Regionalization of hydrological model parameters using gradient boosting machine
The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regiona...
Uloženo v:
| Vydáno v: | Hydrology and earth system sciences Ročník 26; číslo 2; s. 505 - 524 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
31.01.2022
Copernicus Publications |
| Témata: | |
| ISSN: | 1607-7938, 1027-5606, 1607-7938 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman–Monteith–Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25∘; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions. |
|---|---|
| AbstractList | The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman–Monteith–Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25∘; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions. The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman–Monteith–Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25 ∘ ; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions. The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman-Monteith-Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25.sup." ; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions. The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman–Monteith–Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25∘; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions. |
| Audience | Academic |
| Author | Xia, Jun Hu, Chen Hong, Si Song, Zhihong Wang, Gangsheng She, Dunxian |
| Author_xml | – sequence: 1 givenname: Zhihong surname: Song fullname: Song, Zhihong – sequence: 2 givenname: Jun surname: Xia fullname: Xia, Jun – sequence: 3 givenname: Gangsheng surname: Wang fullname: Wang, Gangsheng – sequence: 4 givenname: Dunxian surname: She fullname: She, Dunxian – sequence: 5 givenname: Chen surname: Hu fullname: Hu, Chen – sequence: 6 givenname: Si surname: Hong fullname: Hong, Si |
| BookMark | eNp1UsFu1DAQjVCRaAt3jpE4cUixndixj1UFZaVKoAJna2KPs14l8WJ7Jdqvr3cXAYtAPng0eu_pzcy7qM6WsGBVvabkilPVvVtjSg0TDSe8YYSxZ9U5FaRvetXKsz_qF9VFShtCmJSCnVef73H0YYHJP0IuRR1cvX6wMUxh9Aameg4Wp3oLEWbMGFO9S34Z6zGC9bjkeggh5X1nBrP2C76snjuYEr76-V9W3z68_3rzsbn7dLu6ub5rTCdJbqTkPeXGmYHIgVvn2sGgQtK2yPpiX1DF6IAKLEdA7voOrRO2F2zoAalqL6vVUdcG2Oht9DPEBx3A60MjxFFDzN5MqOnAGOdqgM62nZSgDtMTalE6ZQgrWm-OWtsYvu8wZb0Ju1iWkjQTrJUdYy35jRqhiPrFhRzBzD4ZfS0UpYR1tC-oq3-gyrM4e1Nu5nzpnxDenhAKJuOPPMIuJb36cn-KJUesiSGliO7X4JTofQz0PgbFtC4x0PsYFIr4i2J8Ppy6-PLT_4lPIGO4XQ |
| CitedBy_id | crossref_primary_10_3390_a17110502 crossref_primary_10_1016_j_jhydrol_2024_130948 crossref_primary_10_1007_s12145_024_01390_8 crossref_primary_10_1007_s00382_023_06893_6 crossref_primary_10_3390_su15043804 crossref_primary_10_1016_j_jhydrol_2024_131598 crossref_primary_10_1016_j_hydres_2025_06_001 crossref_primary_10_3389_frwa_2024_1332888 crossref_primary_10_1080_10256016_2025_2508811 crossref_primary_10_1016_j_jhydrol_2024_131472 crossref_primary_10_1016_j_jhydrol_2024_131175 crossref_primary_10_3390_w15142572 crossref_primary_10_1007_s10661_025_13870_5 crossref_primary_10_2166_nh_2025_184 crossref_primary_10_1080_02626667_2025_2496281 crossref_primary_10_3390_w17182722 crossref_primary_10_3390_rs17173122 crossref_primary_10_3389_frwa_2025_1472695 crossref_primary_10_1016_j_jhydrol_2023_129519 crossref_primary_10_1016_j_jhydrol_2022_128848 crossref_primary_10_1016_j_jhydrol_2024_131627 crossref_primary_10_1007_s11104_024_07079_7 crossref_primary_10_1016_j_jhydrol_2023_130057 crossref_primary_10_1016_j_ejrh_2024_102114 crossref_primary_10_3390_rs16203756 crossref_primary_10_1016_j_ejrh_2025_102373 crossref_primary_10_1016_j_jhydrol_2024_131061 crossref_primary_10_1016_j_jhydrol_2024_132130 crossref_primary_10_1080_02626667_2023_2248112 crossref_primary_10_2166_wcc_2023_467 crossref_primary_10_3390_su17072990 crossref_primary_10_1051_e3sconf_202455201074 crossref_primary_10_1016_j_jhydrol_2025_133181 crossref_primary_10_1080_02626667_2023_2273402 crossref_primary_10_3390_w16121729 |
| Cites_doi | 10.1016/j.jhydrol.2019.124357 10.5194/hess-11-983-2007 10.1109/IGARSS.2016.7729148 10.1029/2020WR028205 10.1016/0022-1694(70)90255-6 10.1016/0022-1694(94)90057-4 10.1175/2009JHM1061.1 10.1016/j.envsoft.2015.08.002 10.1029/2020WR028831 10.1016/j.jhydrol.2019.124390 10.5194/hess-16-3315-2012 10.1016/j.scitotenv.2018.06.233 10.1002/2015WR018247 10.1016/j.jhydrol.2009.03.003 10.5194/hess-18-67-2014 10.1504/IJHST.2013.057626 10.1016/j.jhydrol.2017.12.025 10.1007/s12205-016-0038-z 10.1029/RG012i004p00627 10.1029/2006WR005588 10.1017/CBO9780511535734 10.5194/hess-9-157-2005 10.1029/2019JD031485 10.1016/j.agrformet.2009.08.004 10.1016/j.jhydrol.2014.02.029 10.1029/91WR02985 10.1029/2007WR006562 10.1080/02626667.2013.809088 10.1002/2017JD027025 10.1029/2017WR021895 10.1029/2007WR006768 10.1023/A:1008191517801 10.5194/hess-24-2343-2020 10.1016/j.envsoft.2012.10.009 10.1016/j.jhydrol.2015.10.038 10.1029/2018WR024178 10.1214/aos/1013203451 10.1016/j.jhydrol.2010.06.025 10.1080/02626667.2013.803183 10.1029/2008WR007474 10.1002/9781119196037 10.1029/2011WR011501 10.5194/hess-23-851-2019 10.1029/2007WR006563 10.1016/S0022-1694(98)00163-2 10.1016/j.jhydrol.2020.125772 10.1002/9781119951001 10.1016/j.geoderma.2019.114061 10.1029/2012WR012220 10.1016/j.rse.2004.01.007 10.1029/2001WR000822 10.1016/j.jhydrol.2012.07.048 10.1016/j.jhydrol.2005.07.030 10.3389/fgene.2020.00207 10.1061/(ASCE)HE.1943-5584.0000338 10.1029/WR024i010p01651 10.1007/s00382-019-04874-2 10.5194/gmd-11-2429-2018 10.1029/2018WR022913 10.1016/0022-1694(95)02681-E 10.1061/(ASCE)1084-0699(1999)4:2(135) 10.1002/2017WR020401 10.1080/02626667.2018.1469756 10.1038/s41597-020-0369-y 10.1029/2010WR009797 10.1029/WR008i005p01272 10.1016/j.watres.2020.116221 10.2166/nh.2017.071 10.2136/sssaj1995.03615995005900040004x 10.1029/2000JD900719 10.1080/01431161.2017.1346400 10.1016/j.jhydrol.2009.08.003 10.1029/2018WR023254 10.1016/j.jhydrol.2018.12.037 10.1016/S0022-1694(01)00392-4 10.1029/2007WR006240 10.1214/aos/1016120463 10.1061/(ASCE)HE.1943-5584.0000690 10.1029/2019WR026304 10.1016/j.jhydrol.2018.12.071 10.1360/03yd0183 10.1029/2018WR023044 10.1088/1748-9326/ab4e55 10.1029/2019WR026236 10.1016/j.rse.2019.02.022 10.1002/2014WR015712 10.1016/j.rse.2006.07.026 10.1029/2009WR008887 10.1016/j.jhydrol.2005.07.017 10.1016/j.jhydrol.2007.11.017 10.1175/JHM-D-16-0284.1 10.1002/0470848944.hsa140 10.3389/fnbot.2013.00021 10.1017/CBO9781139235761.013 10.5194/hess-17-1783-2013 10.2747/1548-1603.45.1.1 10.5194/hess-17-3841-2013 10.1034/j.1600-0870.1996.t01-3-00009.x 10.1016/j.agrformet.2013.04.018 10.1002/hyp.10804 10.1016/j.jhydrol.2016.09.001 10.1016/j.jhydrol.2014.01.023 10.17221/26/2012-JFS 10.1029/2018WR022643 10.5194/hess-15-3539-2011 10.1016/j.jhydrol.2004.01.002 10.1029/98WR00496 10.1029/2018WR023325 10.5194/gmd-10-1903-2017 10.1029/2019WR026085 10.1016/j.advwatres.2010.04.009 10.1016/j.jhydrol.2017.04.036 10.1007/s10462-018-9625-3 10.5194/hess-22-1299-2018 10.2136/sssaj2003.8440 10.1007/s11269-014-0641-z 10.1007/s40333-016-0126-4 10.1016/j.jhydrol.2012.01.011 10.1002/(SICI)1099-1085(199606)10:6<877::AID-HYP377>3.0.CO;2-T 10.1016/j.scitotenv.2017.02.065 10.1016/j.jhydrol.2019.123981 10.1002/wat2.1487 10.1175/JHM-D-13-0170.1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY DOA |
| DOI | 10.5194/hess-26-505-2022 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1607-7938 |
| EndPage | 524 |
| ExternalDocumentID | oai_doaj_org_article_1b22559ba4d3488a90028801de8f9c02 A691102417 10_5194_hess_26_505_2022 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQUKI |
| ID | FETCH-LOGICAL-c480t-885715cfcb08b5dff3bce9e033e2702261921be9ad5eae5f74edf6d762b7ae193 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751424000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1607-7938 1027-5606 |
| IngestDate | Fri Oct 03 12:49:19 EDT 2025 Fri Aug 22 20:07:08 EDT 2025 Sat Nov 29 13:04:07 EST 2025 Sat Nov 29 09:57:46 EST 2025 Wed Nov 26 09:59:34 EST 2025 Tue Nov 18 21:09:30 EST 2025 Sat Nov 29 05:01:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-885715cfcb08b5dff3bce9e033e2702261921be9ad5eae5f74edf6d762b7ae193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2623842230?pq-origsite=%requestingapplication% |
| PQID | 2623842230 |
| PQPubID | 105724 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1b22559ba4d3488a90028801de8f9c02 proquest_journals_2623842230 gale_infotracmisc_A691102417 gale_infotracacademiconefile_A691102417 gale_incontextgauss_ISR_A691102417 crossref_primary_10_5194_hess_26_505_2022 crossref_citationtrail_10_5194_hess_26_505_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-31 |
| PublicationDateYYYYMMDD | 2022-01-31 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Hydrology and earth system sciences |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref131 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref62 – ident: ref114 doi: 10.1016/j.jhydrol.2019.124357 – ident: ref17 doi: 10.5194/hess-11-983-2007 – ident: ref100 doi: 10.1109/IGARSS.2016.7729148 – ident: ref42 doi: 10.1029/2020WR028205 – ident: ref67 doi: 10.1016/0022-1694(70)90255-6 – ident: ref20 doi: 10.1016/0022-1694(94)90057-4 – ident: ref123 doi: 10.1175/2009JHM1061.1 – ident: ref57 doi: 10.1016/j.envsoft.2015.08.002 – ident: ref22 doi: 10.1029/2020WR028831 – ident: ref119 doi: 10.1016/j.jhydrol.2019.124390 – ident: ref87 doi: 10.5194/hess-16-3315-2012 – ident: ref3 doi: 10.1016/j.scitotenv.2018.06.233 – ident: ref6 doi: 10.1002/2015WR018247 – ident: ref55 doi: 10.1016/j.jhydrol.2009.03.003 – ident: ref72 doi: 10.5194/hess-18-67-2014 – ident: ref29 doi: 10.1504/IJHST.2013.057626 – ident: ref4 doi: 10.1016/j.jhydrol.2017.12.025 – ident: ref101 doi: 10.1007/s12205-016-0038-z – ident: ref26 doi: 10.1029/RG012i004p00627 – ident: ref46 doi: 10.1029/2006WR005588 – ident: ref103 doi: 10.1017/CBO9780511535734 – ident: ref76 doi: 10.5194/hess-9-157-2005 – ident: ref7 doi: 10.1029/2019JD031485 – ident: ref111 doi: 10.1016/j.agrformet.2009.08.004 – ident: ref53 doi: 10.1016/j.jhydrol.2014.02.029 – ident: ref127 – ident: ref19 doi: 10.1029/91WR02985 – ident: ref54 doi: 10.1029/2007WR006562 – ident: ref65 doi: 10.1080/02626667.2013.809088 – ident: ref124 doi: 10.1002/2017JD027025 – ident: ref70 doi: 10.1029/2017WR021895 – ident: ref99 doi: 10.1029/2007WR006768 – ident: ref108 doi: 10.1023/A:1008191517801 – ident: ref56 doi: 10.5194/hess-24-2343-2020 – ident: ref120 doi: 10.1016/j.envsoft.2012.10.009 – ident: ref116 doi: 10.1016/j.jhydrol.2015.10.038 – ident: ref115 doi: 10.1029/2018WR024178 – ident: ref28 doi: 10.1214/aos/1013203451 – ident: ref18 doi: 10.1016/j.jhydrol.2010.06.025 – ident: ref39 doi: 10.1080/02626667.2013.803183 – ident: ref95 doi: 10.1029/2008WR007474 – ident: ref38 doi: 10.1002/9781119196037 – ident: ref89 doi: 10.1029/2011WR011501 – ident: ref37 doi: 10.5194/hess-23-851-2019 – ident: ref122 doi: 10.1029/2007WR006563 – ident: ref86 doi: 10.1016/S0022-1694(98)00163-2 – ident: ref107 doi: 10.1016/j.jhydrol.2020.125772 – ident: ref8 doi: 10.1002/9781119951001 – ident: ref58 doi: 10.1016/j.geoderma.2019.114061 – ident: ref59 doi: 10.1029/2012WR012220 – ident: ref52 doi: 10.1016/j.rse.2004.01.007 – ident: ref66 doi: 10.1029/2001WR000822 – ident: ref5 doi: 10.1016/j.jhydrol.2012.07.048 – ident: ref36 doi: 10.1016/j.jhydrol.2005.07.030 – ident: ref21 – ident: ref10 doi: 10.3389/fgene.2020.00207 – ident: ref84 doi: 10.1061/(ASCE)HE.1943-5584.0000338 – ident: ref118 doi: 10.1029/WR024i010p01651 – ident: ref64 doi: 10.1007/s00382-019-04874-2 – ident: ref92 doi: 10.5194/gmd-11-2429-2018 – ident: ref48 doi: 10.1029/2018WR022913 – ident: ref97 doi: 10.1016/0022-1694(95)02681-E – ident: ref32 doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) – ident: ref63 doi: 10.1002/2017WR020401 – ident: ref128 doi: 10.1080/02626667.2018.1469756 – ident: ref34 doi: 10.1038/s41597-020-0369-y – ident: ref96 doi: 10.1029/2010WR009797 – ident: ref25 doi: 10.1029/WR008i005p01272 – ident: ref106 doi: 10.1016/j.watres.2020.116221 – ident: ref113 doi: 10.2166/nh.2017.071 – ident: ref40 doi: 10.2136/sssaj1995.03615995005900040004x – ident: ref94 doi: 10.1029/2000JD900719 – ident: ref112 doi: 10.1080/01431161.2017.1346400 – ident: ref33 doi: 10.1016/j.jhydrol.2009.08.003 – ident: ref80 doi: 10.1029/2018WR023254 – ident: ref81 doi: 10.1016/j.jhydrol.2018.12.037 – ident: ref98 doi: 10.1016/S0022-1694(01)00392-4 – ident: ref73 doi: 10.1029/2007WR006240 – ident: ref27 doi: 10.1214/aos/1016120463 – ident: ref82 doi: 10.1061/(ASCE)HE.1943-5584.0000690 – ident: ref104 doi: 10.1029/2019WR026304 – ident: ref75 doi: 10.1016/j.jhydrol.2018.12.071 – ident: ref105 doi: 10.1360/03yd0183 – ident: ref109 doi: 10.1029/2018WR023044 – ident: ref44 doi: 10.1088/1748-9326/ab4e55 – ident: ref126 doi: 10.1029/2019WR026236 – ident: ref102 doi: 10.1016/j.rse.2019.02.022 – ident: ref24 doi: 10.1002/2014WR015712 – ident: ref23 doi: 10.1016/j.rse.2006.07.026 – ident: ref74 doi: 10.1029/2009WR008887 – ident: ref117 doi: 10.1016/j.jhydrol.2005.07.017 – ident: ref45 doi: 10.1016/j.jhydrol.2007.11.017 – ident: ref69 doi: 10.1175/JHM-D-16-0284.1 – ident: ref9 doi: 10.1002/0470848944.hsa140 – ident: ref68 doi: 10.3389/fnbot.2013.00021 – ident: ref77 doi: 10.1017/CBO9781139235761.013 – ident: ref78 doi: 10.5194/hess-17-1783-2013 – ident: ref83 doi: 10.2747/1548-1603.45.1.1 – ident: ref30 doi: 10.5194/hess-17-3841-2013 – ident: ref60 doi: 10.1034/j.1600-0870.1996.t01-3-00009.x – ident: ref129 doi: 10.1016/j.agrformet.2013.04.018 – ident: ref130 doi: 10.1002/hyp.10804 – ident: ref41 doi: 10.1016/j.jhydrol.2016.09.001 – ident: ref51 – ident: ref91 doi: 10.1016/j.jhydrol.2014.01.023 – ident: ref2 doi: 10.17221/26/2012-JFS – ident: ref88 doi: 10.1029/2018WR022643 – ident: ref35 doi: 10.5194/hess-15-3539-2011 – ident: ref93 – ident: ref110 – ident: ref43 doi: 10.1016/j.jhydrol.2004.01.002 – ident: ref50 doi: 10.1029/98WR00496 – ident: ref90 – ident: ref125 doi: 10.1029/2018WR023325 – ident: ref61 doi: 10.5194/gmd-10-1903-2017 – ident: ref15 doi: 10.1029/2019WR026085 – ident: ref12 doi: 10.1016/j.advwatres.2010.04.009 – ident: ref131 doi: 10.1016/j.jhydrol.2017.04.036 – ident: ref85 doi: 10.1007/s10462-018-9625-3 – ident: ref16 doi: 10.5194/hess-22-1299-2018 – ident: ref13 doi: 10.2136/sssaj2003.8440 – ident: ref11 doi: 10.1007/s11269-014-0641-z – ident: ref71 doi: 10.1007/s40333-016-0126-4 – ident: ref47 doi: 10.1016/j.jhydrol.2012.01.011 – ident: ref79 doi: 10.1002/(SICI)1099-1085(199606)10:6<877::AID-HYP377>3.0.CO;2-T – ident: ref49 doi: 10.1016/j.scitotenv.2017.02.065 – ident: ref1 doi: 10.1016/j.jhydrol.2019.123981 – ident: ref31 doi: 10.1002/wat2.1487 – ident: ref14 – ident: ref121 doi: 10.1175/JHM-D-13-0170.1 |
| SSID | ssj0028862 |
| Score | 2.5388603 |
| Snippet | The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR)... The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR)... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 505 |
| SubjectTerms | Analysis Arid regions Arid zones Calibration Climatic zones Datasets Elevation Evapotranspiration Evapotranspiration processes Heterogeneity Hydrologic models Hydrology Learning algorithms Machine learning Mathematical models Modelling Moisture content Neural networks Parameters Performance evaluation Properties Regression analysis Runoff Saturated soils Soil Soil moisture Soil moisture content Stream discharge Stream flow Variables Water content Watersheds |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS1sxFA5DhPmibjqsP0YYg-HDpb0_k_uoomwwpHQTfAtJbtIOtJW2Cv73fic3LfZB96Cv7Umb5EvO-XLvyXcY-57ZvLbaV0mtG5nAS1psqdICkBT2zlbehKolv8Xlpby-rvvPSn1RTlgrD9xOXDc1GbFeo4smx2LTNZ0S4FYbJ31tg4wkliHVLhhQDbd41JKyat9zZiJBTI8vKMFWiu4IHiTJqgShHz3KspWAFHT7X_LOIeRcbL2hs9tsM_JMftI2-cQ-uPFn9jGWPB897rD-wA3DY8B4EZNPPB89NtOFM-ShRg4nafBbSpmZcUqRH3K0pySxOQc9n1HONL8N-Zhul11dnP89-5nE8gqJLWRvnkhZCsDirelJUzbe58a62vXy3NEltXC0So0DiKXTrvSicI2vGnhPI7QD8fvC1saTsdtjPC0yU-W2boTwhUHI0-Q28cMC9MRa0WHdxRwrG7XHqQTGjcIZhFBRhIrKKgVUFKHSYcfLFnet7sYrtqeExNKOFLPDB4BGRWjU_6DpsG8EuiJNjDEl3Qz1Pf7m15-BOqkQEcBlUozjRzTyE_Tf6niHAbNAMlorlocrlti0dvXrxdpS0WnQkMCfCvC13v57jOiAbdDs0POiPD1ka_PpvTti6_Zh_m82_Rr2yxOHSxUh priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUhFJJLaZuUOHGLCIGSw2Lvp7RHt9Q0EIxxWshNSFrJLjR28EfB_75vtHKoD00vuXpn19LTaObN7miGsavM5rXVvkpq3cgEVtJiS5UWC5JC3tnKm9C15FaMRvL-vh7_1eqLcsLa8sAtcL3UZMR6jS6aHMqma4oSYFYbJ31t2zKSYD27YCqGWlJW7XfOTCTw6fEDJdhK0ZvBgiRZlcD1Y0RZtueQQt3-f1nn4HKGb9jryBX5oB3jW3bg5u_YUWxbPtuesPHETcOrvHiYki88n22b5c6g8dDnhlN57wdKe1lxSnOfctxPiV5rDoq9orxn_hByKt0p-zH8-v3LtyS2SEhsIfvrRMpSAFpvTV-asvE-N9bVrp_njg6ahfAoNQ4LUTrtSi8K1_iqgQU0QjuQt_fscL6YuzPG0yIzVW7rRghfGLgtTaYPDxagGNaKDuvtcFI21g-nNha_FOIIQlYRsiqrFJBVhGyHXT_d8djWznhG9jNB_yRHVa_DD9AFFXVB_U8XOuySFk5RXYs5Jc5M9QZ_c3M3UYMKVh18JMU8PkUhv8D4rY7nEIAClcLak-zuSWLj2f3LO_1QcePTlMCBCnCu_vlLzOiCHRM69M4nT7vscL3cuA_slf29_rlafgw6_weIPQN3 priority: 102 providerName: Directory of Open Access Journals |
| Title | Regionalization of hydrological model parameters using gradient boosting machine |
| URI | https://www.proquest.com/docview/2623842230 https://doaj.org/article/1b22559ba4d3488a90028801de8f9c02 |
| Volume | 26 |
| WOSCitedRecordID | wos000751424000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: RKB dateStart: 19970101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BFMQW dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PCBAR dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: M7S dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PATMY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BENPR dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PIMPY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBaNU2guTZ80bWpEKZQeFu9qH9Keih0SGtqYxUkhPQk97ULjTWwnkH-fGVlr8KG59LSwmtVKGumb0Wg0Q8hnZvLaKF8ltbIiAZQ0sKRKAwzJgN6ZyuuQteQnH4_F5WXdRIPbMrpVdpgYgNq2Bm3kAwZyWhQgzNJv1zcJZo3C09WYQmOH7GKksqJHdkfH42ay2XIJUa3POxlPQLbHg0rQWorBDJAkYVUCKgC0jLEtwRTi9_8LpYPoOdn_30a_IM-j0kmH61nykjxx81fkWcx_Prt_TZqJmwabYLyVSVtPZ_d20SEjDQlzKMYJv0L_mSVFf_kphe_RY2xFQVdfogM1vQrOme4N-XVyfHH0PYm5FhJTiHSVCFFy4JE3OhW6tN7n2rjapXnu8MZa2Gdl2gFHS6dc6XnhrK8sQKnmyoEW-Jb05u3cvSM0K5iuclNbzn2hQf4pxFComIOuYgw_IINuoKWJgcgxH8ZfCRsSZI1E1khWSWCNRNYckK-bL67XQTgeoR0h7zZ0GD47vGgXUxlXo8w0w62UVoXNAcFUHaZKmlknfG1SqOQTcl5igIw5euBM1S385vR8IocViAdQbDLox5dI5Ftov1HxQgOMAsbU2qI83KKEFWy2i7vZIyOCYJe6qfP-8eIPZA_7jWahPDskvdXi1n0kT83d6s9y0Y8Loh9sDX30bD2Hd83w4uw3Pk_PGnjuTH6MHgA3SRoe |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKi1QuvBEtBSzEQxys7Hp3be-BQwtEjZpGpRTRm7v22glSmy1JCsqf4jcy43gj5UBvPXDdnX3Y_vzNjD2eIeQ1t1lpKy9YWdWKAUtamFKFhQFJQd5Z4U2oWtKXg4E6PS2P1sif9iwMhlW2nBiIum4srpF3OOhplYMyS2IE5YGb_wb_bPqh9wkG8w3n3c8nH_dZLCHAbK6SGVOqkPBpb02iTFF7nxnrSpdkmcODWMF9SI2DHy1c5Qovc1d7UQNDGFm5FDMt8beXPxlWqcLd3Fiy4xbZUKLMYF5t7HUPv3xfunhKicX-KpcMbIm4MQpWUt4ZAXMxLhiYHNATnK8owlAv4F9aIai67r3_rZPuk7vRqKa7i1nwgKy58UOyGeu7j-aPyNGxG4Y1z3jqlDaejub1pGV-GgoCUcyDfoHxQVOK5wGGFJ7HiLgZBV9kigHi9CIEn7rH5NuNtPEJWR83Y_eU0DTnRmS2rKX0uQH9XqGOgBdLsMWslVuk0w6stjHROtb7ONfgcCEUNEJBc6EBChqhsEXeL5-4XCQZuUZ2D7GylMP04OFCMxnqyDY6NRxdRVPldQYMXZUBmklaO-VLm8BLXiHSNCYAGWOE0bC6gs_0vh7rXQHqDwy3FNrxLgr5Bv7fVvHABvQC5gxbkdxZkQSGsqu3W7TqyJDYpBaq29fffkk2908O-7rfGxw8I3ewD3AJLEt3yPpscuWek9v21-zHdPIiTkZKzm4a7X8B3Wpy5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFAEX3ohCAQuBEIdVdr0Pew8IpS0RUasoCiD1ZvxMkNpsm6Sg_DV-HTOON1IO9NYD193Zh-3P38zY4xlC3jKT10b5KqmVFQmwpIEpVRoYkAzknam8DlVLTvhwKE5P69EO-dOehcGwypYTA1HbxuAaeZeBnhYFKLO062NYxOio_-niMsEKUrjT2pbTWEPk2K1-g_u2-Dg4grF-x1j_87fDL0msMJCYQqTLRIiSw595o1OhS-t9ro2rXZrnDs9pBe8i0w7aUTrlSs8LZ31lgUA0Vy7DRExA_7uiAuEO2R0dHvTGG3dPiGq918p4AnZF3CQFi6noToHFElYlYH5ArzC2pRRD7YB_aYig9vr3_-cOe0DuRWOb9taz4yHZcbNH5E6s-z5dPSajsZuEtdB4GpU2nk5Xdt5qBBoKBVHMj36OcUMLiucEJhSex0i5JQUfZYGB4_Q8BKW6J-T7jTToKenMmpl7RmhWMF3lprac-0KD3leoO-DFHGw0Y_ge6baDLE1MwI51QM4kOGIIC4mwkKySAAuJsNgjHzZPXKyTj1wje4C42chh2vBwoZlPZGQhmWmGLqRWhc2BuVUdYJpm1glfmxRe8gZRJzExyAwRM1FX8JnB17HsVaAWwaDLoB3vo5Bv4P-Nigc5oBcwl9iW5P6WJDCX2b7dIldG5sQmtbB9fv3t1-Q24FmeDIbHL8hd7AJcGcuzfdJZzq_cS3LL_Fr-XMxfxXlJyY-bRvZfUVt7dA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regionalization+of+hydrological+model+parameters+using+gradient+boosting+machine&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Song%2C+Zhihong&rft.au=Xia%2C+Jun&rft.au=Wang%2C+Gangsheng&rft.au=She%2C+Dunxian&rft.date=2022-01-31&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.volume=26&rft.issue=2&rft.spage=505&rft_id=info:doi/10.5194%2Fhess-26-505-2022&rft.externalDBID=ISR&rft.externalDocID=A691102417 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |