The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and...
Uloženo v:
| Vydáno v: | International journal of molecular sciences Ročník 26; číslo 2; s. 669 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
14.01.2025
MDPI |
| Témata: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM’s metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients. |
|---|---|
| AbstractList | Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM’s metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients. Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients. Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including ( ) mutations, ( ) amplification, and ( ) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients. |
| Audience | Academic |
| Author | Ho, Ivy A. W. Vijayanathan, Yuganthini |
| AuthorAffiliation | 1 Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore; yuganthini_p_vijayanathan@nni.com.sg 2 Duke-NUS Medical School, Singapore 169857, Singapore 3 Department of Physiology, National University of Singapore, Singapore 117593, Singapore |
| AuthorAffiliation_xml | – name: 3 Department of Physiology, National University of Singapore, Singapore 117593, Singapore – name: 2 Duke-NUS Medical School, Singapore 169857, Singapore – name: 1 Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore; yuganthini_p_vijayanathan@nni.com.sg |
| Author_xml | – sequence: 1 givenname: Yuganthini surname: Vijayanathan fullname: Vijayanathan, Yuganthini – sequence: 2 givenname: Ivy A. W. orcidid: 0000-0002-2948-3726 surname: Ho fullname: Ho, Ivy A. W. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39859381$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhi1URD_gxhlF4sKBbf2xdmwuVVVBW2lRJShna-JMtl4l9hI7IP49Xra026rywSPPM6_9euaQ7IUYkJC3jB4LYeiJXw2JK8qpUuYFOWBzzmeUqnpvJ94nhymtKOWCS_OK7AujpRGaHRC4ucXqaliDy1Xsqq-YoYm9d9U3_O1HH5aVD9VF72PTQ8pxgE_VtmKYAlYLCG1ysMaqBJvEWOIpl_LveYSMS4_pNXnZQZ_wzd1-RH58-XxzfjlbXF9cnZ8tZm6uaZ4pbIRC2dWtK14AjNOyVgx0a1Br0MhY22HHQEjpGsW7uWQSHVMI1CndiiNyutVdT82ArcNQntDb9egHGP_YCN4-zgR_a5fxl2WsVtLMeVH4cKcwxp8TpmwHnxz2PQSMU7KCSVMbbSQt6Psn6CpOYyj-_lGSMqXFA7WEHq0PXSwXu42oPdOlFUxTLgt1_AxVVouDd6XZnS_njwre7Tq9t_i_qwX4uAXcGFMasbtHGLWbobG7Q1Nw_gR3PkP2cfNPvn--6C8JZcSM |
| CitedBy_id | crossref_primary_10_1007_s12032_025_02729_x crossref_primary_10_1007_s12032_025_02830_1 crossref_primary_10_1016_j_mtchem_2025_102876 crossref_primary_10_1080_01913123_2025_2558625 |
| Cites_doi | 10.1021/acs.chemrestox.1c00254 10.1093/neuonc/noae144.008 10.3389/fimmu.2020.585034 10.1002/smll.202406870 10.1215/15228517-2006-008 10.4161/onci.26383 10.1007/s11060-020-03451-6 10.2174/1389450115666141224125117 10.1126/science.aaf2666 10.1016/j.cmet.2018.09.020 10.1158/1538-7445.AM2022-1125 10.1371/journal.pcbi.1002018 10.3389/fonc.2022.893820 10.1038/ni.1674 10.1038/s41590-019-0442-x 10.1002/ijc.24918 10.1523/JNEUROSCI.23-13-05928.2003 10.3389/fimmu.2022.869061 10.1016/j.phrs.2018.03.015 10.1158/0008-5472.CAN-19-2994 10.1093/brain/awac222 10.1038/cr.2015.68 10.3389/fimmu.2023.1261257 10.1093/neuonc/now024 10.1038/ncb2629 10.1093/neuonc/noab196.834 10.7150/thno.27246 10.1021/acs.nanolett.8b04296 10.1021/jacs.2c12772 10.1016/j.molcel.2016.02.011 10.3390/cancers13246156 10.1124/mol.106.027029 10.1093/neuonc/3.2.82 10.3389/fonc.2022.1116014 10.1016/j.cell.2015.08.016 10.1007/s11011-013-9444-9 10.5772/intechopen.68939 10.3390/cells8121584 10.1038/bjc.1996.446 10.1097/00041433-200104000-00003 10.1182/blood-2006-06-031856 10.1093/neuonc/nos116 10.1038/s41419-021-03598-8 10.1038/nature15376 10.1136/jitc-2019-000207 10.1136/jitc-2022-006522 10.3389/fimmu.2023.1123853 10.1186/s13046-018-0923-z 10.3389/fimmu.2022.993444 10.1021/acsnano.2c09033 10.1016/j.cmet.2011.08.016 10.1093/neuonc/nov280 10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5 10.1016/j.cmet.2006.02.002 10.1126/sciadv.aaw4543 10.3390/biology11020313 10.1016/0730-725X(95)02034-Q 10.1016/j.cellimm.2021.104286 10.3389/fimmu.2020.00835 10.3389/fonc.2022.1005069 10.1016/j.cmet.2012.05.001 10.1038/s41586-019-1678-1 10.3390/ijms20133374 10.1093/neuonc/noac209.1112 10.1016/j.cell.2014.11.025 10.1093/neuonc/noac209.1100 10.1038/s41598-021-86789-9 10.1200/JCO.2003.05.063 10.1084/jem.193.2.233 10.1016/j.isci.2020.101420 10.1038/s41598-021-93775-8 10.3390/cancers14164003 10.3390/ijms22073301 10.1038/srep15556 10.1182/blood-2005-05-1795 10.1039/D3BM00897E 10.1038/sigtrans.2017.40 10.3390/cancers15041010 10.1002/advs.202204808 10.3389/fimmu.2021.624324 10.1016/j.celrep.2017.05.014 10.1126/scitranslmed.aau4972 10.1038/ncb3090 10.1016/j.cmet.2016.08.011 10.3389/fonc.2022.901951 10.1016/j.canlet.2015.07.007 10.1158/0008-5472.CAN-08-2826 10.7150/thno.60679 10.1093/neuonc/now034 10.1242/jcs.115.17.3355 10.1016/j.molcel.2020.05.034 10.1016/j.nec.2009.08.012 10.1093/neuonc/noz175.300 10.1182/blood-2007-11-123141 10.3389/fimmu.2024.1426657 10.1089/dna.2023.0071 10.1093/neuonc/noae126 10.1158/1078-0432.CCR-16-3102 10.1038/nrc.2016.89 10.1002/advs.202205949 10.1186/1742-2094-8-77 10.1084/jem.20131916 10.1093/neuonc/noaa215.122 10.1186/s40478-021-01124-7 10.1039/D2BM00650B 10.1007/s00262-007-0336-x 10.1016/j.cmet.2019.04.003 10.1186/s13046-019-1228-6 10.1038/nri3862 10.1186/s13046-021-02082-7 10.1084/jem.20100643 10.1158/0008-5472.CAN-17-3714 10.3389/fncel.2018.00235 10.21203/rs.3.rs-826338/v1 10.1007/s00262-019-02347-3 10.1158/1535-7163.MCT-18-1330 10.1007/s00401-013-1079-8 10.4062/biomolther.2017.211 10.1084/jem.20061120 10.1002/adma.202209785 10.15252/embj.2019103790 10.1002/cac2.12502 10.1126/science.1160809 10.1038/s41467-020-20379-7 10.1016/j.phrs.2019.104511 10.1093/neuonc/noab196.802 10.1080/13543776.2022.2067478 10.1080/2162402X.2019.1655360 10.1073/pnas.82.17.6010 10.1158/2326-6066.CIR-21-1052 10.1126/science.123.3191.309 10.1016/j.canlet.2020.09.028 10.1016/j.canlet.2012.12.010 10.1016/j.drudis.2016.09.017 10.1038/s41586-019-1674-5 10.1158/0008-5472.CAN-22-0677 10.3390/ijms222111511 10.1038/s41598-019-45535-y 10.1016/j.cell.2014.11.020 10.1038/s41590-020-0769-3 10.1016/S0165-5728(00)00361-1 10.1038/nature13490 10.4049/jimmunol.1202702 10.1016/j.bbrc.2018.04.001 10.1182/blood.2019004500 10.3390/cells10092371 10.1158/0008-5472.CAN-04-4505 10.1186/s40478-019-0803-6 10.1093/neuonc/now113 10.1073/pnas.0709747104 10.1158/1078-0432.CCR-17-1846 10.1016/j.cmet.2020.06.002 10.1158/0008-5472.CAN-05-0045 10.1016/j.trecan.2020.02.022 10.7326/0003-4819-138-8-200304150-00014 10.1016/j.ccr.2010.10.023 10.1158/0008-5472.CAN-03-2904 10.1093/neuonc/nov221.08 10.1016/j.cell.2024.07.030 10.3389/fphar.2021.775602 10.1007/s11010-021-04128-y 10.1101/2022.01.25.477703 10.1158/2159-8290.CD-12-0014 10.3171/2021.11.FOCUS21589 10.1016/j.canlet.2015.10.027 10.1093/neuonc/noad179.0554 10.3390/molecules27238552 10.1093/carcin/bgu089 10.1021/acsami.3c03001 10.1126/scitranslmed.abq6288 10.1128/MCB.00328-17 10.1080/15384047.2015.1028702 10.1038/s42003-019-0455-x 10.1089/ars.2013.5371 10.1111/j.1745-7254.2008.00889.x 10.1016/j.cyto.2007.05.012 10.1021/acsnano.2c05408 10.1615/CritRevImmunol.v32.i1.30 10.1007/s11060-010-0261-2 10.1016/j.jneuroim.2010.05.020 10.1038/s41416-019-0710-4 10.1093/neuonc/noac174.173 10.1016/j.ccell.2016.09.008 10.1158/0008-5472.CAN-16-2310 10.3390/molecules24112159 10.3389/fonc.2022.925666 10.1172/JCI178628 10.1093/neuonc/noae144.049 10.1038/s43018-023-00556-5 10.1158/0008-5472.CAN-19-1577 10.1080/15384101.2018.1444305 10.1093/neuonc/noae106 10.1016/j.bbrc.2017.07.138 10.1158/2159-8290.CD-22-0455 10.1007/s00109-019-01835-4 10.1021/acsami.2c05533 10.1126/scitranslmed.aaz6314 10.15252/emmm.202115343 10.1186/s40478-021-01205-7 10.3389/fonc.2023.1175563 10.3390/ijms22094460 10.1039/D4RA04454A 10.1126/scisignal.2000446 10.1016/j.celrep.2022.110934 10.1038/ncb1881 10.1080/10408360500523878 10.1158/1078-0432.CCR-18-0041 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.3390/ijms26020669 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC11765942 A832518025 39859381 10_3390_ijms26020669 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Singapore Ministry of Health's National Medical Research Council grantid: MOH-000560 – fundername: SingHealth Duke-NUS Academic Medicine Research Grant grantid: AM/SU086/2023 – fundername: Singapore Ministry of Health’s National Medical Research Council grantid: MOH-000560 |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK ESTFP K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c480t-6eb36e5f7dc020aa9c85761a8d9e88a8e11dfef1a355cb62f4515ec16ea0c68d3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 1661-6596 |
| IngestDate | Tue Nov 04 02:03:45 EST 2025 Fri Sep 05 12:10:06 EDT 2025 Tue Oct 07 07:28:33 EDT 2025 Sat Nov 29 13:51:07 EST 2025 Sat Nov 29 10:33:35 EST 2025 Tue May 06 01:31:52 EDT 2025 Tue Nov 18 21:57:36 EST 2025 Sat Nov 29 07:15:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | glioma metabolism GBM tumor microenvironment immune infiltration |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-6eb36e5f7dc020aa9c85761a8d9e88a8e11dfef1a355cb62f4515ec16ea0c68d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-2948-3726 |
| OpenAccessLink | https://www.proquest.com/docview/3159501683?pq-origsite=%requestingapplication% |
| PMID | 39859381 |
| PQID | 3159501683 |
| PQPubID | 2032341 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11765942 proquest_miscellaneous_3159798950 proquest_journals_3159501683 gale_infotracmisc_A832518025 gale_infotracacademiconefile_A832518025 pubmed_primary_39859381 crossref_primary_10_3390_ijms26020669 crossref_citationtrail_10_3390_ijms26020669 |
| PublicationCentury | 2000 |
| PublicationDate | 20250114 |
| PublicationDateYYYYMMDD | 2025-01-14 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250114 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kelly (ref_96) 2015; 25 Calvert (ref_78) 2017; 19 Cui (ref_80) 2023; 43 ref_136 Menna (ref_7) 2022; 52 ref_98 Luoto (ref_3) 2018; 78 Zhang (ref_88) 2015; 527 ref_95 Liu (ref_162) 2023; 42 Zhou (ref_118) 2015; 17 Ke (ref_41) 2006; 70 Zheng (ref_200) 2020; 8 Moustakas (ref_133) 2002; 115 Lin (ref_93) 2022; 82 Sinha (ref_68) 2005; 65 ref_126 ref_125 Zong (ref_19) 2016; 61 Mahmoud (ref_204) 2019; 150 ref_122 Liu (ref_159) 2021; 13 Rossi (ref_207) 2022; 10 Zadeh (ref_32) 2015; 17 ref_72 Strepkos (ref_169) 2020; 98 ref_71 ref_158 Aspord (ref_167) 2007; 204 Cantley (ref_24) 2009; 324 Smithberger (ref_92) 2019; 21 Norian (ref_172) 2009; 69 ref_79 Wang (ref_165) 2023; 10 Watson (ref_177) 2021; 23 ref_77 ref_76 Eskilsson (ref_82) 2016; 18 Lynch (ref_182) 2019; 7 Anido (ref_187) 2010; 18 Eriksson (ref_90) 2017; 37 Ye (ref_163) 2023; 13 Li (ref_190) 2023; 15 Yu (ref_185) 2015; 367 Yu (ref_168) 2009; 10 Villa (ref_50) 2016; 30 Cooper (ref_59) 2014; 29 Gottfried (ref_154) 2006; 107 Giese (ref_26) 2003; 21 ref_141 ref_86 Shakya (ref_84) 2021; 23 Li (ref_117) 2012; 14 DeBerardinis (ref_57) 2007; 104 Zhang (ref_195) 2019; 19 Lontos (ref_205) 2023; 11 Noman (ref_146) 2014; 211 Rodriguez (ref_64) 2007; 109 Wischhusen (ref_135) 2002; 62 Pieri (ref_179) 2023; 83 Sakuishi (ref_137) 2010; 207 Miska (ref_107) 2022; 39 Wherry (ref_139) 2015; 15 Zhang (ref_121) 2015; 16 Chen (ref_99) 2017; 77 Peng (ref_74) 2022; 35 Woroniecka (ref_138) 2018; 24 Shakya (ref_85) 2021; 9 Moreino (ref_176) 2024; 26 Bashir (ref_30) 2024; 14 Beckner (ref_20) 2010; 126 Wang (ref_40) 2021; 12 Mu (ref_151) 2018; 17 Gomes (ref_89) 2018; 131 Estrela (ref_60) 2006; 43 Almeida (ref_12) 2009; 11 ref_203 ref_202 Oudard (ref_23) 1996; 74 ref_208 ref_201 Dietschy (ref_49) 2001; 12 Eyme (ref_53) 2023; 15 Wang (ref_69) 2023; 11 Li (ref_189) 2019; 29 Hou (ref_206) 2024; 26 Jacobs (ref_145) 2010; 225 Ling (ref_193) 2022; 14 Jin (ref_197) 2019; 9 Chang (ref_140) 2015; 162 Silver (ref_157) 2022; 24 Yang (ref_58) 2012; 15 ref_119 Mashimo (ref_47) 2014; 159 Fultang (ref_63) 2020; 136 Wang (ref_108) 2021; 496 ref_111 ref_110 Smithberger (ref_91) 2020; 22 Long (ref_106) 2020; 80 Wang (ref_45) 2022; 12 Dubinski (ref_109) 2016; 18 Shukla (ref_46) 2018; 499 ref_104 ref_103 Azuma (ref_134) 2008; 111 Perelroizen (ref_173) 2022; 145 Ma (ref_210) 2023; 17 Zhang (ref_153) 2019; 574 Yang (ref_17) 2012; 14 Zea (ref_65) 2005; 65 Uneda (ref_97) 2021; 9 Humphries (ref_143) 2010; 21 Schulte (ref_27) 2016; 18 Kastler (ref_56) 2022; 24 Elstrom (ref_15) 2004; 64 Smith (ref_67) 2012; 2 Cong (ref_155) 2014; 35 Zisakis (ref_131) 2007; 39 Liu (ref_211) 2024; 21 Guyon (ref_34) 2022; 14 Wang (ref_94) 2019; 11 Wang (ref_130) 2008; 29 Brat (ref_16) 2003; 138 ref_10 Yoshino (ref_129) 2006; 29 Fang (ref_164) 2021; 12 Ebert (ref_52) 2003; 23 Dumas (ref_101) 2020; 39 Johnston (ref_148) 2019; 574 Kadekaro (ref_13) 1985; 82 Belanger (ref_11) 2011; 14 ref_25 Watson (ref_178) 2022; 24 Taniguchi (ref_116) 2000; 111 Pearson (ref_128) 2017; 2 ref_29 ref_28 Koukourakis (ref_36) 2017; 491 Ku (ref_114) 2013; 125 Talbot (ref_161) 2024; 26 Hussain (ref_144) 2006; 8 Liu (ref_100) 2024; 134 Parzych (ref_51) 2014; 20 Wijesekera (ref_1) 2020; 147 Rothman (ref_14) 1995; 13 Peng (ref_39) 2021; 40 Bader (ref_4) 2020; 78 Offer (ref_160) 2019; 38 Panitz (ref_61) 2021; 11 Kim (ref_42) 2006; 3 Manzo (ref_183) 2021; 9 Tsai (ref_186) 2023; 25 Zhao (ref_196) 2023; 10 Kaffes (ref_181) 2019; 8 Guo (ref_22) 2009; 2 Brand (ref_149) 2016; 24 Zeng (ref_174) 2020; 23 Kunkel (ref_112) 2001; 3 Guan (ref_156) 2018; 37 Xu (ref_102) 2023; 35 Colegio (ref_152) 2014; 513 Burghardt (ref_124) 2021; 476 Gatenbee (ref_191) 2020; 122 Murnan (ref_75) 2019; 5 Watson (ref_175) 2023; 4 Iyer (ref_132) 2012; 32 Puchalski (ref_6) 2018; 360 Charbonnier (ref_209) 2019; 20 ref_54 Kloosterman (ref_166) 2024; 187 Kumar (ref_2) 2019; 30 Husain (ref_150) 2013; 2 Yang (ref_212) 2023; 145 Raychaudhuri (ref_123) 2011; 101 Khwairakpam (ref_38) 2015; 16 Duan (ref_5) 2020; 6 Granchi (ref_37) 2022; 32 Min (ref_81) 2018; 26 ref_62 McKinney (ref_83) 2019; 18 Hinojosa (ref_113) 2011; 8 Adeshakin (ref_171) 2021; 362 Qiu (ref_127) 2017; 22 Su (ref_199) 2020; 80 Jordan (ref_105) 2008; 57 Husain (ref_147) 2013; 191 ref_35 ref_194 Zhang (ref_198) 2022; 16 ref_33 ref_31 Rohrig (ref_21) 2016; 16 Tian (ref_192) 2022; 10 Dhodapkar (ref_170) 2001; 193 Oizel (ref_70) 2017; 23 Comerford (ref_48) 2014; 159 Gielen (ref_66) 2016; 18 Renoult (ref_44) 2024; 26 ref_184 ref_43 ref_188 Warburg (ref_18) 1956; 123 Kesarwani (ref_73) 2018; 24 Kahlert (ref_120) 2013; 331 Cheng (ref_55) 2020; 32 Kjellman (ref_115) 2000; 89 ref_9 ref_8 Kumagai (ref_142) 2020; 21 Chiarugi (ref_87) 2016; 380 Kesarwani (ref_180) 2019; 68 |
| References_xml | – volume: 35 start-page: 115 year: 2022 ident: ref_74 article-title: Beyond Isocitrate Dehydrogenase Mutations: Emerging Mechanisms for the Accumulation of the Oncometabolite 2-Hydroxyglutarate publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.1c00254 – volume: 26 start-page: v3 year: 2024 ident: ref_161 article-title: KS01.6.A the Lipid Droplet Phenotype as a Targetable Metabolic Dependency of Tumor Cells and Pro-Tumoral Macrophages in the Peri-Necrotic GBM Niche publication-title: Neuro-Oncology doi: 10.1093/neuonc/noae144.008 – ident: ref_136 doi: 10.3389/fimmu.2020.585034 – volume: 21 start-page: e2406870 year: 2024 ident: ref_211 article-title: Tumor-Selective Nano-Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll-like Receptors publication-title: Small doi: 10.1002/smll.202406870 – volume: 8 start-page: 261 year: 2006 ident: ref_144 article-title: The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses publication-title: Neuro-Oncology doi: 10.1215/15228517-2006-008 – volume: 2 start-page: e26383 year: 2013 ident: ref_150 article-title: Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology publication-title: Oncoimmunology doi: 10.4161/onci.26383 – volume: 147 start-page: 297 year: 2020 ident: ref_1 article-title: Trends in glioblastoma: Outcomes over time and type of intervention: A systematic evidence based analysis publication-title: J. Neuro-Oncol. doi: 10.1007/s11060-020-03451-6 – volume: 16 start-page: 156 year: 2015 ident: ref_38 article-title: ATP citrate lyase (ACLY): A promising target for cancer prevention and treatment publication-title: Curr. Drug Targets doi: 10.2174/1389450115666141224125117 – volume: 360 start-page: 660 year: 2018 ident: ref_6 article-title: An anatomic transcriptional atlas of human glioblastoma publication-title: Science doi: 10.1126/science.aaf2666 – volume: 29 start-page: 103 year: 2019 ident: ref_189 article-title: TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.09.020 – volume: 82 start-page: 1125 year: 2022 ident: ref_93 article-title: Abstract 1125: Elucidating the transcriptomic response to EGFR-targeted therapy in EGFR-driven glioblastoma publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2022-1125 – ident: ref_25 doi: 10.1371/journal.pcbi.1002018 – ident: ref_126 doi: 10.3389/fonc.2022.893820 – volume: 10 start-page: 48 year: 2009 ident: ref_168 article-title: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.1674 – volume: 20 start-page: 1208 year: 2019 ident: ref_209 article-title: Functional reprogramming of regulatory T cells in the absence of Foxp3 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0442-x – volume: 126 start-page: 2282 year: 2010 ident: ref_20 article-title: Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas publication-title: Int. J. Cancer doi: 10.1002/ijc.24918 – volume: 23 start-page: 5928 year: 2003 ident: ref_52 article-title: Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-13-05928.2003 – ident: ref_79 doi: 10.3389/fimmu.2022.869061 – volume: 131 start-page: 75 year: 2018 ident: ref_89 article-title: p53 and glucose metabolism: An orchestra to be directed in cancer therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.03.015 – volume: 80 start-page: 1438 year: 2020 ident: ref_199 article-title: Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-2994 – volume: 145 start-page: 3288 year: 2022 ident: ref_173 article-title: Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity publication-title: Brain doi: 10.1093/brain/awac222 – volume: 25 start-page: 771 year: 2015 ident: ref_96 article-title: Metabolic reprogramming in macrophages and dendritic cells in innate immunity publication-title: Cell Res. doi: 10.1038/cr.2015.68 – ident: ref_201 doi: 10.3389/fimmu.2023.1261257 – volume: 18 start-page: 1219 year: 2016 ident: ref_27 article-title: Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation publication-title: Neuro-Oncology doi: 10.1093/neuonc/now024 – volume: 14 start-page: 1295 year: 2012 ident: ref_17 article-title: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect publication-title: Nat. Cell Biol. doi: 10.1038/ncb2629 – volume: 23 start-page: vi208 year: 2021 ident: ref_177 article-title: TAMI-51. Horizontal Mitochondrial Transfer from the Tumor Microenvironment to Glioblastoma Increases Tumorigenicity publication-title: Neuro-Oncology doi: 10.1093/neuonc/noab196.834 – volume: 9 start-page: 265 year: 2019 ident: ref_197 article-title: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery publication-title: Theranostics doi: 10.7150/thno.27246 – volume: 19 start-page: 2774 year: 2019 ident: ref_195 article-title: Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04296 – volume: 145 start-page: 7205 year: 2023 ident: ref_212 article-title: Heterostructural Nanoadjuvant CuSe/CoSe(2) for Potentiating Ferroptosis and Photoimmunotherapy Through Intratumoral Blocked Lactate Efflux publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12772 – volume: 61 start-page: 667 year: 2016 ident: ref_19 article-title: Mitochondria and Cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.011 – ident: ref_103 doi: 10.3390/cancers13246156 – volume: 70 start-page: 1469 year: 2006 ident: ref_41 article-title: Hypoxia-Inducible Factor-1 (HIF-1) publication-title: Mol. Pharmacol. doi: 10.1124/mol.106.027029 – volume: 3 start-page: 82 year: 2001 ident: ref_112 article-title: Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas publication-title: Neuro-Oncol. doi: 10.1093/neuonc/3.2.82 – ident: ref_125 doi: 10.3389/fonc.2022.1116014 – volume: 162 start-page: 1229 year: 2015 ident: ref_140 article-title: Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 29 start-page: 991 year: 2014 ident: ref_59 article-title: Alpha-Ketoglutaramate: An overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle publication-title: Metab. Brain Dis. doi: 10.1007/s11011-013-9444-9 – ident: ref_62 doi: 10.5772/intechopen.68939 – ident: ref_184 doi: 10.3390/cells8121584 – volume: 74 start-page: 839 year: 1996 ident: ref_23 article-title: High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss publication-title: Br. J. Cancer doi: 10.1038/bjc.1996.446 – volume: 12 start-page: 105 year: 2001 ident: ref_49 article-title: Cholesterol metabolism in the brain publication-title: Curr. Opin. Lipidol. doi: 10.1097/00041433-200104000-00003 – volume: 109 start-page: 1568 year: 2007 ident: ref_64 article-title: L-arginine availability regulates T-lymphocyte cell-cycle progression publication-title: Blood doi: 10.1182/blood-2006-06-031856 – volume: 14 start-page: 958 year: 2012 ident: ref_117 article-title: The molecular profile of microglia under the influence of glioma publication-title: Neuro-Oncology doi: 10.1093/neuonc/nos116 – volume: 12 start-page: 312 year: 2021 ident: ref_40 article-title: HIF1alpha/HIF2alpha-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03598-8 – volume: 527 start-page: 100 year: 2015 ident: ref_88 article-title: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth publication-title: Nature doi: 10.1038/nature15376 – volume: 8 start-page: e000207 year: 2020 ident: ref_200 article-title: Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000207 – volume: 11 start-page: e006522 year: 2023 ident: ref_205 article-title: Metabolic reprogramming via an engineered PGC-1alpha improves human chimeric antigen receptor T-cell therapy against solid tumors publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2022-006522 – ident: ref_98 doi: 10.3389/fimmu.2023.1123853 – volume: 37 start-page: 255 year: 2018 ident: ref_156 article-title: Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0923-z – ident: ref_110 doi: 10.3389/fimmu.2022.993444 – volume: 17 start-page: 2341 year: 2023 ident: ref_210 article-title: Tumor-Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma publication-title: ACS Nano doi: 10.1021/acsnano.2c09033 – volume: 14 start-page: 724 year: 2011 ident: ref_11 article-title: Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.08.016 – volume: 9 start-page: A696 year: 2021 ident: ref_183 article-title: 668 Lipid-instructed metabolic rewiring unleash the anti-tumor potential of CD8+ T cells publication-title: J. ImmunoTher. Cancer – volume: 18 start-page: 807 year: 2016 ident: ref_109 article-title: CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients publication-title: Neuro-Oncology doi: 10.1093/neuonc/nov280 – volume: 89 start-page: 251 year: 2000 ident: ref_115 article-title: Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma publication-title: Int. J. Cancer doi: 10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5 – volume: 3 start-page: 177 year: 2006 ident: ref_42 article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.02.002 – volume: 5 start-page: eaaw4543 year: 2019 ident: ref_75 article-title: Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw4543 – ident: ref_9 doi: 10.3390/biology11020313 – volume: 13 start-page: 1213 year: 1995 ident: ref_14 article-title: NMR studies of brain 13C-glucose uptake and metabolism: Present status publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(95)02034-Q – volume: 362 start-page: 104286 year: 2021 ident: ref_171 article-title: Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2021.104286 – ident: ref_104 doi: 10.3389/fimmu.2020.00835 – ident: ref_8 doi: 10.3389/fonc.2022.1005069 – volume: 15 start-page: 827 year: 2012 ident: ref_58 article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.05.001 – volume: 574 start-page: 575 year: 2019 ident: ref_153 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – ident: ref_29 doi: 10.3390/ijms20133374 – volume: 24 start-page: vii286 year: 2022 ident: ref_178 article-title: TMIC-69. Mitochondrial Transfer from Astrocytes Enhances Metabolism and Drives Proliferation of Glioblastoma publication-title: Neuro-Oncology doi: 10.1093/neuonc/noac209.1112 – volume: 159 start-page: 1603 year: 2014 ident: ref_47 article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases publication-title: Cell doi: 10.1016/j.cell.2014.11.025 – volume: 24 start-page: vii283 year: 2022 ident: ref_157 article-title: TMIC-56. Tumor Cell Architectural Heterogeneity and Spatial Interactions with the Tumor Immune Microenvironment in GBM publication-title: Neuro-Oncology doi: 10.1093/neuonc/noac209.1100 – ident: ref_54 doi: 10.1038/s41598-021-86789-9 – volume: 21 start-page: 1624 year: 2003 ident: ref_26 article-title: Cost of migration: Invasion of malignant gliomas and implications for treatment publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2003.05.063 – volume: 193 start-page: 233 year: 2001 ident: ref_170 article-title: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.193.2.233 – volume: 23 start-page: 101420 year: 2020 ident: ref_174 article-title: Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism publication-title: iScience doi: 10.1016/j.isci.2020.101420 – ident: ref_202 doi: 10.1038/s41598-021-93775-8 – ident: ref_35 doi: 10.3390/cancers14164003 – ident: ref_76 doi: 10.3390/ijms22073301 – ident: ref_33 doi: 10.1038/srep15556 – volume: 107 start-page: 2013 year: 2006 ident: ref_154 article-title: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression publication-title: Blood doi: 10.1182/blood-2005-05-1795 – volume: 11 start-page: 6252 year: 2023 ident: ref_69 article-title: Boosting the therapy of glutamine-addiction glioblastoma by combining glutamine metabolism therapy with photo-enhanced chemodynamic therapy publication-title: Biomater. Sci. doi: 10.1039/D3BM00897E – volume: 2 start-page: 17040 year: 2017 ident: ref_128 article-title: Targeting cellular pathways in glioblastoma multiforme publication-title: Signal Transduct. Target. Ther. doi: 10.1038/sigtrans.2017.40 – ident: ref_71 doi: 10.3390/cancers15041010 – volume: 10 start-page: e2204808 year: 2023 ident: ref_196 article-title: Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity publication-title: Adv. Sci. doi: 10.1002/advs.202204808 – ident: ref_208 doi: 10.3389/fimmu.2021.624324 – volume: 19 start-page: 1858 year: 2017 ident: ref_78 article-title: Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.014 – volume: 11 start-page: eaau4972 year: 2019 ident: ref_94 article-title: Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau4972 – volume: 17 start-page: 170 year: 2015 ident: ref_118 article-title: Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth publication-title: Nat. Cell Biol. doi: 10.1038/ncb3090 – volume: 24 start-page: 657 year: 2016 ident: ref_149 article-title: LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.011 – ident: ref_77 doi: 10.3389/fonc.2022.901951 – volume: 367 start-page: 58 year: 2015 ident: ref_185 article-title: NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.07.007 – volume: 69 start-page: 3086 year: 2009 ident: ref_172 article-title: Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-2826 – volume: 11 start-page: 9217 year: 2021 ident: ref_61 article-title: Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma publication-title: Theranostics doi: 10.7150/thno.60679 – volume: 18 start-page: 1253 year: 2016 ident: ref_66 article-title: Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function publication-title: Neuro-Oncology doi: 10.1093/neuonc/now034 – volume: 115 start-page: 3355 year: 2002 ident: ref_133 article-title: Smad signalling network publication-title: J. Cell Sci. doi: 10.1242/jcs.115.17.3355 – volume: 78 start-page: 1019 year: 2020 ident: ref_4 article-title: Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.05.034 – volume: 21 start-page: 125 year: 2010 ident: ref_143 article-title: The role of tregs in glioma-mediated immunosuppression: Potential target for intervention publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2009.08.012 – volume: 21 start-page: vi74 year: 2019 ident: ref_92 article-title: DRES-13. Dual Kinase Inhibition to Combat EGFR-Inhibitor Resistance in Glioblastoma publication-title: Neuro-Oncology doi: 10.1093/neuonc/noz175.300 – volume: 111 start-page: 3635 year: 2008 ident: ref_134 article-title: B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells publication-title: Blood doi: 10.1182/blood-2007-11-123141 – ident: ref_188 doi: 10.3389/fimmu.2024.1426657 – volume: 42 start-page: 445 year: 2023 ident: ref_162 article-title: Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages publication-title: DNA Cell Biol. doi: 10.1089/dna.2023.0071 – volume: 26 start-page: 1850 year: 2024 ident: ref_206 article-title: IL-13Ralpha2/TGF-beta bispecific CAR-T cells counter TGF-beta-mediated immune suppression and potentiate anti-tumor responses in glioblastoma publication-title: Neuro-Oncology doi: 10.1093/neuonc/noae126 – volume: 23 start-page: 6292 year: 2017 ident: ref_70 article-title: Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3102 – volume: 16 start-page: 732 year: 2016 ident: ref_21 article-title: The multifaceted roles of fatty acid synthesis in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.89 – volume: 10 start-page: e2205949 year: 2023 ident: ref_165 article-title: PERK-Mediated Cholesterol Excretion from IDH Mutant Glioma Determines Anti-Tumoral Polarization of Microglia publication-title: Adv. Sci. doi: 10.1002/advs.202205949 – volume: 8 start-page: 77 year: 2011 ident: ref_113 article-title: CCL2/MCP-1 modulation of microglial activation and proliferation publication-title: J. Neuroinflamm. doi: 10.1186/1742-2094-8-77 – volume: 211 start-page: 781 year: 2014 ident: ref_146 article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation publication-title: J. Exp. Med. doi: 10.1084/jem.20131916 – volume: 62 start-page: 2592 year: 2002 ident: ref_135 article-title: Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma publication-title: Cancer Res. – volume: 22 start-page: ii29 year: 2020 ident: ref_91 article-title: CSIG-10. Genotype—Kinome Guided Development of Precision EGFR-Targeted Therapeutics for Glioblastoma publication-title: Neuro-Oncology doi: 10.1093/neuonc/noaa215.122 – volume: 9 start-page: 29 year: 2021 ident: ref_97 article-title: Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-021-01124-7 – volume: 10 start-page: 3892 year: 2022 ident: ref_192 article-title: Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy publication-title: Biomater. Sci. doi: 10.1039/D2BM00650B – volume: 57 start-page: 123 year: 2008 ident: ref_105 article-title: Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-007-0336-x – volume: 30 start-page: 201 year: 2019 ident: ref_2 article-title: Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.003 – volume: 38 start-page: 241 year: 2019 ident: ref_160 article-title: Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-019-1228-6 – volume: 15 start-page: 486 year: 2015 ident: ref_139 article-title: Molecular and cellular insights into T cell exhaustion publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3862 – volume: 40 start-page: 278 year: 2021 ident: ref_39 article-title: The HIF1alpha-PDGFD-PDGFRalpha axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-021-02082-7 – volume: 207 start-page: 2187 year: 2010 ident: ref_137 article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20100643 – volume: 78 start-page: 5574 year: 2018 ident: ref_3 article-title: Computational Characterization of Suppressive Immune Microenvironments in Glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3714 – ident: ref_119 doi: 10.3389/fncel.2018.00235 – ident: ref_86 doi: 10.21203/rs.3.rs-826338/v1 – volume: 68 start-page: 1107 year: 2019 ident: ref_180 article-title: Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02347-3 – volume: 18 start-page: 1565 year: 2019 ident: ref_83 article-title: Mechanisms of Resistance to EGFR Inhibition Reveal Metabolic Vulnerabilities in Human GBM publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-18-1330 – volume: 125 start-page: 609 year: 2013 ident: ref_114 article-title: GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1079-8 – volume: 26 start-page: 45 year: 2018 ident: ref_81 article-title: Oncogene-Driven Metabolic Alterations in Cancer publication-title: Biomol. Ther. doi: 10.4062/biomolther.2017.211 – volume: 204 start-page: 1037 year: 2007 ident: ref_167 article-title: Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development publication-title: J. Exp. Med. doi: 10.1084/jem.20061120 – volume: 35 start-page: e2209785 year: 2023 ident: ref_102 article-title: Recruiting T-Cells toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Co-Delivery of Cytokines and Immune Checkpoint Antibodies with Macrophage-Membrane-Camouflaged Nanovesicles publication-title: Adv. Mater. doi: 10.1002/adma.202209785 – volume: 39 start-page: e103790 year: 2020 ident: ref_101 article-title: Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment publication-title: EMBO J. doi: 10.15252/embj.2019103790 – volume: 43 start-page: 1326 year: 2023 ident: ref_80 article-title: Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma publication-title: Cancer Commun. doi: 10.1002/cac2.12502 – volume: 324 start-page: 1029 year: 2009 ident: ref_24 article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 12 start-page: 177 year: 2021 ident: ref_164 article-title: EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma publication-title: Nat. Commun. doi: 10.1038/s41467-020-20379-7 – volume: 150 start-page: 104511 year: 2019 ident: ref_204 article-title: Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.104511 – volume: 23 start-page: vi201 year: 2021 ident: ref_84 article-title: TAMI-18. Differential Lipid Metabolism in Cancer Microenvironments Leads to a Requirement for Fatty Acid Desaturases FADS1 and FADS2 in GBM Cancer Stem Cell Maintenance publication-title: Neuro-Oncology doi: 10.1093/neuonc/noab196.802 – volume: 32 start-page: 731 year: 2022 ident: ref_37 article-title: ATP-citrate lyase (ACLY) inhibitors as therapeutic agents: A patenting perspective publication-title: Expert Opin. Ther. Pat. doi: 10.1080/13543776.2022.2067478 – volume: 8 start-page: e1655360 year: 2019 ident: ref_181 article-title: Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors publication-title: Oncoimmunology doi: 10.1080/2162402X.2019.1655360 – volume: 82 start-page: 6010 year: 1985 ident: ref_13 article-title: Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.82.17.6010 – volume: 10 start-page: 1047 year: 2022 ident: ref_207 article-title: TGFbeta and CIS Inhibition Overcomes NK-cell Suppression to Restore Antitumor Immunity publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-21-1052 – volume: 123 start-page: 309 year: 1956 ident: ref_18 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 496 start-page: 134 year: 2021 ident: ref_108 article-title: Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.09.028 – volume: 331 start-page: 131 year: 2013 ident: ref_120 article-title: Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.12.010 – volume: 22 start-page: 148 year: 2017 ident: ref_127 article-title: Cyclooxygenase-2 in glioblastoma multiforme publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.09.017 – volume: 574 start-page: 565 year: 2019 ident: ref_148 article-title: VISTA is an acidic pH-selective ligand for PSGL-1 publication-title: Nature doi: 10.1038/s41586-019-1674-5 – volume: 83 start-page: 195 year: 2023 ident: ref_179 article-title: Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-22-0677 – ident: ref_203 doi: 10.3390/ijms222111511 – ident: ref_122 doi: 10.1038/s41598-019-45535-y – ident: ref_10 – volume: 159 start-page: 1591 year: 2014 ident: ref_48 article-title: Acetate dependence of tumors publication-title: Cell doi: 10.1016/j.cell.2014.11.020 – volume: 21 start-page: 1346 year: 2020 ident: ref_142 article-title: The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0769-3 – volume: 111 start-page: 177 year: 2000 ident: ref_116 article-title: Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(00)00361-1 – volume: 513 start-page: 559 year: 2014 ident: ref_152 article-title: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid publication-title: Nature doi: 10.1038/nature13490 – volume: 191 start-page: 1486 year: 2013 ident: ref_147 article-title: Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1202702 – volume: 499 start-page: 829 year: 2018 ident: ref_46 article-title: Glycolytic inhibitor 2-Deoxy-d-Glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.04.001 – volume: 136 start-page: 1155 year: 2020 ident: ref_63 article-title: Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity publication-title: Blood doi: 10.1182/blood.2019004500 – ident: ref_43 doi: 10.3390/cells10092371 – volume: 29 start-page: 981 year: 2006 ident: ref_129 article-title: Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells publication-title: Int. J. Oncol. – volume: 65 start-page: 3044 year: 2005 ident: ref_65 article-title: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4505 – volume: 7 start-page: 203 year: 2019 ident: ref_182 article-title: Immune landscapes associated with different glioblastoma molecular subtypes publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-019-0803-6 – volume: 18 start-page: 1644 year: 2016 ident: ref_82 article-title: EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation publication-title: Neuro-Oncology doi: 10.1093/neuonc/now113 – volume: 104 start-page: 19345 year: 2007 ident: ref_57 article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709747104 – volume: 24 start-page: 4175 year: 2018 ident: ref_138 article-title: T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-1846 – volume: 32 start-page: 229 year: 2020 ident: ref_55 article-title: Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.002 – volume: 65 start-page: 11743 year: 2005 ident: ref_68 article-title: Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0045 – volume: 6 start-page: 605 year: 2020 ident: ref_5 article-title: Turning Cold into Hot: Firing up the Tumor Microenvironment publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.02.022 – volume: 138 start-page: 659 year: 2003 ident: ref_16 article-title: Malignant glioma physiology: Cellular response to hypoxia and its role in tumor progression publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-138-8-200304150-00014 – volume: 18 start-page: 655 year: 2010 ident: ref_187 article-title: TGF-beta Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.10.023 – volume: 64 start-page: 3892 year: 2004 ident: ref_15 article-title: Akt stimulates aerobic glycolysis in cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2904 – volume: 17 start-page: v136 year: 2015 ident: ref_32 article-title: METB-08 Inhibition of Hexokinase 2 Using Tumor Glycolysis Inhibitors Identified Through a Drug Screen Inhibits Glioblastoma Growth In Vitro and In Vivo publication-title: Neuro-Oncology doi: 10.1093/neuonc/nov221.08 – volume: 187 start-page: 5336 year: 2024 ident: ref_166 article-title: Macrophage-mediated myelin recycling fuels brain cancer malignancy publication-title: Cell doi: 10.1016/j.cell.2024.07.030 – ident: ref_95 doi: 10.3389/fphar.2021.775602 – volume: 476 start-page: 2963 year: 2021 ident: ref_124 article-title: A tumor-promoting role for soluble TbetaRIII in glioblastoma publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-021-04128-y – ident: ref_158 doi: 10.1101/2022.01.25.477703 – volume: 2 start-page: 722 year: 2012 ident: ref_67 article-title: IDO is a nodal pathogenic driver of lung cancer and metastasis development publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0014 – volume: 52 start-page: E4 year: 2022 ident: ref_7 article-title: Immunoregulatory effects of glioma-associated stem cells on the glioblastoma peritumoral microenvironment: A differential PD-L1 expression from core to periphery? publication-title: Neurosurg. Focus doi: 10.3171/2021.11.FOCUS21589 – volume: 380 start-page: 272 year: 2016 ident: ref_87 article-title: Metabolic exchanges within tumor microenvironment publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.10.027 – volume: 25 start-page: v146 year: 2023 ident: ref_186 article-title: IMMU-22. Blockade of CD47 Results in Metabolic Reprogramming to Enhance Immune Cell-Mediated Cytotoxicity of Glioblastoma publication-title: Neuro-Oncology doi: 10.1093/neuonc/noad179.0554 – ident: ref_194 doi: 10.3390/molecules27238552 – volume: 35 start-page: 2014 year: 2014 ident: ref_155 article-title: Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H(+) extrusion, cell migration and survival publication-title: Carcinogenesis doi: 10.1093/carcin/bgu089 – volume: 15 start-page: 31150 year: 2023 ident: ref_190 article-title: Macrophage-Cancer Hybrid Membrane-Camouflaged Nanoplatforms for HIF-1alpha Gene Silencing-Enhanced Sonodynamic Therapy of Glioblastoma publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03001 – volume: 15 start-page: eabq6288 year: 2023 ident: ref_53 article-title: Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abq6288 – volume: 37 start-page: e00328-17 year: 2017 ident: ref_90 article-title: Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00328-17 – volume: 16 start-page: 898 year: 2015 ident: ref_121 article-title: Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-kappaB-Snail signaling in glioma publication-title: Cancer Biol. Ther. doi: 10.1080/15384047.2015.1028702 – ident: ref_72 doi: 10.1038/s42003-019-0455-x – volume: 20 start-page: 460 year: 2014 ident: ref_51 article-title: An overview of autophagy: Morphology, mechanism, and regulation publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5371 – volume: 29 start-page: 1275 year: 2008 ident: ref_130 article-title: Tumor necrosis factor and cancer, buddies or foes? publication-title: Acta Pharmacol. Sin. doi: 10.1111/j.1745-7254.2008.00889.x – volume: 39 start-page: 99 year: 2007 ident: ref_131 article-title: Comparative analysis of peripheral and localised cytokine secretion in glioblastoma patients publication-title: Cytokine doi: 10.1016/j.cyto.2007.05.012 – volume: 16 start-page: 12964 year: 2022 ident: ref_198 article-title: Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response publication-title: ACS Nano doi: 10.1021/acsnano.2c05408 – volume: 32 start-page: 23 year: 2012 ident: ref_132 article-title: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease publication-title: Crit. Rev. Immunol. doi: 10.1615/CritRevImmunol.v32.i1.30 – volume: 101 start-page: 227 year: 2011 ident: ref_123 article-title: IL-8 is a mediator of NF-kappaB induced invasion by gliomas publication-title: J. Neuro-Oncol. doi: 10.1007/s11060-010-0261-2 – volume: 225 start-page: 195 year: 2010 ident: ref_145 article-title: Prognostic significance and mechanism of Treg infiltration in human brain tumors publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2010.05.020 – volume: 122 start-page: 1118 year: 2020 ident: ref_191 article-title: Correction: Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0710-4 – volume: 24 start-page: ii50 year: 2022 ident: ref_56 article-title: P10.08.A Lipogenesis inhibition by fatostatin shows effectiveness in glioblastoma models highly expressing fatty acid synthase (FASN) publication-title: Neuro-Oncology doi: 10.1093/neuonc/noac174.173 – volume: 30 start-page: 683 year: 2016 ident: ref_50 article-title: An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.09.008 – volume: 77 start-page: 2266 year: 2017 ident: ref_99 article-title: Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2310 – volume: 12 start-page: 3729 year: 2022 ident: ref_45 article-title: NDRG2 inhibits pyruvate carboxylase-mediated anaplerosis and combines with glutamine blockade to inhibit the proliferation of glioma cells publication-title: Am. J. Cancer Res. – ident: ref_28 doi: 10.3390/molecules24112159 – ident: ref_31 doi: 10.3389/fonc.2022.925666 – volume: 134 start-page: e178628 year: 2024 ident: ref_100 article-title: Dual targeting macrophages and microglia is a therapeutic vulnerability in models of PTEN-deficient glioblastoma publication-title: J. Clin. Investig. doi: 10.1172/JCI178628 – volume: 26 start-page: v17 year: 2024 ident: ref_176 article-title: OS03.6.A Mitochondria Transfer in GBM Is Mediated by TGF-Β and Promotes Increased Invasiveness publication-title: Neuro-Oncology doi: 10.1093/neuonc/noae144.049 – volume: 4 start-page: 648 year: 2023 ident: ref_175 article-title: GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity publication-title: Nat. Cancer doi: 10.1038/s43018-023-00556-5 – volume: 80 start-page: 499 year: 2020 ident: ref_106 article-title: Dysregulation of Glutamate Transport Enhances Treg Function That Promotes VEGF Blockade Resistance in Glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-1577 – volume: 17 start-page: 428 year: 2018 ident: ref_151 article-title: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer publication-title: Cell Cycle doi: 10.1080/15384101.2018.1444305 – volume: 26 start-page: 1572 year: 2024 ident: ref_44 article-title: Metabolic profiling of glioblastoma stem cells reveals pyruvate carboxylase as a critical survival factor and potential therapeutic target publication-title: Neuro-Oncology doi: 10.1093/neuonc/noae106 – volume: 491 start-page: 932 year: 2017 ident: ref_36 article-title: Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.07.138 – volume: 13 start-page: 974 year: 2023 ident: ref_163 article-title: Targeting Microglial Metabolic Rewiring Synergizes with Immune-Checkpoint Blockade Therapy for Glioblastoma publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-22-0455 – volume: 98 start-page: 1 year: 2020 ident: ref_169 article-title: Insights in the immunobiology of glioblastoma publication-title: J. Mol. Med. doi: 10.1007/s00109-019-01835-4 – volume: 14 start-page: 27651 year: 2022 ident: ref_193 article-title: Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05533 – volume: 13 start-page: eaaz6314 year: 2021 ident: ref_159 article-title: Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaz6314 – volume: 14 start-page: e15343 year: 2022 ident: ref_34 article-title: Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202115343 – volume: 9 start-page: 101 year: 2021 ident: ref_85 article-title: Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-021-01205-7 – ident: ref_141 doi: 10.3389/fonc.2023.1175563 – ident: ref_111 doi: 10.3390/ijms22094460 – volume: 14 start-page: 28569 year: 2024 ident: ref_30 article-title: Dual inhibitory potential of ganoderic acid A on GLUT1/3: Computational and in vitro insights into targeting glucose metabolism in human lung cancer publication-title: RSC Adv. doi: 10.1039/D4RA04454A – volume: 2 start-page: ra82 year: 2009 ident: ref_22 article-title: EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy publication-title: Sci. Signal. doi: 10.1126/scisignal.2000446 – volume: 39 start-page: 110934 year: 2022 ident: ref_107 article-title: HIF-1alpha Is a Metabolic Switch Between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110934 – volume: 11 start-page: 747 year: 2009 ident: ref_12 article-title: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1881 – volume: 43 start-page: 143 year: 2006 ident: ref_60 article-title: Glutathione in cancer biology and therapy publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.1080/10408360500523878 – volume: 24 start-page: 3632 year: 2018 ident: ref_73 article-title: Tryptophan Metabolism Contributes to Radiation-Induced Immune Checkpoint Reactivation in Glioblastoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-0041 |
| SSID | ssj0023259 |
| Score | 2.4622984 |
| SecondaryResourceType | review_article |
| Snippet | Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key... |
| SourceID | pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 669 |
| SubjectTerms | Adaptation Adenosine triphosphate Animals Brain cancer Brain Neoplasms - immunology Brain Neoplasms - metabolism Brain Neoplasms - pathology Brain Neoplasms - therapy Brain tumors Dehydrogenases Disease susceptibility Energy Enzymes Epidermal growth factor Glioblastoma - genetics Glioblastoma - immunology Glioblastoma - metabolism Glioblastoma - pathology Glioblastoma - therapy Glioblastoma multiforme Glioma Glucose Glucose metabolism Glutamine Health aspects Humans Hypoxia Immunotherapy Immunotherapy - methods Kinases Lipids Macrophages Metabolism Phosphorylation Physiological aspects Review T cells Tryptophan Tumor Microenvironment - immunology |
| Title | The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39859381 https://www.proquest.com/docview/3159501683 https://www.proquest.com/docview/3159798950 https://pubmed.ncbi.nlm.nih.gov/PMC11765942 |
| Volume | 26 |
| WOSCitedRecordID | wos001404324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgA2kvfA8KYwoSiAcUrelHmvKCBtpg0u44TYCOpypNU9Hprh1rD8R_j92P2xUJXnipGtmp0tqJ7dT5GeB5Kl2DgY_HrZ-5PPBMwFM_D7l23dzXaaZ1u3Xx5TSaTtV8Hs_6Dbe6T6sc1sR2oc4qQ3vkBz7a3RD9E-W_ufjOqWoU_V3tS2hch20qm016Hs2vAi7fa4ulCbRBXIax7BLffQzzD4rzZY2uPIGZxyOT9OfCvGGZxlmTG2bo-Pb_vsAduNU7oOyw05i7cM2W9-BmV5Ly133QqDfspD06yaqcTWyDWrIoDDuzPwvaA2RFyd4viipFt7uplvo163osV6Vlp3RwmFKqGN4QYTjbxQYUXFs_gM_HR5_efeB9GQZuAuU2XGK8LW2YR5nB74XCMwqDFKFVFlultLJCZLnNhUbXxaTSywP0kawR0mrXSJX5u7BVVqV9BCy3UmlLRPRiMPpTkSfDMNLCoh-Eq4kDrwZJJKbHKKdSGYsEYxWSW7IpNwderLkvOmyOv_C9JKEmNGXxaUb3Jw9wTAR-lRyiroaEhBc6sDfixKlmxuRBtEk_1evkSq4OPFuTqSelr5W2WnU8UayQz4GHnRatR-zHBDmnhANqpF9rBgIAH1PK4lsLBC5EhGodeI__Pa4nsONR1WJXcBHswVZzubJP4Yb50RT15X47Zdqr2oftt0fT2Rm2Jt5HbM1OJrOvvwEj6yTI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UraIv3i_RqiNYfJDQTK4TQaSotUt3l0VqqU9xMplgZDepTdbSP-Vv9Jzc3Aj61gffAudMmCTfuU3OBeB57FsKAx_b1E5ima6tXDN2Us-UlpU6Mk6krI8ujibBbCaOj8P5BvzsamEorbLTibWiTgpFZ-Q7DtpdD_0T4bw5-W7S1Cj6u9qN0GhgcaDPzzBkK1-P3-H33bbtvfeHb_fNdqqAqVxhVaaP4aOvvTRIFLpKuBcl0OfmUiShFkIKzXmS6pRLtMQq9u3URZOvFfe1tJQvEgfvewk2XQL7CDbn4-n8cx_iOXY9no2j1TN9L_SbVHvHCa2d7NuyxOCB2qeHAyP4pylYs4XDPM01w7d34397ZTfheutis91GJm7Bhs5vw5Vm6Ob5HZAoGWxcF4eyImVTXaEcLDLFPuqzjE45WZazD4usiDGwqIqlfMWaFctVrtmESqMpaYzhBRG66jXW9fnV5V34dCHPdw9GeZHrB8BS7QupiYh-Gsa3IrB9zwsk1-jpob404GX35SPVdmGnYSCLCKMxwkm0jhMDtnvuk6b7yF_4XhCIIlJKeDcl29oK3BO194p2URo96vXnGbA14ERloobkDkpRq8zK6DeODHjWk2klJejlulg1PEEokM-A-w1q-x07ITXVE9wAMcBzz0AtzoeUPPtatzrnPEAxcu2H_97XU7i6fzidRJPx7OARXLNpRrPFTe5uwag6XenHcFn9qLLy9EkrsAy-XDTgfwEdt4Al |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UrYov3i_RqiNYfJCwmVwngkixri7dLouo1Kc4mUwwspvUJmvpX_PXeU5ubgR964NvgXMmTJLv3CbnAvA09i2FgY9taiexTNdWrhk7qWdKy0odGSdS1kcXn2bBfC6OjsLFFvzsamEorbLTibWiTgpFZ-RjB-2uh_6JcMZpmxax2J-8Ov5u0gQp-tPajdNoIHKgz04xfCtfTvfxW-_a9uTNh9fvzHbCgKlcYVWmj6Gkr700SBS6TbgvJdD_5lIkoRZCCs15kuqUS7TKKvbt1EXzrxX3tbSULxIH73sBttEld-0RbC-mh4vPfbjn2PWoNo4W0PS90G_S7h0ntMbZt1WJgQS1Ug8HBvFPs7BhF4c5mxtGcHLtf3591-Fq63qzvUZWbsCWzm_CpWYY59ktkCgxbFoXjbIiZYe6QvlYZoq916cZnX6yLGdvl1kRY8BRFSv5gjUrVutcsxmVTFMyGcMLInRVbazr_6vL2_DxXJ7vDozyItf3gKXaF1ITEf03jHtFYPueF0iu0QNEPWrA8w4FkWq7s9OQkGWEURphJtrEjAG7Pfdx05XkL3zPCFARKSu8m5JtzQXuidp-RXsopR71APQM2BlwopJRQ3IHq6hVcmX0G1MGPOnJtJIS93JdrBueIBTIZ8DdBsH9jp2Qmu0JboAYYLtnoNbnQ0qefa1boHMeoEi59v1_7-sxXEaUR7Pp_OABXLFpdLPFTe7uwKg6WeuHcFH9qLLy5FEruwy-nDfefwGMFYjl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Metabolic+Rewiring+in+Glioblastoma%3A+The+Immune+Landscape+and+Therapeutic+Strategies&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Vijayanathan%2C+Yuganthini&rft.au=Ho%2C+Ivy+A+W&rft.date=2025-01-14&rft.eissn=1422-0067&rft.volume=26&rft.issue=2&rft_id=info:doi/10.3390%2Fijms26020669&rft_id=info%3Apmid%2F39859381&rft.externalDocID=39859381 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |