Computationally efficient methods for large-scale atmospheric inverse modeling
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for m...
Gespeichert in:
| Veröffentlicht in: | Geoscientific Model Development Jg. 15; H. 14; S. 5547 - 5565 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
20.07.2022
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information. |
|---|---|
| AbstractList | Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information. |
| Audience | Academic |
| Author | Cho, Taewon Miller, Scot M. Saibaba, Arvind K. Chung, Julianne |
| Author_xml | – sequence: 1 givenname: Taewon surname: Cho fullname: Cho, Taewon – sequence: 2 givenname: Julianne orcidid: 0000-0002-6760-4736 surname: Chung fullname: Chung, Julianne – sequence: 3 givenname: Scot M. orcidid: 0000-0003-4462-8126 surname: Miller fullname: Miller, Scot M. – sequence: 4 givenname: Arvind K. surname: Saibaba fullname: Saibaba, Arvind K. |
| BookMark | eNp1ks1v1DAQxSNUJNrCnWMkThxS7MSx42O1grJSBRIfZ2t2PE69SuLF9qL2v6-XRcAikA-2Rr_3NJ55F9XZEhaqqpecXfVcizfjbBveN30vVNOytn1SnXOteaMl687-eD-rLlLaMia1kuq8-rAK826fIfuwwDQ91OScR09LrmfKd8Gm2oVYTxBHahLCRDXkOaTdHUWPtV--U0xUz8HS5JfxefXUwZToxc_7svr67u2X1fvm9uPNenV926AYWG6g4xsQsh16kCSVBTcoVB1DybjVSKi54AxIW7B2aEkIBMUsR2kFEOfdZbU--toAW7OLfob4YAJ486MQ4mggZo8TGQ0bxlArja4V_aA1drbHTjmB1m2EKl6vjl67GL7tKWWzDftYppFMKzVXbGBC_qbGMgPjFxdyBJx9QnOtONNMCykKdfUPqhxLs8eyMedL_UTw-kRQmEz3eYR9Smb9-dMpy44sxpBSJPfr45yZQwhMCYHhvTmEwBxCUCTyLwn647JLX376v_ARnr-3sg |
| CitedBy_id | crossref_primary_10_1029_2023JG007703 crossref_primary_10_1007_s10444_024_10208_6 crossref_primary_10_1137_21M1441420 crossref_primary_10_5194_acp_22_9617_2022 crossref_primary_10_3390_math10234522 crossref_primary_10_1088_1402_4896_ad88af |
| Cites_doi | 10.1088/1361-6420/aaa0e1 10.5194/acp-19-9797-2019 10.5194/gmd-2021-181 10.1007/978-0-387-69277-7_8 10.1029/2002JD003161 10.5194/gmd-14-4683-2021 10.3402/tellusb.v67.28452 10.1117/12.2187291 10.5194/acp-14-3855-2014 10.1016/j.advwatres.2015.04.012 10.5194/acp-13-11643-2013 10.5194/acp-20-323-2020 10.1137/1.9780898718836 10.1029/2012JD018176 10.1002/gamm.202000017 10.1126/sciadv.aaw0076 10.1029/2005JD005970 10.5194/gmd-7-303-2014 10.1007/978-3-0348-5460-3_7 10.1137/1.9780898717921 10.1007/s00211-013-0518-8 10.1002/qj.3209 10.1126/science.aam5745 10.5194/amt-11-6539-2018 10.1142/9789812813718 10.5194/acp-7-2413-2007 10.5194/acp-8-6341-2008 10.5194/gmd-10-3695-2017 10.1016/j.atmosenv.2018.05.044 10.5194/acp-21-6663-2021 10.1175/2008JTECHA1082.1 10.5194/acp-18-6785-2018 10.1029/2003JD004422 10.1002/nla.2325 10.1088/1748-9326/abfac1 10.5194/gmd-2021-393 10.1117/12.974954 10.1111/j.1600-0889.2006.00218.x 10.1525/elementa.188 10.5194/bg-9-457-2012 10.1137/1.9781611971484 10.5194/gmd-13-1771-2020 10.1017/S0962492918000016 10.1137/15M1037925 10.1017/CBO9780511535741 10.7551/mitpress/3206.001.0001 10.5194/acp-22-1097-2022 10.1007/s00703-010-0068-x 10.5194/gmd-6-583-2013 10.1137/16M1081968 10.5194/acp-16-13449-2016 10.1017/9781316544754 10.1029/2011WR011778 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/gmd-15-5547-2022 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1991-9603 1991-962X |
| EndPage | 5565 |
| ExternalDocumentID | oai_doaj_org_article_9ab00c979cf245899c3d5c37f4cdfb47 A710909464 10_5194_gmd_15_5547_2022 |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS |
| ID | FETCH-LOGICAL-c480t-a31ba46285a6e67daf87c730c601d9cec91410ae9dadd82e44ca70d1c6d4ae113 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827463000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:53:23 EDT 2025 Fri Jul 25 10:46:21 EDT 2025 Mon Oct 20 21:57:17 EDT 2025 Mon Oct 20 16:00:38 EDT 2025 Thu Oct 16 15:20:17 EDT 2025 Sat Nov 29 05:37:57 EST 2025 Tue Nov 18 21:13:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-a31ba46285a6e67daf87c730c601d9cec91410ae9dadd82e44ca70d1c6d4ae113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6760-4736 0000-0003-4462-8126 |
| OpenAccessLink | https://www.proquest.com/docview/2691708046?pq-origsite=%requestingapplication% |
| PQID | 2691708046 |
| PQPubID | 105726 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ab00c979cf245899c3d5c37f4cdfb47 proquest_journals_2691708046 gale_infotracmisc_A710909464 gale_infotracacademiconefile_A710909464 gale_incontextgauss_ISR_A710909464 crossref_primary_10_5194_gmd_15_5547_2022 crossref_citationtrail_10_5194_gmd_15_5547_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-20 |
| PublicationDateYYYYMMDD | 2022-07-20 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref17 doi: 10.1088/1361-6420/aaa0e1 – ident: ref19 doi: 10.5194/acp-19-9797-2019 – ident: ref59 doi: 10.5194/gmd-2021-181 – ident: ref55 doi: 10.1007/978-0-387-69277-7_8 – ident: ref31 doi: 10.1029/2002JD003161 – ident: ref32 doi: 10.5194/gmd-14-4683-2021 – ident: ref48 doi: 10.3402/tellusb.v67.28452 – ident: ref18 doi: 10.1117/12.2187291 – ident: ref23 doi: 10.5194/acp-14-3855-2014 – ident: ref53 doi: 10.1016/j.advwatres.2015.04.012 – ident: ref9 doi: 10.5194/acp-13-11643-2013 – ident: ref37 doi: 10.5194/acp-20-323-2020 – ident: ref27 doi: 10.1137/1.9780898718836 – ident: ref10 doi: 10.1029/2012JD018176 – ident: ref2 – ident: ref24 doi: 10.1002/gamm.202000017 – ident: ref30 doi: 10.1126/sciadv.aaw0076 – ident: ref36 doi: 10.1029/2005JD005970 – ident: ref38 doi: 10.5194/gmd-7-303-2014 – ident: ref26 doi: 10.1007/978-3-0348-5460-3_7 – ident: ref57 doi: 10.1137/1.9780898717921 – ident: ref3 doi: 10.1007/s00211-013-0518-8 – ident: ref40 – ident: ref6 doi: 10.1002/qj.3209 – ident: ref21 doi: 10.1126/science.aam5745 – ident: ref46 doi: 10.5194/amt-11-6539-2018 – ident: ref51 doi: 10.1142/9789812813718 – ident: ref29 doi: 10.5194/acp-7-2413-2007 – ident: ref16 – ident: ref34 doi: 10.5194/acp-8-6341-2008 – ident: ref28 doi: 10.5194/gmd-10-3695-2017 – ident: ref42 doi: 10.1016/j.atmosenv.2018.05.044 – ident: ref11 doi: 10.5194/acp-21-6663-2021 – ident: ref33 doi: 10.1175/2008JTECHA1082.1 – ident: ref39 doi: 10.5194/acp-18-6785-2018 – ident: ref45 – ident: ref35 doi: 10.1029/2003JD004422 – ident: ref54 doi: 10.1002/nla.2325 – ident: ref12 doi: 10.1088/1748-9326/abfac1 – ident: ref13 doi: 10.5194/gmd-2021-393 – ident: ref43 doi: 10.1117/12.974954 – ident: ref1 doi: 10.1111/j.1600-0889.2006.00218.x – ident: ref20 doi: 10.1525/elementa.188 – ident: ref25 doi: 10.5194/bg-9-457-2012 – ident: ref5 doi: 10.1137/1.9781611971484 – ident: ref41 doi: 10.5194/gmd-13-1771-2020 – ident: ref4 doi: 10.1017/S0962492918000016 – ident: ref50 doi: 10.1137/15M1037925 – ident: ref22 doi: 10.1017/CBO9780511535741 – ident: ref49 doi: 10.7551/mitpress/3206.001.0001 – ident: ref47 doi: 10.5194/acp-22-1097-2022 – ident: ref44 doi: 10.1007/s00703-010-0068-x – ident: ref58 doi: 10.5194/gmd-6-583-2013 – ident: ref15 doi: 10.1137/16M1081968 – ident: ref8 – ident: ref56 doi: 10.5194/acp-16-13449-2016 – ident: ref7 doi: 10.1017/9781316544754 – ident: ref52 doi: 10.1029/2011WR011778 – ident: ref14 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.3567567 |
| Snippet | Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 5547 |
| SubjectTerms | Air pollution Algorithms Atmospheric models Carbon Computational efficiency Computer applications Covariance matrix Earth surface Emissions Exploitation Fluxes Gases Greenhouse gases Inverse problems Iterative algorithms Iterative methods Mathematical models Methods Modelling Observatories Random variables Regularization Robustness (mathematics) Satellite observation Satellites Surface fluxes |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCl587rLjqgQRlj2E6UeS7hzdxddlEB8wt5CupGVg7BF7FPz3W5VuZeew60Gv3RVI50tSVenK9zF25FReJSoJIs-MFjI4LQz6eaF07qDwCdWGRbGJYjQqx2Nz-ZfUF9WEdfTA3cANjcOJAaYwUGdSYXYAuVeQF7UEX1eS7pHjNKQleUUabt0erNHJRlkVqusxyoy7H5QYrcjh3b0XqRLoRgucIlm24JAib_-_dufock43PtDZTbbex5n8uGuyxZZCs81Wz6KO78sOG3VqDv1J4PSFh0glgR6Id5rSLcdolk-pTly0iGPgbn4_a4mEYAJ80lA1R-BRRwed3xd2e3py8_tc9NIKAmSZzIXL08rRtVTldNCFd3VZAC52wPzMGwhgqP7TBeNx_yuzICW4IvEpaC9dSNP8K1tuZk34xngeQ7LSaTCYWoZQpkTSV1ZO6yoYaQZs-Dq-FnrecZK_mFrMPwgRi4jYVFlCxBIiA_bzrcVDx7nxH9tfhMKbHbFlxwcIi-1hse_BMmCHBLglPoyGCm7u3FPb2ovrK3tMtaqYAms5YD96o3qG_QfX31_AUSAKrQXLvQVLXLCw-Pp1Xtl-w2htpjFvxuhd6t3P-KLvbI1Ghw6hs2SPLc8fn8I-W4Hn-aR9PIhr5Q8QaxSd priority: 102 providerName: Copernicus Gesellschaft – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYltJBL6SOhm6ZBlELoQawfeljHbUmaXJbSB-xNyCM5LGy8Yb0J7L_vjOwN2UOTS672GORPI82MPfo-xr54VdaZyqIoC6uFjF4Li3FeKF16MCGj3rAkNmGm02o2sz8fSH1RT1hPD9wDN7YeHQOssdAUUmF1AGVQUJpGQmhqmc6RZ8Zui6l-D9YYZJOsCvX1WGVn_Q9KzFbk-Oo6iFwJDKMGXaQodgJS4u3_3-6cQs75G_Z6yBX5pB_jW_Yitu_Yqx9Ji3fznk17RYbha95iw2Oig8Aowntd6I5jRsoX1OstOpyLyP36etkRkcAc-LyljozIkxYOBrAD9vf87M_3CzHIIwiQVbYWvsxrT0dLlddRm-CbygAuWMAaK1iIYKmH00cbcA-riigleJOFHHSQPuZ5ecj22mUbPzBeprSq8hoslocxVjkR7VW117qOVtoRG28xcjBwh5OExcJhDUGoOkTV5coRqo5QHbGv90_c9LwZj9h-I9jv7YjxOl1AP3CDH7in_GDEPtOkOeK0aKlp5srfdp27_P3LTajfFMtYLUfsdDBqljh-8MMZBESBaLB2LI93LHHRwe7trW-4YdF3rtBY-2IGLvXRc7zRR7ZP6NCH5CI7Znvr1W38xF7C3XrerU6Sv_8DOucCJA priority: 102 providerName: Directory of Open Access Journals |
| Title | Computationally efficient methods for large-scale atmospheric inverse modeling |
| URI | https://www.proquest.com/docview/2691708046 https://doaj.org/article/9ab00c979cf245899c3d5c37f4cdfb47 |
| Volume | 15 |
| WOSCitedRecordID | wos000827463000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BCxKX8qxIKZGFkBCHVfxYr70n1KAWKkQUpSCF02o9u44ipXaJU6T-e2bWm0IO9MLR9liyPbPz8uz3MfbW5FkV57HjWaokF85IrjDO81xmBgob02yYJ5soJpNyPlfT0HDrwljl1id6R21boB75KJVYWGB6I-SHq5-cWKPo72qg0LjP9gmpDO18f3w6mc62vlhisC3-PvA742jYR8l03v-1xBRGjBaXlic5x9haoN2k6U6U8mD-_3LZPg6dPf7fN3jCDkIGGp30JvOU3XPNM_bwk2f4vXnOJj3PQ-gRrm4i50EmMDZFPdt0F2GeG61ogpx3qGEXmc1l2xE8wRKiZUNzHi7yDDsYFl-w72en3z5-5oF0gYMo4w03WVIZ2rCaG-lkYU1dFoBuALByswocKJoMNU5Z9Ixl6oQAU8Q2AWmFcUmSHbK9pm3cSxZlPlkrjQSFRadzZULwfWVlpKycEmrARtuPrCEgkhMxxkpjZUJq0agWneSa1KJJLQP2_vaOqx6N4w7ZMentVo5wtP2Jdr3QYVlqZdDtgCoU1KnIsfaEzOaQFbUAW1eiGLA3pHVNSBkNjeIszHXX6fOLmT6hKVYsjqUYsHdBqG7x-cGEnQ34FQhca0fyeEcSlzLsXt5ajg6upNN_zObo7suv2CN6b2o8p_Ex29usr91r9gB-bZbdehhWxtA3HYY04nqB56bnX6c_8Gj2Zfwbz-wYUg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLYheeKMuFIgQCHGwNg_HiQ8IlUfpqu1qBUXanozjOKuVtknZbEH7p_iNzDhJYQ_01gPHxJMosT_Pwx7PB_BCx1Hmx75lUSgF41YLJtHOs1hE2iS5T7lhjmwiGY3SyUSON-BXdxaG0io7negUdV4ZWiMfhAIDC3RvuHh79p0RaxTtrnYUGg0sDuzqJ4Zs9ZvhBxzfl2G49_H4_T5rWQWY4am_ZDoKMk0nMmMtrEhyXaSJQZwbDE1yaayRlPqorcxx6qeh5dzoxM8DI3KubRBE-N5rsMkR7H4PNsfDo_FJp_sFGvfk7wt3Eo-Si6QIJ80uKbpMfDA9zVkQM7TlCeI0DNesoiMP-JeJcHZv7_b_1mN34FbrYXu7zZS4Cxu2vAc3PjkG49V9GDU8Fu0a6HzlWVdEA22v17Bp1x768d6cMuRZjQi2nl6eVjWVX5gZb1ZSHov1HIMQmv0H8PVKfuYh9MqqtNvgRc4ZTbUwEoNqa9OAyhOmmRYis5LLPgy6QVWmrbhOxB9zhZEXwUAhDFQQK4KBIhj04fXFE2dNtZFLZN8RTi7kqE64u1EtpqpVO0pqVKtGJtIUIY8xtjZRHpsoKbjJi4wnfXhOKFNUCaSkVKOpPq9rNfzyWe1Sli4G_4L34VUrVFT4_Ua3JzewF6h42Jrkzpokqiqz3twhVbWqslZ_YPro8uZncHP_-OhQHQ5HB49hi_qAFtlDfwd6y8W5fQLXzY_lrF48bWelB9-uGta_AU4rcnY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaBeeCMWCkQIhDhYm4djxweEWtqFVdFqVUDam-s4zmqlbdJutqD9a_w6ZvIo7IHeeuCYeBIl9ud52OP5AF6bOEr92HcsCpVg3BnBFNp5FovIWJn5lBtWk03I8TiZTtVkC351Z2EorbLTibWizkpLa-SDUGBgge4NF4O8TYuYHAw_nJ0zYpCindaOTqOByJFb_8TwrXo_OsCxfhOGw8NvHz-zlmGAWZ74K2aiIDV0OjM2wgmZmTyRFjFvMUzJlHVWURqkcSpDNZCEjnNrpJ8FVmTcuCCI8L03YFtG-G092N4_HE-OOzsg0NDLvy_qU3mUaKREOG12TNF94oPZacaCmKFdl4jZMNywkDWRwL_MRW0Dh3f_5967B3daz9vba6bKfdhyxQO49almNl4_hHHDb9GujS7WnquLa6BN9hqW7cpD_95bUOY8qxDZzjOr07Kisgxz680Lym9xXs0shO7AI_h-LT_zGHpFWbgn4EW1k5oYYRUG284lAZUtTFIjROoUV30YdAOsbVuJnQhBFhojMoKERkjoINYECU2Q6MO7yyfOmiokV8juE2Yu5ah-eH2jXM50q460MqhurZLK5iGPMea2URbbSObcZnnKZR9eEeI0VQgpCC0zc1FVevT1WO9R9q6vuOB9eNsK5SV-vzXtiQ7sBSoqtiG5uyGJKsxuNneo1a0KrfQfyD69uvkl3EYs6y-j8dEz2KEuoLX30N-F3mp54Z7DTftjNa-WL9oJ6sHJdaP6N2cSexA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+efficient+methods+for+large-scale+atmospheric+inverse+modeling&rft.jtitle=Geoscientific+Model+Development&rft.au=Cho%2C+Taewon&rft.au=Chung%2C+Julianne&rft.au=Miller%2C+Scot+M&rft.au=Saibaba%2C+Arvind+K&rft.date=2022-07-20&rft.pub=Copernicus+GmbH&rft.issn=1991-962X&rft.eissn=1991-962X&rft.volume=15&rft.issue=14&rft.spage=5547&rft.epage=5565&rft_id=info:doi/10.5194%2Fgmd-15-5547-2022&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |