Climate consequences of hydrogen emissions

Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics Jg. 22; H. 14; S. 9349 - 9368
Hauptverfasser: Ocko, Ilissa B., Hamburg, Steven P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 20.07.2022
Copernicus Publications
Schlagworte:
ISSN:1680-7324, 1680-7316, 1680-7324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy.
AbstractList Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy.
Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy.
Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived – lasting only a couple decades – but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (“blue” hydrogen) as opposed to renewables and water (“green” hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy.
Audience Academic
Author Ocko, Ilissa B.
Hamburg, Steven P.
Author_xml – sequence: 1
  givenname: Ilissa B.
  orcidid: 0000-0001-8617-2249
  surname: Ocko
  fullname: Ocko, Ilissa B.
– sequence: 2
  givenname: Steven P.
  surname: Hamburg
  fullname: Hamburg, Steven P.
BookMark eNp1UU1rGzEQFSWFJmnvPRpyamGTGa1WKx2DaRJDINCPs9BKs46Ms3IlGZp_H7lOaFxadJAYvfdm5r0TdjTFiRj7iHDeoRYX1m0azhvdCt1w4PwNO0apoOlbLo5evd-xk5xXALwDFMfs83wdHmyhmYtTpp9bmhzlWRxn948-xSVNM3oIOYf6-569He0604fn-5T9uPryfX7T3N5dL-aXt40TCkpDWnCB0A5ccY_UexxIQ687LwepLHeKCxqclNKPjpB816JXfWs7rVA6bE_ZYq_ro12ZTarzpUcTbTC_CzEtjU0luDUZP0oCh4PoLQkt5EBCdnwA4bUC6kTVOttrbVKsy-ViVnGbpjq-4VKj7JVquz-opa2iYRpjSdbVvZ257BE0AuAOdf4PVD2-WlTtozHU-gHh0wGhYgr9Kku7zdksvn09xMo91qWYc6LRuFBsqb7XJmFtEMwuZlNjNpybXcxmF3Mlwl_EF8f-S3kCi7eoTg
CitedBy_id crossref_primary_10_3389_fenrg_2023_1207208
crossref_primary_10_1016_j_ijhydene_2024_08_004
crossref_primary_10_1016_j_jclepro_2024_142345
crossref_primary_10_1016_j_psep_2023_07_036
crossref_primary_10_1088_1755_1315_1499_1_012040
crossref_primary_10_5194_acp_23_13451_2023
crossref_primary_10_3390_pr13092909
crossref_primary_10_1016_j_fuel_2025_134394
crossref_primary_10_1016_j_ijhydene_2024_04_073
crossref_primary_10_1038_s44359_025_00050_4
crossref_primary_10_1021_acsami_5c09600
crossref_primary_10_5194_amt_17_4803_2024
crossref_primary_10_1016_j_fuel_2024_131684
crossref_primary_10_1016_j_ijhydene_2025_03_314
crossref_primary_10_3168_jds_2024_25568
crossref_primary_10_3389_fenrg_2024_1463450
crossref_primary_10_1146_annurev_earth_032320_090307
crossref_primary_10_1016_j_actaastro_2024_05_009
crossref_primary_10_1016_j_scitotenv_2024_176101
crossref_primary_10_1016_j_energy_2023_127673
crossref_primary_10_3389_fenrg_2025_1548309
crossref_primary_10_1016_j_ijhydene_2024_11_152
crossref_primary_10_1002_slct_202301571
crossref_primary_10_1016_j_enconman_2022_116403
crossref_primary_10_1016_j_fuel_2023_129357
crossref_primary_10_1016_j_apenergy_2023_122152
crossref_primary_10_1162_crcj_a_00013
crossref_primary_10_1039_D3EE02789A
crossref_primary_10_1162_crcj_a_00019
crossref_primary_10_33063_agc_v1i2_738
crossref_primary_10_5194_acp_25_7369_2025
crossref_primary_10_1016_j_enconman_2024_119369
crossref_primary_10_5194_acp_23_6011_2023
crossref_primary_10_1016_j_ijhydene_2024_02_166
crossref_primary_10_1016_j_rineng_2025_106844
crossref_primary_10_1016_j_rser_2025_116124
crossref_primary_10_1039_D2SE00444E
crossref_primary_10_1134_S0040579525700204
crossref_primary_10_1088_2516_1083_ade7ec
crossref_primary_10_1021_acs_est_4c13616
crossref_primary_10_5194_bg_22_3449_2025
crossref_primary_10_1016_j_jclepro_2022_135545
crossref_primary_10_1088_1748_9326_acdae7
crossref_primary_10_3390_hydrogen5020018
crossref_primary_10_1016_j_rser_2025_115725
crossref_primary_10_1038_s41467_022_35419_7
crossref_primary_10_1016_j_ijhydene_2025_04_203
crossref_primary_10_1016_j_ijhydene_2023_04_242
crossref_primary_10_1038_s43247_022_00626_z
crossref_primary_10_1016_j_ijhydene_2025_150411
crossref_primary_10_3390_eng5030067
crossref_primary_10_1002_nadc_20224132633
crossref_primary_10_1016_j_scenv_2025_100224
crossref_primary_10_1016_j_ijhydene_2024_08_480
crossref_primary_10_1016_j_isci_2025_113323
crossref_primary_10_1016_j_apenergy_2025_126388
crossref_primary_10_1016_j_jclepro_2025_145776
crossref_primary_10_29328_journal_ijpra_1001121
crossref_primary_10_3390_pr12112434
crossref_primary_10_1088_1748_9326_aca553
crossref_primary_10_3389_fsci_2024_1349770
crossref_primary_10_1016_j_ijhydene_2025_03_230
crossref_primary_10_1038_s41467_024_48197_1
crossref_primary_10_1016_j_jclepro_2023_139927
crossref_primary_10_1038_s41598_024_76373_2
crossref_primary_10_1016_j_erss_2024_103685
crossref_primary_10_1016_j_jclepro_2024_140757
crossref_primary_10_1016_j_egyr_2025_06_044
crossref_primary_10_1039_D3EE02283H
crossref_primary_10_1016_j_oneear_2023_10_016
crossref_primary_10_1002_ese3_1861
crossref_primary_10_1016_j_joule_2023_07_001
crossref_primary_10_1016_j_ijhydene_2024_12_266
crossref_primary_10_3390_jmse10091222
crossref_primary_10_1016_j_joule_2023_12_004
crossref_primary_10_1016_j_compchemeng_2024_108820
crossref_primary_10_1016_j_ijhydene_2022_11_044
crossref_primary_10_1016_j_ijhydene_2023_05_012
crossref_primary_10_5194_acp_24_1743_2024
crossref_primary_10_1016_j_gee_2025_08_002
crossref_primary_10_1016_j_rser_2023_113810
crossref_primary_10_1007_s00216_025_06014_8
crossref_primary_10_1016_j_renene_2024_120465
crossref_primary_10_1007_s10904_024_03483_9
crossref_primary_10_1016_j_rser_2023_113930
crossref_primary_10_1038_s43247_025_02141_3
crossref_primary_10_32604_ee_2024_047555
crossref_primary_10_1016_j_ijhydene_2023_12_010
crossref_primary_10_1016_j_ijhydene_2025_06_103
crossref_primary_10_1080_10962247_2025_2495811
crossref_primary_10_1016_j_ijhydene_2025_150202
crossref_primary_10_1016_j_nexres_2025_100658
crossref_primary_10_1016_j_paerosci_2022_100876
crossref_primary_10_1038_s41560_024_01563_1
crossref_primary_10_1021_acs_est_4c13135
crossref_primary_10_1016_j_jclepro_2022_133289
crossref_primary_10_1063_5_0148248
crossref_primary_10_1016_j_ecmx_2025_100996
crossref_primary_10_1016_j_egycc_2024_100133
crossref_primary_10_1002_adfm_202420087
crossref_primary_10_1016_j_seppur_2023_123807
crossref_primary_10_1038_s41558_022_01485_4
crossref_primary_10_1016_j_eist_2024_100817
crossref_primary_10_1016_j_renene_2025_122832
crossref_primary_10_5194_acp_24_4217_2024
crossref_primary_10_3390_resources13070092
crossref_primary_10_1051_e3sconf_202458002013
crossref_primary_10_1088_1748_9326_adeb9d
crossref_primary_10_2514_1_B39405
crossref_primary_10_1063_5_0257977
crossref_primary_10_1086_733764
crossref_primary_10_1038_s41467_023_41527_9
crossref_primary_10_1016_j_psep_2023_04_042
Cites_doi 10.1016/j.jpowsour.2005.05.092
10.1017/CBO9781107415324.018
10.1016/j.ijhydene.2021.06.120
10.1038/nature01917
10.1126/science.aar7204
10.1021/acs.est.6b05343
10.1039/D1EA00037C
10.1016/j.ijhydene.2010.10.016
10.1088/1748-9326/abf9c8
10.1016/j.gloenvcha.2011.03.013
10.1002/ese3.956
10.1016/0360-3199(92)90025-R
10.1029/2003GL019224
10.1023/A:1010648913655
10.1126/science.1085169
10.1038/s41558-020-0891-0
10.1038/s41558-018-0328-1
10.1126/science.aaj2350
10.26717/BJSTR.2019.21.003670
10.1039/C8EM00414E
10.2172/1219920
10.1038/nclimate2998
10.5194/acp-13-6083-2013
10.3390/app12020781
10.1021/acs.est.5b00412
10.1016/j.rse.2021.112461
10.1073/pnas.1202407109
10.5194/acp-19-14949-2019
10.1029/2010JD014234
10.1016/j.biombioe.2015.08.019
10.5194/acp-13-6139-2013
10.1021/acsenergylett.1c01375
10.1126/science.1089527
10.2172/1044180
10.1021/acs.est.9b05083
10.1088/1748-9326/ab6d7e
10.1016/j.scitotenv.2022.154624
10.1038/s41558-021-01032-7
10.1016/j.jclepro.2021.128124
10.1039/c2ee03181g
10.1029/2008GL035102
10.1017/9781009157896.009
10.1016/j.ijhydene.2020.01.125
10.1016/S0360-3199(96)00201-7
10.1016/j.ijhydene.2018.07.145
10.1098/rsta.2007.2050
10.1504/IJNHPA.2006.009869
10.1016/j.ijhydene.2021.01.088
10.1038/s41612-019-0086-4
10.1088/1748-9326/ab6039
10.1126/science.1091060
10.1016/j.ijhydene.2019.12.159
10.1038/s41558-021-01092-9
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-22-9349-2022
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 9368
ExternalDocumentID oai_doaj_org_article_df6e0c1b47ae4946be4652b04d980e54
A710910015
10_5194_acp_22_9349_2022
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c480t-e9424103b282d1e7d1be90795d6b68a2c824ebc666dfce1ed531d873a59816c13
IEDL.DBID RKB
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Fri Oct 03 12:37:01 EDT 2025
Fri Sep 12 15:35:03 EDT 2025
Sat Nov 29 13:07:49 EST 2025
Sat Nov 29 09:47:57 EST 2025
Wed Nov 26 10:35:16 EST 2025
Sat Nov 29 06:47:48 EST 2025
Tue Nov 18 22:17:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-e9424103b282d1e7d1be90795d6b68a2c824ebc666dfce1ed531d873a59816c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8617-2249
OpenAccessLink https://doaj.org/article/df6e0c1b47ae4946be4652b04d980e54
PQID 2691678835
PQPubID 105744
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_df6e0c1b47ae4946be4652b04d980e54
proquest_journals_2691678835
gale_infotracmisc_A710910015
gale_infotracacademiconefile_A710910015
gale_incontextgauss_ISR_A710910015
crossref_citationtrail_10_5194_acp_22_9349_2022
crossref_primary_10_5194_acp_22_9349_2022
PublicationCentury 2000
PublicationDate 2022-07-20
PublicationDateYYYYMMDD 2022-07-20
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref15
  doi: 10.1016/j.jpowsour.2005.05.092
– ident: ref37
– ident: ref62
– ident: ref45
  doi: 10.1017/CBO9781107415324.018
– ident: ref25
  doi: 10.1016/j.ijhydene.2021.06.120
– ident: ref52
  doi: 10.1038/nature01917
– ident: ref3
  doi: 10.1126/science.aar7204
– ident: ref5
– ident: ref14
  doi: 10.1021/acs.est.6b05343
– ident: ref41
  doi: 10.1039/D1EA00037C
– ident: ref10
  doi: 10.1016/j.ijhydene.2010.10.016
– ident: ref49
  doi: 10.1088/1748-9326/abf9c8
– ident: ref66
  doi: 10.1016/j.gloenvcha.2011.03.013
– ident: ref29
  doi: 10.1002/ese3.956
– ident: ref61
  doi: 10.1016/0360-3199(92)90025-R
– ident: ref72
– ident: ref70
  doi: 10.1029/2003GL019224
– ident: ref19
  doi: 10.1023/A:1010648913655
– ident: ref9
– ident: ref63
  doi: 10.1126/science.1085169
– ident: ref65
  doi: 10.1038/s41558-020-0891-0
– ident: ref24
  doi: 10.1038/s41558-018-0328-1
– ident: ref48
  doi: 10.1126/science.aaj2350
– ident: ref46
  doi: 10.26717/BJSTR.2019.21.003670
– ident: ref4
  doi: 10.1039/C8EM00414E
– ident: ref53
– ident: ref34
– ident: ref44
  doi: 10.2172/1219920
– ident: ref1
  doi: 10.1038/nclimate2998
– ident: ref30
– ident: ref36
– ident: ref74
  doi: 10.5194/acp-13-6083-2013
– ident: ref75
  doi: 10.3390/app12020781
– ident: ref13
  doi: 10.1021/acs.est.5b00412
– ident: ref57
  doi: 10.1016/j.rse.2021.112461
– ident: ref2
  doi: 10.1073/pnas.1202407109
– ident: ref23
– ident: ref38
  doi: 10.5194/acp-19-14949-2019
– ident: ref67
  doi: 10.1029/2010JD014234
– ident: ref11
  doi: 10.1016/j.biombioe.2015.08.019
– ident: ref69
  doi: 10.5194/acp-13-6139-2013
– ident: ref71
– ident: ref6
  doi: 10.1021/acsenergylett.1c01375
– ident: ref54
  doi: 10.1126/science.1089527
– ident: ref33
– ident: ref73
  doi: 10.2172/1044180
– ident: ref47
  doi: 10.1021/acs.est.9b05083
– ident: ref42
  doi: 10.1088/1748-9326/ab6d7e
– ident: ref7
– ident: ref17
  doi: 10.1016/j.scitotenv.2022.154624
– ident: ref64
  doi: 10.1038/s41558-021-01032-7
– ident: ref60
  doi: 10.1016/j.jclepro.2021.128124
– ident: ref22
– ident: ref68
  doi: 10.1039/c2ee03181g
– ident: ref39
  doi: 10.1029/2008GL035102
– ident: ref32
– ident: ref27
  doi: 10.1017/9781009157896.009
– ident: ref20
  doi: 10.1016/j.ijhydene.2020.01.125
– ident: ref55
– ident: ref58
  doi: 10.1016/S0360-3199(96)00201-7
– ident: ref40
  doi: 10.1016/j.ijhydene.2018.07.145
– ident: ref28
– ident: ref59
  doi: 10.1098/rsta.2007.2050
– ident: ref21
  doi: 10.1504/IJNHPA.2006.009869
– ident: ref50
  doi: 10.1016/j.ijhydene.2021.01.088
– ident: ref12
  doi: 10.1038/s41612-019-0086-4
– ident: ref16
  doi: 10.1088/1748-9326/ab6039
– ident: ref8
– ident: ref51
  doi: 10.1126/science.1091060
– ident: ref56
– ident: ref18
– ident: ref43
  doi: 10.1016/j.ijhydene.2019.12.159
– ident: ref35
– ident: ref26
  doi: 10.1038/s41558-021-01092-9
– ident: ref31
SSID ssj0025014
Score 2.679602
Snippet Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies,...
Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9349
SubjectTerms Air pollution
Air quality management
Alternative fuels
Carbon
Carbon capture and storage
Carbon dioxide
Carbon sequestration
Clean energy
Climate
Climate change
Climate change mitigation
Councils
Decarbonization
Efficiency
Emissions
Emissions (Pollution)
Energy
Energy minerals
Environmental aspects
Environmental policy
Evaluation
Fossil fuels
Fuel technology
Gases
Global economy
Global warming
Global warming potential
Green energy
Green hydrogen
Greenhouse effect
Greenhouse gases
Hydrogen
Hydrogen as fuel
Hydrogen-based energy
Incentives
International agreements
Methane
Methane emissions
Mitigation
Natural gas
Renewable resources
Storage
Stratosphere
System effectiveness
Value chain
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEF5EPHgprbU0rUooxdLC8jb7K7tHlYoeKmJb8LZkdyetIC_y8hT633cmyRPfoe2lx00mIflmNjOzO_mGsfdaYoytvOEWnOXamobHZB0XRqSY0WUnH4dmE_XFhbu-9pdPWn1RTdhIDzwCN8utBZGqqOsGtNc2At5QRqGzdwLMwAQqar9KpqZUi3bLKNWyTnDqzTRuUGK0omdNuuOYgHmlPZqIlGsOaeDt_9PXeXA5p8_ZsylWLI_GZ3zBNmC-w4ovGOZ2i2E1vDwsT25vMOYcRi_Zp3EEZXpSI112bfnzV150aColdXej9bF-l30__fzt5IxPzRB40k4sOXiNzlaoiDlSrqDOVQRMbL3JNlrXyOSkBoTZ2twmqCDj5MquVo3xrrKpUq_Y5rybw2tWJoVJo1ESfLLagHImtlaJJkJVR5dkwWYrREKamMKpYcVtwIyBMAyIYZAyEIaBMCzYx8cr7kaWjL_IHhPIj3LEbz0cQK2HSevhX1ov2DtSUSAGizmVyPxo7vs-nH-9CkdUXUrMUqZgHyahtsPnT830xwGiQKRXa5J7a5Koi7R-emUJYZrifZAWI-vaYQT75n-80Vu2TejQsrEUe2xzubiHfbaVHpY3_eJgsO7f1nX49g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSykukLVWEEAgkax2_Yp9QW1HBgariIVVcrPiRUqnabJNtpf57ZrLehT20F46OJ5LjbzwvT2YIeSM52NjCKqqT0VRq1VAftKFMseAjqOxg_dhsoj4-Nqen9iQH3IacVrmUiaOgjl3AGPmEazBkwF8T6uPskmLXKLxdzS007pMHWCUBWzecqF8rhwvvzNDh0oZR7NC0uKYEm0VOmjCj4IZZIS0wCudramms3n-bjB4Vz9Hj_13yFtnMJme5v-CRJ-Remj4lxVewlrt-DKqXb8vDi3MwXcfRM_JhMUpl-CfVuuza8vdN7DvguBKbxGGYbXhOfh59-nH4meaeCjRIw-Y0WQk6mwkPrlasUh0rn8A_tipqr03Dg-EyAVpaxzakKkU4o9HUolHWVDpU4gXZmHbT9JKUQYDvqQRPNmipkjDKt1qwxqeq9ibwgkyWW-pCLjiOfS8uHDgeCIIDEBznDkFwCEJB3q_emC2KbdxBe4AoreiwTPb4oOvPXD51LrY6sVB5WTdJWql9Am7knsloDUtKFuQ1YuywEMYUM23OmqthcF--f3P7mKSKBapUQd5loraD9Ycm_7gAu4C1s9Yod9coAYuwPr3kE5clxeD-Msn23dM75BF-N8aVOdslG_P-Kr0iD8P1_Hzo90bG_wOWGQc0
  priority: 102
  providerName: ProQuest
Title Climate consequences of hydrogen emissions
URI https://www.proquest.com/docview/2691678835
https://doaj.org/article/df6e0c1b47ae4946be4652b04d980e54
Volume 22
WOSCitedRecordID wos000827462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus - journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Collection
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4cAFyksEShUhBALJWsev2Mdt1YoedhUtRSpcrPiRUqnaVJstEv--M0ladQ_QQ7nEijOOnG_8mLGdbwj5IDnY2MIqqpPRVGpVUx-0oUyx4CNM2cH6PthEOZ-bkxNb3Qr1hWfCBnrgAbhJbHRiofCyrJO0UvsEL-SeyWgNSwqZQKEZYpdcYAy30dXC3TJ0tbRhFGMzDRuUYK3ISR0uKDhgVkgLTYTzjQmp5-3_2-jcTzmHT-9R2W3yZLQz8-lQ5Bl5kJbPSTYDE7ld9Svp-cd8__wM7NX-7gX5MtylPNw6X523Tf7rT1y10MxyjAyHa2vdS_L98OB4_ysdAynQIA1b02QlTNRMePCvYpHKWPgETrFVUXttah4MlwlUpHVsQipShI4ZTSlqZU2hQyFeka1lu0yvSR4EOJxK8GSDlioJo3yjBat9KkpvAs_I5BpNF0aWcQx2ce7A20D8HeDvOHeIv0P8M_L5psTFwLDxD9k9xPxGDrmx-wxQghuV4O5SQkbeo3odsl8s8XjNaX3Zde7o28JN8WQqslKpjHwahZoW6h_q8W8FQAEJszYkdzYkQRdh8_F1K3Lj8NA5rsEqLw1Yv2_-xxe9JY8RHVxy5myHbK1Xl-kdeRR-r8-61S55uHcwrxa7_XIDXCv1E_Kq6fHsB6ZHswpS7D1Xng4SKw
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDom98I0oDIgQHwIpauLYjv2A0BhMq7ZWFQxpezLxR7dJU1OSDrR_ir-RuzQt9IG97YHHxJfI8v3su5_PvgN4wRn62JkWsQxKxlyKIrZOqjgRibMeTbbTtik2kQ-H6vBQj9bg1-IuDB2rXKyJzULtS0d75D0m0ZFBvpaJ99PvMVWNoujqooTGHBZ74eInUrb6Xf8j6vclYzufDrZ347aqQOy4SmZx0BytVpJZJBs-DblPbUCGqIWXVqqCOcV4wP5K6ccupMEjSr3Ks0JolUqXZvjfa7DOCewdWB_1B6OjJcWjKB1RPKmSmGpCzQOj6CXxXuGmMRI_nXGN0GRsxRA29QL-ZRUaU7dz638bpNtws3Wqo635LLgDa2FyF7oD5ANl1YQNolfR9tkpOufN0z14O38KkfvrMHlUjqOTC1-VOKciKoNHG4n1ffh6JV1_AJ1JOQkPIXIZsmuRsaCd5CJkStixzJLChjS3yrEu9BYqNK5NqU6VPc4MUitSukGlG8YMKd2Q0rvwZvnFdJ5O5BLZD4SKpRwlAm9elNWxadcV48cyJC61PC8C11zagPON2YR7rZIgeBeeE6YMpfqY0Fmi4-K8rk3_y2ezRcdwKQWX6MLrVmhcYv9d0V7NwFGg7GArkpsrkqgLt9q8wKVp18La_AHlo8ubn8GN3YPBvtnvD_cewwaNAe2is2QTOrPqPDyB6-7H7LSunrbTLoJvVw3i3xvQZMM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceCMCBSLEQyBFmzi2Yx8Q6oMVq9JVeVT0ZuJHSqVqs2y2oP41fh0z2ezCHuitB46JJ5Flf56Zzx7PADzlDH3sXItEBiUTLkWZWCdVkorUWY8m22nbFpsoRiN1eKj31-DX4i4MhVUudGKrqH3taI-8zyQ6MsjXctGvurCI_Z3Bm8n3hCpI0UnropzGHCK74ewn0rfm9XAH5_oZY4O3n7ffJV2FgcRxlc6SoDlasDS3SDx8Fgqf2YBsUQsvrVQlc4rxgH2X0lcuZMEjYr0q8lJolUmX5fjfS7CupFRpD9a3BnsfvizpHp3YEd3DtoTqQ80PSdFj4v3STRIkgTrnGmHK2IpRbGsH_MtCtGZvcP1_HrAbcK1ztuPN-eq4CWthfAuiPeQJ9bQ9Toifx9snx-i0t0-34dX8KcTuryDzuK7ib2d-WuNai6k8Hm0wNnfg4EK6fhd643oc7kHscmTdImdBO8lFyJWwlczT0oassMqxCPqL6TSuS7VOFT9ODFIuAoBBABjGDAHAEAAieLn8YjJPM3KO7BYhZClHCcLbF_X0yHT6xvhKhtRllhdl4JpLG3AdMptyr1UaBI_gCeHLUAqQMWHjqDxtGjP89NFsUngupeYSEbzohKoa--_K7soGjgJlDVuR3FiRxLlwq80LjJpORzbmD0Dvn9_8GK4gcs374Wj3AVylIaDNdZZuQG82PQ0P4bL7MTtupo-6FRjD14vG8G8x0m1j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+consequences+of+hydrogen+emissions&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Ocko%2C+Ilissa+B.&rft.au=Hamburg%2C+Steven+P.&rft.date=2022-07-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=22&rft.issue=14&rft.spage=9349&rft.epage=9368&rft_id=info:doi/10.5194%2Facp-22-9349-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_22_9349_2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon