Computationally efficient methods for large-scale atmospheric inverse modeling

Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 15; H. 14; S. 5547 - 5565
Hauptverfasser: Cho, Taewon, Chung, Julianne, Miller, Scot M., Saibaba, Arvind K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 20.07.2022
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information.
AbstractList Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information.
Audience Academic
Author Cho, Taewon
Miller, Scot M.
Saibaba, Arvind K.
Chung, Julianne
Author_xml – sequence: 1
  givenname: Taewon
  surname: Cho
  fullname: Cho, Taewon
– sequence: 2
  givenname: Julianne
  orcidid: 0000-0002-6760-4736
  surname: Chung
  fullname: Chung, Julianne
– sequence: 3
  givenname: Scot M.
  orcidid: 0000-0003-4462-8126
  surname: Miller
  fullname: Miller, Scot M.
– sequence: 4
  givenname: Arvind K.
  surname: Saibaba
  fullname: Saibaba, Arvind K.
BookMark eNp1ks1v1DAQxSNUJNrCnWMkThxS7MSx42O1grJSBRIfZ2t2PE69SuLF9qL2v6-XRcAikA-2Rr_3NJ55F9XZEhaqqpecXfVcizfjbBveN30vVNOytn1SnXOteaMl687-eD-rLlLaMia1kuq8-rAK826fIfuwwDQ91OScR09LrmfKd8Gm2oVYTxBHahLCRDXkOaTdHUWPtV--U0xUz8HS5JfxefXUwZToxc_7svr67u2X1fvm9uPNenV926AYWG6g4xsQsh16kCSVBTcoVB1DybjVSKi54AxIW7B2aEkIBMUsR2kFEOfdZbU--toAW7OLfob4YAJ486MQ4mggZo8TGQ0bxlArja4V_aA1drbHTjmB1m2EKl6vjl67GL7tKWWzDftYppFMKzVXbGBC_qbGMgPjFxdyBJx9QnOtONNMCykKdfUPqhxLs8eyMedL_UTw-kRQmEz3eYR9Smb9-dMpy44sxpBSJPfr45yZQwhMCYHhvTmEwBxCUCTyLwn647JLX376v_ARnr-3sg
CitedBy_id crossref_primary_10_1029_2023JG007703
crossref_primary_10_1007_s10444_024_10208_6
crossref_primary_10_1137_21M1441420
crossref_primary_10_5194_acp_22_9617_2022
crossref_primary_10_3390_math10234522
crossref_primary_10_1088_1402_4896_ad88af
Cites_doi 10.1088/1361-6420/aaa0e1
10.5194/acp-19-9797-2019
10.5194/gmd-2021-181
10.1007/978-0-387-69277-7_8
10.1029/2002JD003161
10.5194/gmd-14-4683-2021
10.3402/tellusb.v67.28452
10.1117/12.2187291
10.5194/acp-14-3855-2014
10.1016/j.advwatres.2015.04.012
10.5194/acp-13-11643-2013
10.5194/acp-20-323-2020
10.1137/1.9780898718836
10.1029/2012JD018176
10.1002/gamm.202000017
10.1126/sciadv.aaw0076
10.1029/2005JD005970
10.5194/gmd-7-303-2014
10.1007/978-3-0348-5460-3_7
10.1137/1.9780898717921
10.1007/s00211-013-0518-8
10.1002/qj.3209
10.1126/science.aam5745
10.5194/amt-11-6539-2018
10.1142/9789812813718
10.5194/acp-7-2413-2007
10.5194/acp-8-6341-2008
10.5194/gmd-10-3695-2017
10.1016/j.atmosenv.2018.05.044
10.5194/acp-21-6663-2021
10.1175/2008JTECHA1082.1
10.5194/acp-18-6785-2018
10.1029/2003JD004422
10.1002/nla.2325
10.1088/1748-9326/abfac1
10.5194/gmd-2021-393
10.1117/12.974954
10.1111/j.1600-0889.2006.00218.x
10.1525/elementa.188
10.5194/bg-9-457-2012
10.1137/1.9781611971484
10.5194/gmd-13-1771-2020
10.1017/S0962492918000016
10.1137/15M1037925
10.1017/CBO9780511535741
10.7551/mitpress/3206.001.0001
10.5194/acp-22-1097-2022
10.1007/s00703-010-0068-x
10.5194/gmd-6-583-2013
10.1137/16M1081968
10.5194/acp-16-13449-2016
10.1017/9781316544754
10.1029/2011WR011778
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/gmd-15-5547-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1991-9603
1991-962X
EndPage 5565
ExternalDocumentID oai_doaj_org_article_9ab00c979cf245899c3d5c37f4cdfb47
A710909464
10_5194_gmd_15_5547_2022
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
ID FETCH-LOGICAL-c480t-a31ba46285a6e67daf87c730c601d9cec91410ae9dadd82e44ca70d1c6d4ae113
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827463000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:53:23 EDT 2025
Fri Jul 25 10:46:21 EDT 2025
Mon Oct 20 21:57:17 EDT 2025
Mon Oct 20 16:00:38 EDT 2025
Thu Oct 16 15:20:17 EDT 2025
Sat Nov 29 05:37:57 EST 2025
Tue Nov 18 21:13:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-a31ba46285a6e67daf87c730c601d9cec91410ae9dadd82e44ca70d1c6d4ae113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6760-4736
0000-0003-4462-8126
OpenAccessLink https://www.proquest.com/docview/2691708046?pq-origsite=%requestingapplication%
PQID 2691708046
PQPubID 105726
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_9ab00c979cf245899c3d5c37f4cdfb47
proquest_journals_2691708046
gale_infotracmisc_A710909464
gale_infotracacademiconefile_A710909464
gale_incontextgauss_ISR_A710909464
crossref_primary_10_5194_gmd_15_5547_2022
crossref_citationtrail_10_5194_gmd_15_5547_2022
PublicationCentury 2000
PublicationDate 2022-07-20
PublicationDateYYYYMMDD 2022-07-20
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref17
  doi: 10.1088/1361-6420/aaa0e1
– ident: ref19
  doi: 10.5194/acp-19-9797-2019
– ident: ref59
  doi: 10.5194/gmd-2021-181
– ident: ref55
  doi: 10.1007/978-0-387-69277-7_8
– ident: ref31
  doi: 10.1029/2002JD003161
– ident: ref32
  doi: 10.5194/gmd-14-4683-2021
– ident: ref48
  doi: 10.3402/tellusb.v67.28452
– ident: ref18
  doi: 10.1117/12.2187291
– ident: ref23
  doi: 10.5194/acp-14-3855-2014
– ident: ref53
  doi: 10.1016/j.advwatres.2015.04.012
– ident: ref9
  doi: 10.5194/acp-13-11643-2013
– ident: ref37
  doi: 10.5194/acp-20-323-2020
– ident: ref27
  doi: 10.1137/1.9780898718836
– ident: ref10
  doi: 10.1029/2012JD018176
– ident: ref2
– ident: ref24
  doi: 10.1002/gamm.202000017
– ident: ref30
  doi: 10.1126/sciadv.aaw0076
– ident: ref36
  doi: 10.1029/2005JD005970
– ident: ref38
  doi: 10.5194/gmd-7-303-2014
– ident: ref26
  doi: 10.1007/978-3-0348-5460-3_7
– ident: ref57
  doi: 10.1137/1.9780898717921
– ident: ref3
  doi: 10.1007/s00211-013-0518-8
– ident: ref40
– ident: ref6
  doi: 10.1002/qj.3209
– ident: ref21
  doi: 10.1126/science.aam5745
– ident: ref46
  doi: 10.5194/amt-11-6539-2018
– ident: ref51
  doi: 10.1142/9789812813718
– ident: ref29
  doi: 10.5194/acp-7-2413-2007
– ident: ref16
– ident: ref34
  doi: 10.5194/acp-8-6341-2008
– ident: ref28
  doi: 10.5194/gmd-10-3695-2017
– ident: ref42
  doi: 10.1016/j.atmosenv.2018.05.044
– ident: ref11
  doi: 10.5194/acp-21-6663-2021
– ident: ref33
  doi: 10.1175/2008JTECHA1082.1
– ident: ref39
  doi: 10.5194/acp-18-6785-2018
– ident: ref45
– ident: ref35
  doi: 10.1029/2003JD004422
– ident: ref54
  doi: 10.1002/nla.2325
– ident: ref12
  doi: 10.1088/1748-9326/abfac1
– ident: ref13
  doi: 10.5194/gmd-2021-393
– ident: ref43
  doi: 10.1117/12.974954
– ident: ref1
  doi: 10.1111/j.1600-0889.2006.00218.x
– ident: ref20
  doi: 10.1525/elementa.188
– ident: ref25
  doi: 10.5194/bg-9-457-2012
– ident: ref5
  doi: 10.1137/1.9781611971484
– ident: ref41
  doi: 10.5194/gmd-13-1771-2020
– ident: ref4
  doi: 10.1017/S0962492918000016
– ident: ref50
  doi: 10.1137/15M1037925
– ident: ref22
  doi: 10.1017/CBO9780511535741
– ident: ref49
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref47
  doi: 10.5194/acp-22-1097-2022
– ident: ref44
  doi: 10.1007/s00703-010-0068-x
– ident: ref58
  doi: 10.5194/gmd-6-583-2013
– ident: ref15
  doi: 10.1137/16M1081968
– ident: ref8
– ident: ref56
  doi: 10.5194/acp-16-13449-2016
– ident: ref7
  doi: 10.1017/9781316544754
– ident: ref52
  doi: 10.1029/2011WR011778
– ident: ref14
SSID ssj0069767
ssj0069768
Score 2.3567567
Snippet Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5547
SubjectTerms Air pollution
Algorithms
Atmospheric models
Carbon
Computational efficiency
Computer applications
Covariance matrix
Earth surface
Emissions
Exploitation
Fluxes
Gases
Greenhouse gases
Inverse problems
Iterative algorithms
Iterative methods
Mathematical models
Methods
Modelling
Observatories
Random variables
Regularization
Robustness (mathematics)
Satellite observation
Satellites
Surface fluxes
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCl587rLjqgQRlj2E6UeS7hzdxddlEB8wt5CupGVg7BF7FPz3W5VuZeew60Gv3RVI50tSVenK9zF25FReJSoJIs-MFjI4LQz6eaF07qDwCdWGRbGJYjQqx2Nz-ZfUF9WEdfTA3cANjcOJAaYwUGdSYXYAuVeQF7UEX1eS7pHjNKQleUUabt0erNHJRlkVqusxyoy7H5QYrcjh3b0XqRLoRgucIlm24JAib_-_dufock43PtDZTbbex5n8uGuyxZZCs81Wz6KO78sOG3VqDv1J4PSFh0glgR6Id5rSLcdolk-pTly0iGPgbn4_a4mEYAJ80lA1R-BRRwed3xd2e3py8_tc9NIKAmSZzIXL08rRtVTldNCFd3VZAC52wPzMGwhgqP7TBeNx_yuzICW4IvEpaC9dSNP8K1tuZk34xngeQ7LSaTCYWoZQpkTSV1ZO6yoYaQZs-Dq-FnrecZK_mFrMPwgRi4jYVFlCxBIiA_bzrcVDx7nxH9tfhMKbHbFlxwcIi-1hse_BMmCHBLglPoyGCm7u3FPb2ovrK3tMtaqYAms5YD96o3qG_QfX31_AUSAKrQXLvQVLXLCw-Pp1Xtl-w2htpjFvxuhd6t3P-KLvbI1Ghw6hs2SPLc8fn8I-W4Hn-aR9PIhr5Q8QaxSd
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYltJBL6SOhm6ZBlELoQawfeljHbUmaXJbSB-xNyCM5LGy8Yb0J7L_vjOwN2UOTS672GORPI82MPfo-xr54VdaZyqIoC6uFjF4Li3FeKF16MCGj3rAkNmGm02o2sz8fSH1RT1hPD9wDN7YeHQOssdAUUmF1AGVQUJpGQmhqmc6RZ8Zui6l-D9YYZJOsCvX1WGVn_Q9KzFbk-Oo6iFwJDKMGXaQodgJS4u3_3-6cQs75G_Z6yBX5pB_jW_Yitu_Yqx9Ji3fznk17RYbha95iw2Oig8Aowntd6I5jRsoX1OstOpyLyP36etkRkcAc-LyljozIkxYOBrAD9vf87M_3CzHIIwiQVbYWvsxrT0dLlddRm-CbygAuWMAaK1iIYKmH00cbcA-riigleJOFHHSQPuZ5ecj22mUbPzBeprSq8hoslocxVjkR7VW117qOVtoRG28xcjBwh5OExcJhDUGoOkTV5coRqo5QHbGv90_c9LwZj9h-I9jv7YjxOl1AP3CDH7in_GDEPtOkOeK0aKlp5srfdp27_P3LTajfFMtYLUfsdDBqljh-8MMZBESBaLB2LI93LHHRwe7trW-4YdF3rtBY-2IGLvXRc7zRR7ZP6NCH5CI7Znvr1W38xF7C3XrerU6Sv_8DOucCJA
  priority: 102
  providerName: Directory of Open Access Journals
Title Computationally efficient methods for large-scale atmospheric inverse modeling
URI https://www.proquest.com/docview/2691708046
https://doaj.org/article/9ab00c979cf245899c3d5c37f4cdfb47
Volume 15
WOSCitedRecordID wos000827463000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BCxKX8qxIKZGFkBCHVfxYr70n1KAWKkQUpSCF02o9u44ipXaJU6T-e2bWm0IO9MLR9liyPbPz8uz3MfbW5FkV57HjWaokF85IrjDO81xmBgob02yYJ5soJpNyPlfT0HDrwljl1id6R21boB75KJVYWGB6I-SHq5-cWKPo72qg0LjP9gmpDO18f3w6mc62vlhisC3-PvA742jYR8l03v-1xBRGjBaXlic5x9haoN2k6U6U8mD-_3LZPg6dPf7fN3jCDkIGGp30JvOU3XPNM_bwk2f4vXnOJj3PQ-gRrm4i50EmMDZFPdt0F2GeG61ogpx3qGEXmc1l2xE8wRKiZUNzHi7yDDsYFl-w72en3z5-5oF0gYMo4w03WVIZ2rCaG-lkYU1dFoBuALByswocKJoMNU5Z9Ixl6oQAU8Q2AWmFcUmSHbK9pm3cSxZlPlkrjQSFRadzZULwfWVlpKycEmrARtuPrCEgkhMxxkpjZUJq0agWneSa1KJJLQP2_vaOqx6N4w7ZMentVo5wtP2Jdr3QYVlqZdDtgCoU1KnIsfaEzOaQFbUAW1eiGLA3pHVNSBkNjeIszHXX6fOLmT6hKVYsjqUYsHdBqG7x-cGEnQ34FQhca0fyeEcSlzLsXt5ajg6upNN_zObo7suv2CN6b2o8p_Ex29usr91r9gB-bZbdehhWxtA3HYY04nqB56bnX6c_8Gj2Zfwbz-wYUg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLYheeKMuFIgQCHGwNg_HiQ8IlUfpqu1qBUXanozjOKuVtknZbEH7p_iNzDhJYQ_01gPHxJMosT_Pwx7PB_BCx1Hmx75lUSgF41YLJtHOs1hE2iS5T7lhjmwiGY3SyUSON-BXdxaG0io7negUdV4ZWiMfhAIDC3RvuHh79p0RaxTtrnYUGg0sDuzqJ4Zs9ZvhBxzfl2G49_H4_T5rWQWY4am_ZDoKMk0nMmMtrEhyXaSJQZwbDE1yaayRlPqorcxx6qeh5dzoxM8DI3KubRBE-N5rsMkR7H4PNsfDo_FJp_sFGvfk7wt3Eo-Si6QIJ80uKbpMfDA9zVkQM7TlCeI0DNesoiMP-JeJcHZv7_b_1mN34FbrYXu7zZS4Cxu2vAc3PjkG49V9GDU8Fu0a6HzlWVdEA22v17Bp1x768d6cMuRZjQi2nl6eVjWVX5gZb1ZSHov1HIMQmv0H8PVKfuYh9MqqtNvgRc4ZTbUwEoNqa9OAyhOmmRYis5LLPgy6QVWmrbhOxB9zhZEXwUAhDFQQK4KBIhj04fXFE2dNtZFLZN8RTi7kqE64u1EtpqpVO0pqVKtGJtIUIY8xtjZRHpsoKbjJi4wnfXhOKFNUCaSkVKOpPq9rNfzyWe1Sli4G_4L34VUrVFT4_Ua3JzewF6h42Jrkzpokqiqz3twhVbWqslZ_YPro8uZncHP_-OhQHQ5HB49hi_qAFtlDfwd6y8W5fQLXzY_lrF48bWelB9-uGta_AU4rcnY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaBeeCMWCkQIhDhYm4djxweEWtqFVdFqVUDam-s4zmqlbdJutqD9a_w6ZvIo7IHeeuCYeBIl9ud52OP5AF6bOEr92HcsCpVg3BnBFNp5FovIWJn5lBtWk03I8TiZTtVkC351Z2EorbLTibWizkpLa-SDUGBgge4NF4O8TYuYHAw_nJ0zYpCindaOTqOByJFb_8TwrXo_OsCxfhOGw8NvHz-zlmGAWZ74K2aiIDV0OjM2wgmZmTyRFjFvMUzJlHVWURqkcSpDNZCEjnNrpJ8FVmTcuCCI8L03YFtG-G092N4_HE-OOzsg0NDLvy_qU3mUaKREOG12TNF94oPZacaCmKFdl4jZMNywkDWRwL_MRW0Dh3f_5967B3daz9vba6bKfdhyxQO49almNl4_hHHDb9GujS7WnquLa6BN9hqW7cpD_95bUOY8qxDZzjOr07Kisgxz680Lym9xXs0shO7AI_h-LT_zGHpFWbgn4EW1k5oYYRUG284lAZUtTFIjROoUV30YdAOsbVuJnQhBFhojMoKERkjoINYECU2Q6MO7yyfOmiokV8juE2Yu5ah-eH2jXM50q460MqhurZLK5iGPMea2URbbSObcZnnKZR9eEeI0VQgpCC0zc1FVevT1WO9R9q6vuOB9eNsK5SV-vzXtiQ7sBSoqtiG5uyGJKsxuNneo1a0KrfQfyD69uvkl3EYs6y-j8dEz2KEuoLX30N-F3mp54Z7DTftjNa-WL9oJ6sHJdaP6N2cSexA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+efficient+methods+for+large-scale+atmospheric+inverse+modeling&rft.jtitle=Geoscientific+Model+Development&rft.au=Cho%2C+Taewon&rft.au=Chung%2C+Julianne&rft.au=Miller%2C+Scot+M&rft.au=Saibaba%2C+Arvind+K&rft.date=2022-07-20&rft.pub=Copernicus+GmbH&rft.issn=1991-962X&rft.eissn=1991-962X&rft.volume=15&rft.issue=14&rft.spage=5547&rft.epage=5565&rft_id=info:doi/10.5194%2Fgmd-15-5547-2022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon