A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation
It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images; therefore, accurate and fully automatic jaw lesions image segmentation is a challenging and essential task. The aim of this work was to develop a...
Uloženo v:
| Vydáno v: | Ain Shams Engineering Journal Ročník 9; číslo 4; s. 697 - 706 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2018
Elsevier |
| Témata: | |
| ISSN: | 2090-4479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images; therefore, accurate and fully automatic jaw lesions image segmentation is a challenging and essential task. The aim of this work was to develop a novel, fully automatic and effective method for jaw lesions in panoramic X-ray image segmentation. The hybrid Fuzzy C-Means and Neutrosophic approach is used for segmenting jaw image and detecting the jaw lesion region in panoramic X-ray images which may help in diagnosing jaw lesions. Area error metrics are used to assess the performance and efficiency of the proposed approach from different aspects. Both efficiency and accuracy are analyzed. Specificity, sensitivity and similarity analyses are conducted to assess the robustness of the proposed approach. Comparing the proposed approach with the Hybrid Firefly Algorithm with the Fuzzy C-Means, and the Artificial Bee Colony with the Fuzzy C-Means algorithm, the proposed approach produces the most identical lesion region to the manual delineation by the Oral Pathologist and shows better performance (FP rate is 6.1%, TP rate is 90%, specificity rate is 0.9412, sensitivity rate is 0.9592 and similarity rate is 0.9471). |
|---|---|
| AbstractList | It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images; therefore, accurate and fully automatic jaw lesions image segmentation is a challenging and essential task. The aim of this work was to develop a novel, fully automatic and effective method for jaw lesions in panoramic X-ray image segmentation. The hybrid Fuzzy C-Means and Neutrosophic approach is used for segmenting jaw image and detecting the jaw lesion region in panoramic X-ray images which may help in diagnosing jaw lesions. Area error metrics are used to assess the performance and efficiency of the proposed approach from different aspects. Both efficiency and accuracy are analyzed. Specificity, sensitivity and similarity analyses are conducted to assess the robustness of the proposed approach. Comparing the proposed approach with the Hybrid Firefly Algorithm with the Fuzzy C-Means, and the Artificial Bee Colony with the Fuzzy C-Means algorithm, the proposed approach produces the most identical lesion region to the manual delineation by the Oral Pathologist and shows better performance (FP rate is 6.1%, TP rate is 90%, specificity rate is 0.9412, sensitivity rate is 0.9592 and similarity rate is 0.9471). It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images; therefore, accurate and fully automatic jaw lesions image segmentation is a challenging and essential task. The aim of this work was to develop a novel, fully automatic and effective method for jaw lesions in panoramic X-ray image segmentation. The hybrid Fuzzy C-Means and Neutrosophic approach is used for segmenting jaw image and detecting the jaw lesion region in panoramic X-ray images which may help in diagnosing jaw lesions. Area error metrics are used to assess the performance and efficiency of the proposed approach from different aspects. Both efficiency and accuracy are analyzed. Specificity, sensitivity and similarity analyses are conducted to assess the robustness of the proposed approach. Comparing the proposed approach with the Hybrid Firefly Algorithm with the Fuzzy C-Means, and the Artificial Bee Colony with the Fuzzy C-Means algorithm, the proposed approach produces the most identical lesion region to the manual delineation by the Oral Pathologist and shows better performance (FP rate is 6.1%, TP rate is 90%, specificity rate is 0.9412, sensitivity rate is 0.9592 and similarity rate is 0.9471). Keywords: Automatic segmentation, Jaw panoramic X-ray image, Neutrosophy, Fuzzy C-Means clustering algorithm |
| Author | Alsmadi, Mutasem K. |
| Author_xml | – sequence: 1 givenname: Mutasem K. surname: Alsmadi fullname: Alsmadi, Mutasem K. email: mksalsmadi@gmail.com, mkalsmadi@uod.edu.sa organization: Department of MIS, College of Applied Studies and Community Service, University of Dammam, Saudi Arabia |
| BookMark | eNp9kM1OAjEURrvARERewNW8wIz9G6ZN3BAUJUHd6LppO7fQCcyQdtDA01vEuHDh6ru96fmSe67QoO1aQOiG4IJgMrltCh2hKWiaC8yKFAM0pFjinPNKXqJxjN7gNFNRinKI7qfZ-mCCr7P5_ng8ZLP8GXQbM93W2Qvs-9DFbrf2NnNdyBr9mW0g-i59iLDaQtvrPr2u0YXTmwjjnxyh9_nD2-wpX74-LmbTZW65wH1uqGNOSspxLQwnkpDKlViABiLLSlCpJwRzS6mVkrjKgHVGalZbwxjIkrARWpx76043ahf8VoeD6rRX34surJQOvbcbUKmCOVOXnHDLpSsN1hUjUFnBiRAlT1303GXTiTGA--0jWJ1UqkadVKqTSoWZSpEg8Qey_qygD9pv_kfvzigkQR8egorWQ2uh9gFsny7w_-Ff8ZuScg |
| CitedBy_id | crossref_primary_10_1016_j_dajour_2023_100223 crossref_primary_10_1007_s00500_024_09669_0 crossref_primary_10_3390_e26121059 crossref_primary_10_3390_s22093440 crossref_primary_10_1007_s13369_020_04384_y crossref_primary_10_1016_j_oooo_2024_03_004 crossref_primary_10_1007_s13369_023_08087_y crossref_primary_10_1155_2022_1414119 crossref_primary_10_32628_IJSRST207233 crossref_primary_10_1016_j_oooo_2019_11_007 crossref_primary_10_1177_20552076241277154 crossref_primary_10_32628_IJSRST207352 crossref_primary_10_1007_s10115_025_02353_1 crossref_primary_10_32628_IJSRST207336 crossref_primary_10_32628_IJSRST207157 crossref_primary_10_32628_IJSRST207334 crossref_primary_10_1016_j_jksuci_2020_07_005 crossref_primary_10_32628_IJSRST207338 crossref_primary_10_3389_fmedt_2021_767836 crossref_primary_10_3390_technologies13070293 crossref_primary_10_1093_dmfr_twae022 crossref_primary_10_32628_IJSRST207319 crossref_primary_10_1155_2022_1153208 crossref_primary_10_1016_j_engappai_2022_105004 crossref_primary_10_1109_ACCESS_2020_3037677 crossref_primary_10_3389_fmolb_2022_932348 crossref_primary_10_32628_IJSRST207162 crossref_primary_10_32628_IJSRST207163 crossref_primary_10_32628_IJSRST207160 crossref_primary_10_7717_peerj_cs_620 crossref_primary_10_32628_IJSRST207161 crossref_primary_10_1016_j_bspc_2018_08_025 crossref_primary_10_1007_s11042_020_09228_3 crossref_primary_10_1007_s12650_025_01074_5 crossref_primary_10_1177_09544119231157137 crossref_primary_10_1155_2022_8415705 crossref_primary_10_1007_s11042_020_09384_6 crossref_primary_10_1049_ipr2_12416 crossref_primary_10_1007_s00521_021_05790_5 |
| Cites_doi | 10.1080/01969727308546046 10.1007/978-1-4757-0450-1 10.1016/j.ultrasmedbio.2008.12.007 10.3923/jas.2015.100.109 10.1259/dmfr/18200441 10.12962/j20882033.v22i3.66 10.1016/j.mri.2009.01.024 10.12968/denu.2013.40.3.216 10.1016/S0033-8389(22)02197-2 10.18869/acadpub.3dj.2.2.1 10.1590/S0102-311X2009000500008 10.3844/ajassp.2014.1676.1691 10.1016/j.compmedimag.2007.02.002 10.1007/s13721-014-0050-5 10.1142/S1793005708001082 10.1118/1.4747271 10.4018/978-1-60566-186-5 10.1109/TITB.2005.847500 10.1259/dmfr.18.2.2699592 10.4103/0975-5950.117879 10.1259/dmfr/60326577 10.1016/j.compbiomed.2007.12.005 10.1155/2014/891950 10.4103/1735-3327.113325 10.1016/j.patcog.2011.08.027 10.1002/ima.22108 10.1016/j.patcog.2015.02.018 |
| ContentType | Journal Article |
| Copyright | 2016 Faculty of Engineering, Ain Shams University |
| Copyright_xml | – notice: 2016 Faculty of Engineering, Ain Shams University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.asej.2016.03.016 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 706 |
| ExternalDocumentID | oai_doaj_org_article_c993fbd5414c49f5b0a731e7c8418854 10_1016_j_asej_2016_03_016 S2090447916300430 |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c480t-b2f3f99240d8b419117f508eae1957829a6104c22c991f7becfb9a3dcb33e9513 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454548400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-4479 |
| IngestDate | Fri Oct 03 12:33:00 EDT 2025 Sat Nov 29 03:43:39 EST 2025 Tue Nov 18 20:54:00 EST 2025 Sat Apr 29 22:48:20 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Jaw panoramic X-ray image Neutrosophy Automatic segmentation Fuzzy C-Means clustering algorithm |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-b2f3f99240d8b419117f508eae1957829a6104c22c991f7becfb9a3dcb33e9513 |
| OpenAccessLink | https://doaj.org/article/c993fbd5414c49f5b0a731e7c8418854 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c993fbd5414c49f5b0a731e7c8418854 crossref_primary_10_1016_j_asej_2016_03_016 crossref_citationtrail_10_1016_j_asej_2016_03_016 elsevier_sciencedirect_doi_10_1016_j_asej_2016_03_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Ain Shams Engineering Journal |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Shen, Sandham, Granat, Sterr (b0100) 2005; 9 Alsmadi (b0155) 2014; 11 White (b0040) 1989; 18 Mohan, Yanhui, Krishnaveni, Jeganathan (b0165) 2012 Barnes L, Eveson J, Reichart P, Sidransky D. World Health Organization (WHO) classification of tumors: pathology and genetics of head and neck tumors; 2005. Liew AW-C. Visual speech recognition: lip segmentation and mapping; 2009. Khosravi, Razavi, Kowkabi, Navabi (b0005) 2013; 10 Gundappa, Ng, Whaites (b0035) 2006; 35 Neyaz, Gadodia, Gamanagatti, Mukhopadhyay (b0060) 2008; 49 Sharma, Om (b0025) 2014; 3 Rajendran (b0010) 2009 Guo, Sengur (b0135) 2015; 48 Weber (b0030) 1993; 31 Nurtanio, Purnama, Hariadi, Purnomo (b0120) 2011; 22 Khayati, Vafadust, Towhidkhah, Nabavi (b0195) 2008; 38 Shan, Cheng, Wang (b0125) 2012; 39 Anuradha, Sankaranarayanan (b0110) 2015; 5 Bhadage, Vaishampayan, Kolhe, Umarji (b0015) 2013; 40 Santhosh (b0020) 2015; 1 Anuradha (b0105) 2013; 4 Trifas (b0150) 2005 Mileman, van den Hout (b0045) 2009; 38 Jamdade, John (b0070) 2013; 7 Bezdek JC. Pattern recognition with fuzzy objective function algorithms; 1981. p. 256. Liu, Cheng, Huang, Tian, Liu, Tang (b0180) 2009; 35 Maghsoudi, Bagheri, Maghsoudi (b0115) 2013; 2 Guo, Cheng, Zhang, Zhao (b0170) 2008 Doi (b0050) 2007; 31 Anuradha, Sankaranarayanan (b0085) 2012; 52 Dunn (b0090) 1973; 3 Gupta, Grover, Kadam, Gupta, Sah, Sunitha (b0075) 2013; 4 Alsmadi (b0160) 2015; 15 Sikka, Sinha, Singh, Mishra (b0185) 2009; 27 Lin, Lai, Huang (b0055) 2012; 45 Cheng, Guo (b0140) 2008; 04 Abid Fourati, Bouhlel (b0200) 2014; 2014 Martins, Chalub, Lima-Arsati, Pordeus, Paiva (b0080) 2009; 25 Govindaraj, Murugan (b0190) 2014; 24 Anter, Hassanien, ElSoud, Tolba (b0145) 2014 Bernaerts, Vanhoenacker, Hintjens, Chapelle, De Schepper (b0065) 2006; 89 Smarandache (b0130) 2003 Anter (10.1016/j.asej.2016.03.016_b0145) 2014 Sharma (10.1016/j.asej.2016.03.016_b0025) 2014; 3 Anuradha (10.1016/j.asej.2016.03.016_b0085) 2012; 52 Anuradha (10.1016/j.asej.2016.03.016_b0110) 2015; 5 Guo (10.1016/j.asej.2016.03.016_b0170) 2008 Santhosh (10.1016/j.asej.2016.03.016_b0020) 2015; 1 Smarandache (10.1016/j.asej.2016.03.016_b0130) 2003 Khayati (10.1016/j.asej.2016.03.016_b0195) 2008; 38 Sikka (10.1016/j.asej.2016.03.016_b0185) 2009; 27 Guo (10.1016/j.asej.2016.03.016_b0135) 2015; 48 Gupta (10.1016/j.asej.2016.03.016_b0075) 2013; 4 Jamdade (10.1016/j.asej.2016.03.016_b0070) 2013; 7 10.1016/j.asej.2016.03.016_b0175 Weber (10.1016/j.asej.2016.03.016_b0030) 1993; 31 Gundappa (10.1016/j.asej.2016.03.016_b0035) 2006; 35 White (10.1016/j.asej.2016.03.016_b0040) 1989; 18 Dunn (10.1016/j.asej.2016.03.016_b0090) 1973; 3 Khosravi (10.1016/j.asej.2016.03.016_b0005) 2013; 10 Doi (10.1016/j.asej.2016.03.016_b0050) 2007; 31 Bhadage (10.1016/j.asej.2016.03.016_b0015) 2013; 40 Alsmadi (10.1016/j.asej.2016.03.016_b0160) 2015; 15 Abid Fourati (10.1016/j.asej.2016.03.016_b0200) 2014; 2014 Nurtanio (10.1016/j.asej.2016.03.016_b0120) 2011; 22 Mohan (10.1016/j.asej.2016.03.016_b0165) 2012 Mileman (10.1016/j.asej.2016.03.016_b0045) 2009; 38 Trifas (10.1016/j.asej.2016.03.016_b0150) 2005 Alsmadi (10.1016/j.asej.2016.03.016_b0155) 2014; 11 Shen (10.1016/j.asej.2016.03.016_b0100) 2005; 9 10.1016/j.asej.2016.03.016_b0205 Liu (10.1016/j.asej.2016.03.016_b0180) 2009; 35 Martins (10.1016/j.asej.2016.03.016_b0080) 2009; 25 Cheng (10.1016/j.asej.2016.03.016_b0140) 2008; 04 10.1016/j.asej.2016.03.016_b0095 Rajendran (10.1016/j.asej.2016.03.016_b0010) 2009 Shan (10.1016/j.asej.2016.03.016_b0125) 2012; 39 Maghsoudi (10.1016/j.asej.2016.03.016_b0115) 2013; 2 Govindaraj (10.1016/j.asej.2016.03.016_b0190) 2014; 24 Bernaerts (10.1016/j.asej.2016.03.016_b0065) 2006; 89 Lin (10.1016/j.asej.2016.03.016_b0055) 2012; 45 Anuradha (10.1016/j.asej.2016.03.016_b0105) 2013; 4 Neyaz (10.1016/j.asej.2016.03.016_b0060) 2008; 49 |
| References_xml | – volume: 52 year: 2012 ident: b0085 article-title: Detection of oral tumor based on marker-controlled watershed algorithm publication-title: Int J Comput Appl – volume: 49 start-page: 165 year: 2008 end-page: 176 ident: b0060 article-title: Radiographical approach to jaw lesions publication-title: Singapore Med J – start-page: 327 year: 2012 end-page: 331 ident: b0165 article-title: MRI denoising based on neutrosophic wiener filtering publication-title: Imaging Systems and Techniques (IST), 2012 IEEE international conference on, 16–17 July 2012 – volume: 31 start-page: 101 year: 1993 end-page: 120 ident: b0030 article-title: Imaging of cysts and odontogenic tumors of the jaw. Definition and classification publication-title: Radiol Clin North Am – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0090 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J Cybernetics – volume: 2 start-page: 1 year: 2013 end-page: 8 ident: b0115 article-title: Diagnosis prediction of lichen planus, leukoplakia and oral squamous cell carcinoma by using an intelligent system based on artificial neural networks publication-title: J Dentomaxillofacial Radiol, Pathol Surg – volume: 04 start-page: 291 year: 2008 end-page: 308 ident: b0140 article-title: A new neutrosophic approach to image thresholding publication-title: New Math Nat Comput – volume: 1 start-page: 41 year: 2015 end-page: 46 ident: b0020 article-title: Review on emerging techniques to detect oral cancer publication-title: Int J Electr Sci Eng – volume: 40 start-page: 216 year: 2013 end-page: 221 ident: b0015 article-title: Osteosarcoma of the mandible mimicking an odontogenic abscess: a case report and review of the literature publication-title: Dent Update – volume: 10 start-page: 162 year: 2013 end-page: 167 ident: b0005 article-title: Demographic distribution of odontogenic cysts in Isfahan (Iran) over a 23-year period (1988–2010) publication-title: Dent Res J – year: 2009 ident: b0010 article-title: Shafer’s textbook of oral pathology – volume: 15 start-page: 100 year: 2015 end-page: 109 ident: b0160 article-title: MRI brain segmentation using a hybrid artificial bee colony algorithm with fuzzy-C mean algorithm publication-title: J Appl Sci – volume: 24 start-page: 313 year: 2014 end-page: 325 ident: b0190 article-title: A complete automated algorithm for segmentation of tissues and identification of tumor region in T1, T2, and FLAIR brain images using optimization and clustering techniques publication-title: Int J Imag Syst Technol – volume: 31 start-page: 198 year: 2007 end-page: 211 ident: b0050 article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential publication-title: Comput Med Imag Graph: Off J Comput Med Imag Soc – volume: 11 start-page: 1676 year: 2014 end-page: 1691 ident: b0155 article-title: A hybrid firefly algorithm with fuzzy-C mean algorithm for MRI brain segmentation publication-title: Am J Appl Sci – reference: Barnes L, Eveson J, Reichart P, Sidransky D. World Health Organization (WHO) classification of tumors: pathology and genetics of head and neck tumors; 2005. – volume: 2014 year: 2014 ident: b0200 article-title: Trabecular bone image segmentation using wavelet and marker-controlled watershed transformation publication-title: Chin J Eng – start-page: 1 year: 2008 end-page: 6 ident: b0170 article-title: A new neutrosophic approach to image thresholding publication-title: New Math Nat Comput – volume: 35 start-page: 326 year: 2006 end-page: 333 ident: b0035 article-title: Comparison of ultrasound, digital and conventional radiography in differentiating periapical lesions publication-title: Dentomaxillofacial Radiol – reference: Liew AW-C. Visual speech recognition: lip segmentation and mapping; 2009. – volume: 39 start-page: 5669 year: 2012 end-page: 5682 ident: b0125 article-title: A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering publication-title: Med Phys – start-page: 143 year: 2003 ident: b0130 article-title: A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability – volume: 5 start-page: 451 year: 2015 end-page: 456 ident: b0110 article-title: Oral cancer detection using improved segmentation algorithm publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 27 start-page: 994 year: 2009 end-page: 1004 ident: b0185 article-title: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation publication-title: Magn Reson Imag – volume: 7 start-page: 2351 year: 2013 end-page: 2355 ident: b0070 article-title: Bone scintigraphy and panoramic radiography in deciding the extent of bone resection in Benign jaw lesions publication-title: J Clin Diagn Res: JCDR – volume: 3 start-page: 1 year: 2014 end-page: 13 ident: b0025 article-title: Significant patterns for oral cancer detection: association rule on clinical examination and history data publication-title: Netw Model Anal Health Inform Bioinform – volume: 48 start-page: 2710 year: 2015 end-page: 2724 ident: b0135 article-title: NCM: neutrosophic c-means clustering algorithm publication-title: Pattern Recogn – volume: 18 start-page: 53 year: 1989 end-page: 59 ident: b0040 article-title: Computer-aided differential diagnosis of oral radiographic lesions publication-title: Dentomaxillofacial Radiol – volume: 38 start-page: 1 year: 2009 end-page: 10 ident: b0045 article-title: Evidence-based diagnosis and clinical decision making publication-title: Dentomaxillofacial Radiol – volume: 25 start-page: 1017 year: 2009 end-page: 1024 ident: b0080 article-title: Agreement in the diagnosis of dental fluorosis in central incisors performed by a standardized photographic method and clinical examination publication-title: Cadernos de Saúde Pública – volume: 38 start-page: 379 year: 2008 end-page: 390 ident: b0195 article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model publication-title: Comput Biol Med – volume: 22 year: 2011 ident: b0120 article-title: Cyst and tumor lesion segmentation on dental panoramic images using active contour models publication-title: IPTEK J Technol Sci – year: 2005 ident: b0150 article-title: Medical image enhancement – reference: Bezdek JC. Pattern recognition with fuzzy objective function algorithms; 1981. p. 256. – volume: 45 start-page: 934 year: 2012 end-page: 946 ident: b0055 article-title: Dental biometrics: human identification based on teeth and dental works in bitewing radiographs publication-title: Pattern Recogn – volume: 35 start-page: 1309 year: 2009 end-page: 1324 ident: b0180 article-title: Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance publication-title: Ultrasound Med Biol – start-page: 193 year: 2014 end-page: 203 ident: b0145 article-title: Neutrosophic sets and fuzzy C-means clustering for improving CT liver image segmentation publication-title: Proceedings of the fifth international conference on innovations in bio-inspired computing and applications IBICA 2014 – volume: 4 start-page: 81 year: 2013 end-page: 83 ident: b0075 article-title: Odontogenic myxoma publication-title: Natl J Maxillofacial Surg – volume: 89 start-page: 43 year: 2006 end-page: 46 ident: b0065 article-title: Imaging approach for differential diagnosis of jaw lesions: a quick reference guide publication-title: JBR-BTR – volume: 9 start-page: 459 year: 2005 end-page: 467 ident: b0100 article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization publication-title: Inf Technol Biomed, IEEE Trans – volume: 4 start-page: 8 year: 2013 end-page: 12 ident: b0105 article-title: Statistical feature extraction to classify oral cancers publication-title: J Glob Res Comput Sci – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.asej.2016.03.016_b0090 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J Cybernetics doi: 10.1080/01969727308546046 – start-page: 1 year: 2008 ident: 10.1016/j.asej.2016.03.016_b0170 article-title: A new neutrosophic approach to image thresholding publication-title: New Math Nat Comput – ident: 10.1016/j.asej.2016.03.016_b0095 doi: 10.1007/978-1-4757-0450-1 – volume: 35 start-page: 1309 issue: 8 year: 2009 ident: 10.1016/j.asej.2016.03.016_b0180 article-title: Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2008.12.007 – volume: 15 start-page: 100 year: 2015 ident: 10.1016/j.asej.2016.03.016_b0160 article-title: MRI brain segmentation using a hybrid artificial bee colony algorithm with fuzzy-C mean algorithm publication-title: J Appl Sci doi: 10.3923/jas.2015.100.109 – volume: 38 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.asej.2016.03.016_b0045 article-title: Evidence-based diagnosis and clinical decision making publication-title: Dentomaxillofacial Radiol doi: 10.1259/dmfr/18200441 – volume: 4 start-page: 8 issue: 2 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0105 article-title: Statistical feature extraction to classify oral cancers publication-title: J Glob Res Comput Sci – volume: 22 issue: 3 year: 2011 ident: 10.1016/j.asej.2016.03.016_b0120 article-title: Cyst and tumor lesion segmentation on dental panoramic images using active contour models publication-title: IPTEK J Technol Sci doi: 10.12962/j20882033.v22i3.66 – volume: 27 start-page: 994 issue: 7 year: 2009 ident: 10.1016/j.asej.2016.03.016_b0185 article-title: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation publication-title: Magn Reson Imag doi: 10.1016/j.mri.2009.01.024 – volume: 40 start-page: 216 issue: 3 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0015 article-title: Osteosarcoma of the mandible mimicking an odontogenic abscess: a case report and review of the literature publication-title: Dent Update doi: 10.12968/denu.2013.40.3.216 – volume: 31 start-page: 101 issue: 1 year: 1993 ident: 10.1016/j.asej.2016.03.016_b0030 article-title: Imaging of cysts and odontogenic tumors of the jaw. Definition and classification publication-title: Radiol Clin North Am doi: 10.1016/S0033-8389(22)02197-2 – volume: 2 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0115 article-title: Diagnosis prediction of lichen planus, leukoplakia and oral squamous cell carcinoma by using an intelligent system based on artificial neural networks publication-title: J Dentomaxillofacial Radiol, Pathol Surg doi: 10.18869/acadpub.3dj.2.2.1 – volume: 25 start-page: 1017 year: 2009 ident: 10.1016/j.asej.2016.03.016_b0080 article-title: Agreement in the diagnosis of dental fluorosis in central incisors performed by a standardized photographic method and clinical examination publication-title: Cadernos de Saúde Pública doi: 10.1590/S0102-311X2009000500008 – volume: 11 start-page: 1676 issue: 9 year: 2014 ident: 10.1016/j.asej.2016.03.016_b0155 article-title: A hybrid firefly algorithm with fuzzy-C mean algorithm for MRI brain segmentation publication-title: Am J Appl Sci doi: 10.3844/ajassp.2014.1676.1691 – volume: 1 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.asej.2016.03.016_b0020 article-title: Review on emerging techniques to detect oral cancer publication-title: Int J Electr Sci Eng – volume: 31 start-page: 198 issue: 4–5 year: 2007 ident: 10.1016/j.asej.2016.03.016_b0050 article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential publication-title: Comput Med Imag Graph: Off J Comput Med Imag Soc doi: 10.1016/j.compmedimag.2007.02.002 – year: 2005 ident: 10.1016/j.asej.2016.03.016_b0150 – volume: 3 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.asej.2016.03.016_b0025 article-title: Significant patterns for oral cancer detection: association rule on clinical examination and history data publication-title: Netw Model Anal Health Inform Bioinform doi: 10.1007/s13721-014-0050-5 – volume: 04 start-page: 291 issue: 03 year: 2008 ident: 10.1016/j.asej.2016.03.016_b0140 article-title: A new neutrosophic approach to image thresholding publication-title: New Math Nat Comput doi: 10.1142/S1793005708001082 – volume: 39 start-page: 5669 issue: 9 year: 2012 ident: 10.1016/j.asej.2016.03.016_b0125 article-title: A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering publication-title: Med Phys doi: 10.1118/1.4747271 – ident: 10.1016/j.asej.2016.03.016_b0205 doi: 10.4018/978-1-60566-186-5 – volume: 9 start-page: 459 issue: 3 year: 2005 ident: 10.1016/j.asej.2016.03.016_b0100 article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization publication-title: Inf Technol Biomed, IEEE Trans doi: 10.1109/TITB.2005.847500 – volume: 7 start-page: 2351 issue: 10 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0070 article-title: Bone scintigraphy and panoramic radiography in deciding the extent of bone resection in Benign jaw lesions publication-title: J Clin Diagn Res: JCDR – volume: 49 start-page: 165 issue: 2 year: 2008 ident: 10.1016/j.asej.2016.03.016_b0060 article-title: Radiographical approach to jaw lesions publication-title: Singapore Med J – ident: 10.1016/j.asej.2016.03.016_b0175 – volume: 52 issue: 2 year: 2012 ident: 10.1016/j.asej.2016.03.016_b0085 article-title: Detection of oral tumor based on marker-controlled watershed algorithm publication-title: Int J Comput Appl – volume: 18 start-page: 53 issue: 2 year: 1989 ident: 10.1016/j.asej.2016.03.016_b0040 article-title: Computer-aided differential diagnosis of oral radiographic lesions publication-title: Dentomaxillofacial Radiol doi: 10.1259/dmfr.18.2.2699592 – volume: 4 start-page: 81 issue: 1 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0075 article-title: Odontogenic myxoma publication-title: Natl J Maxillofacial Surg doi: 10.4103/0975-5950.117879 – volume: 35 start-page: 326 issue: 5 year: 2006 ident: 10.1016/j.asej.2016.03.016_b0035 article-title: Comparison of ultrasound, digital and conventional radiography in differentiating periapical lesions publication-title: Dentomaxillofacial Radiol doi: 10.1259/dmfr/60326577 – year: 2009 ident: 10.1016/j.asej.2016.03.016_b0010 – volume: 89 start-page: 43 issue: 1 year: 2006 ident: 10.1016/j.asej.2016.03.016_b0065 article-title: Imaging approach for differential diagnosis of jaw lesions: a quick reference guide publication-title: JBR-BTR – start-page: 327 year: 2012 ident: 10.1016/j.asej.2016.03.016_b0165 article-title: MRI denoising based on neutrosophic wiener filtering – volume: 38 start-page: 379 issue: 3 year: 2008 ident: 10.1016/j.asej.2016.03.016_b0195 article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2007.12.005 – volume: 2014 year: 2014 ident: 10.1016/j.asej.2016.03.016_b0200 article-title: Trabecular bone image segmentation using wavelet and marker-controlled watershed transformation publication-title: Chin J Eng doi: 10.1155/2014/891950 – volume: 5 start-page: 451 issue: 1 year: 2015 ident: 10.1016/j.asej.2016.03.016_b0110 article-title: Oral cancer detection using improved segmentation algorithm publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 10 start-page: 162 issue: 2 year: 2013 ident: 10.1016/j.asej.2016.03.016_b0005 article-title: Demographic distribution of odontogenic cysts in Isfahan (Iran) over a 23-year period (1988–2010) publication-title: Dent Res J doi: 10.4103/1735-3327.113325 – volume: 45 start-page: 934 issue: 3 year: 2012 ident: 10.1016/j.asej.2016.03.016_b0055 article-title: Dental biometrics: human identification based on teeth and dental works in bitewing radiographs publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.08.027 – volume: 24 start-page: 313 issue: 4 year: 2014 ident: 10.1016/j.asej.2016.03.016_b0190 article-title: A complete automated algorithm for segmentation of tissues and identification of tumor region in T1, T2, and FLAIR brain images using optimization and clustering techniques publication-title: Int J Imag Syst Technol doi: 10.1002/ima.22108 – volume: 48 start-page: 2710 issue: 8 year: 2015 ident: 10.1016/j.asej.2016.03.016_b0135 article-title: NCM: neutrosophic c-means clustering algorithm publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.02.018 – start-page: 143 year: 2003 ident: 10.1016/j.asej.2016.03.016_b0130 article-title: A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability – start-page: 193 year: 2014 ident: 10.1016/j.asej.2016.03.016_b0145 article-title: Neutrosophic sets and fuzzy C-means clustering for improving CT liver image segmentation |
| SSID | ssib044728585 |
| Score | 2.3880227 |
| Snippet | It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images;... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 697 |
| SubjectTerms | Automatic segmentation Fuzzy C-Means clustering algorithm Jaw panoramic X-ray image Neutrosophy |
| Title | A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation |
| URI | https://dx.doi.org/10.1016/j.asej.2016.03.016 https://doaj.org/article/c993fbd5414c49f5b0a731e7c8418854 |
| Volume | 9 |
| WOSCitedRecordID | wos000454548400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2090-4479 databaseCode: M~E dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib044728585 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCQIAoL3lgQxZO7DT2WEorBloxgNTNcvyAViWgPkDtwG_nnKRVprKwJErkR_Sdo_suOX-H0HUkbEunLCVp5Djhmc2IpkYQa6Tk1HrnXCHi-pgOBmI4lE-1Ul8hJ6yUBy6Bu4U-zGc2VKs2XPokozB05FIjeCREUiiBAuupBVOwkjhP4_DDK1SWo5ISuJbVjpkyuQs8xDjkdbUKhdNQ7LzmlQrx_ppzqjmc3gHar5gibpdPeIh2XH6E7tv4bRk2WeHeYrVa4g7pO3A2WOcWD9xiPi3KEowMBi6Kx_obT1z4HDbDM_f6Xm0zyo_RS6_73HkgVSEEYrigc5LFnnkJkRK1IuMQYUWpB2LltItkkKOXGkgQN3EMYEU-BbP4TGpmTcaYAwrFTlAj_8jdKcJC26CI54FWCHh3Yw2UABCVEOhJS5OkiaI1EMpUKuGhWMVErdPBxiqApwJ4ijIFpya62fT5LDUytra-C_huWgZ96-IGWF1VVld_Wb2JkrV1VEUVSgoAQ422TH72H5Ofoz0YUpRJLReoMZ8u3CXaNV_z0Wx6VSxEOPZ_ur-RFd-H |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Fuzzy+C-Means+and+Neutrosophic+for+jaw+lesions+segmentation&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Alsmadi%2C+Mutasem+K.&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=2090-4479&rft.volume=9&rft.issue=4&rft.spage=697&rft.epage=706&rft_id=info:doi/10.1016%2Fj.asej.2016.03.016&rft.externalDocID=S2090447916300430 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |