d-WuNai6k8Hm0wNnfg4EK6fhd643oc7kHscmTdImdBO8lFyJWwlczT0oassMqxCPqL6TSuS7VOFT9ODFIuAoBBABjGDAHAEAAieLn8YjJPM3KO7BYhZClHCcLbF_X0yHT6xvhKhtRllhdl4JpLG3AdMptyr1UaBI_gCeHLUAqQMWHjqDxtGjP89NFsUngupeYSEbzohKoa--_K7soGjgJlDVuR3FiRxLlwq80LjJpORzbmD0Dvn9_8GK4gcs374Wj3AVylIaDNdZZuQG82PQ0P4bL7MTtupo-6FRjD14vG8G8x0m1j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+consequences+of+hydrogen+emissions&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Ocko%2C+Ilissa+B.&rft.au=Hamburg%2C+Steven+P.&rft.date=2022-07-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=22&rft.issue=14&rft.spage=9349&rft.epage=9368&rft_id=info:doi/10.5194%2Facp-22-9349-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_22_9349_2022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |