The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies

Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of molecular sciences Ročník 26; číslo 2; s. 669
Hlavní autoři: Vijayanathan, Yuganthini, Ho, Ivy A. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 14.01.2025
MDPI
Témata:
ISSN:1422-0067, 1661-6596, 1422-0067
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM’s metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
AbstractList Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM’s metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including ( ) mutations, ( ) amplification, and ( ) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Audience Academic
Author Ho, Ivy A. W.
Vijayanathan, Yuganthini
AuthorAffiliation 1 Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore; yuganthini_p_vijayanathan@nni.com.sg
2 Duke-NUS Medical School, Singapore 169857, Singapore
3 Department of Physiology, National University of Singapore, Singapore 117593, Singapore
AuthorAffiliation_xml – name: 3 Department of Physiology, National University of Singapore, Singapore 117593, Singapore
– name: 2 Duke-NUS Medical School, Singapore 169857, Singapore
– name: 1 Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore; yuganthini_p_vijayanathan@nni.com.sg
Author_xml – sequence: 1
  givenname: Yuganthini
  surname: Vijayanathan
  fullname: Vijayanathan, Yuganthini
– sequence: 2
  givenname: Ivy A. W.
  orcidid: 0000-0002-2948-3726
  surname: Ho
  fullname: Ho, Ivy A. W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39859381$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gxhlF4sKBbf2xdmwuVVVBW2lRJShna-JMtl4l9hI7IP49Xra026rywSPPM6_9euaQ7IUYkJC3jB4LYeiJXw2JK8qpUuYFOWBzzmeUqnpvJ94nhymtKOWCS_OK7AujpRGaHRC4ucXqaliDy1Xsqq-YoYm9d9U3_O1HH5aVD9VF72PTQ8pxgE_VtmKYAlYLCG1ysMaqBJvEWOIpl_LveYSMS4_pNXnZQZ_wzd1-RH58-XxzfjlbXF9cnZ8tZm6uaZ4pbIRC2dWtK14AjNOyVgx0a1Br0MhY22HHQEjpGsW7uWQSHVMI1CndiiNyutVdT82ArcNQntDb9egHGP_YCN4-zgR_a5fxl2WsVtLMeVH4cKcwxp8TpmwHnxz2PQSMU7KCSVMbbSQt6Psn6CpOYyj-_lGSMqXFA7WEHq0PXSwXu42oPdOlFUxTLgt1_AxVVouDd6XZnS_njwre7Tq9t_i_qwX4uAXcGFMasbtHGLWbobG7Q1Nw_gR3PkP2cfNPvn--6C8JZcSM
CitedBy_id crossref_primary_10_1007_s12032_025_02729_x
crossref_primary_10_1007_s12032_025_02830_1
crossref_primary_10_1016_j_mtchem_2025_102876
crossref_primary_10_1080_01913123_2025_2558625
Cites_doi 10.1021/acs.chemrestox.1c00254
10.1093/neuonc/noae144.008
10.3389/fimmu.2020.585034
10.1002/smll.202406870
10.1215/15228517-2006-008
10.4161/onci.26383
10.1007/s11060-020-03451-6
10.2174/1389450115666141224125117
10.1126/science.aaf2666
10.1016/j.cmet.2018.09.020
10.1158/1538-7445.AM2022-1125
10.1371/journal.pcbi.1002018
10.3389/fonc.2022.893820
10.1038/ni.1674
10.1038/s41590-019-0442-x
10.1002/ijc.24918
10.1523/JNEUROSCI.23-13-05928.2003
10.3389/fimmu.2022.869061
10.1016/j.phrs.2018.03.015
10.1158/0008-5472.CAN-19-2994
10.1093/brain/awac222
10.1038/cr.2015.68
10.3389/fimmu.2023.1261257
10.1093/neuonc/now024
10.1038/ncb2629
10.1093/neuonc/noab196.834
10.7150/thno.27246
10.1021/acs.nanolett.8b04296
10.1021/jacs.2c12772
10.1016/j.molcel.2016.02.011
10.3390/cancers13246156
10.1124/mol.106.027029
10.1093/neuonc/3.2.82
10.3389/fonc.2022.1116014
10.1016/j.cell.2015.08.016
10.1007/s11011-013-9444-9
10.5772/intechopen.68939
10.3390/cells8121584
10.1038/bjc.1996.446
10.1097/00041433-200104000-00003
10.1182/blood-2006-06-031856
10.1093/neuonc/nos116
10.1038/s41419-021-03598-8
10.1038/nature15376
10.1136/jitc-2019-000207
10.1136/jitc-2022-006522
10.3389/fimmu.2023.1123853
10.1186/s13046-018-0923-z
10.3389/fimmu.2022.993444
10.1021/acsnano.2c09033
10.1016/j.cmet.2011.08.016
10.1093/neuonc/nov280
10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5
10.1016/j.cmet.2006.02.002
10.1126/sciadv.aaw4543
10.3390/biology11020313
10.1016/0730-725X(95)02034-Q
10.1016/j.cellimm.2021.104286
10.3389/fimmu.2020.00835
10.3389/fonc.2022.1005069
10.1016/j.cmet.2012.05.001
10.1038/s41586-019-1678-1
10.3390/ijms20133374
10.1093/neuonc/noac209.1112
10.1016/j.cell.2014.11.025
10.1093/neuonc/noac209.1100
10.1038/s41598-021-86789-9
10.1200/JCO.2003.05.063
10.1084/jem.193.2.233
10.1016/j.isci.2020.101420
10.1038/s41598-021-93775-8
10.3390/cancers14164003
10.3390/ijms22073301
10.1038/srep15556
10.1182/blood-2005-05-1795
10.1039/D3BM00897E
10.1038/sigtrans.2017.40
10.3390/cancers15041010
10.1002/advs.202204808
10.3389/fimmu.2021.624324
10.1016/j.celrep.2017.05.014
10.1126/scitranslmed.aau4972
10.1038/ncb3090
10.1016/j.cmet.2016.08.011
10.3389/fonc.2022.901951
10.1016/j.canlet.2015.07.007
10.1158/0008-5472.CAN-08-2826
10.7150/thno.60679
10.1093/neuonc/now034
10.1242/jcs.115.17.3355
10.1016/j.molcel.2020.05.034
10.1016/j.nec.2009.08.012
10.1093/neuonc/noz175.300
10.1182/blood-2007-11-123141
10.3389/fimmu.2024.1426657
10.1089/dna.2023.0071
10.1093/neuonc/noae126
10.1158/1078-0432.CCR-16-3102
10.1038/nrc.2016.89
10.1002/advs.202205949
10.1186/1742-2094-8-77
10.1084/jem.20131916
10.1093/neuonc/noaa215.122
10.1186/s40478-021-01124-7
10.1039/D2BM00650B
10.1007/s00262-007-0336-x
10.1016/j.cmet.2019.04.003
10.1186/s13046-019-1228-6
10.1038/nri3862
10.1186/s13046-021-02082-7
10.1084/jem.20100643
10.1158/0008-5472.CAN-17-3714
10.3389/fncel.2018.00235
10.21203/rs.3.rs-826338/v1
10.1007/s00262-019-02347-3
10.1158/1535-7163.MCT-18-1330
10.1007/s00401-013-1079-8
10.4062/biomolther.2017.211
10.1084/jem.20061120
10.1002/adma.202209785
10.15252/embj.2019103790
10.1002/cac2.12502
10.1126/science.1160809
10.1038/s41467-020-20379-7
10.1016/j.phrs.2019.104511
10.1093/neuonc/noab196.802
10.1080/13543776.2022.2067478
10.1080/2162402X.2019.1655360
10.1073/pnas.82.17.6010
10.1158/2326-6066.CIR-21-1052
10.1126/science.123.3191.309
10.1016/j.canlet.2020.09.028
10.1016/j.canlet.2012.12.010
10.1016/j.drudis.2016.09.017
10.1038/s41586-019-1674-5
10.1158/0008-5472.CAN-22-0677
10.3390/ijms222111511
10.1038/s41598-019-45535-y
10.1016/j.cell.2014.11.020
10.1038/s41590-020-0769-3
10.1016/S0165-5728(00)00361-1
10.1038/nature13490
10.4049/jimmunol.1202702
10.1016/j.bbrc.2018.04.001
10.1182/blood.2019004500
10.3390/cells10092371
10.1158/0008-5472.CAN-04-4505
10.1186/s40478-019-0803-6
10.1093/neuonc/now113
10.1073/pnas.0709747104
10.1158/1078-0432.CCR-17-1846
10.1016/j.cmet.2020.06.002
10.1158/0008-5472.CAN-05-0045
10.1016/j.trecan.2020.02.022
10.7326/0003-4819-138-8-200304150-00014
10.1016/j.ccr.2010.10.023
10.1158/0008-5472.CAN-03-2904
10.1093/neuonc/nov221.08
10.1016/j.cell.2024.07.030
10.3389/fphar.2021.775602
10.1007/s11010-021-04128-y
10.1101/2022.01.25.477703
10.1158/2159-8290.CD-12-0014
10.3171/2021.11.FOCUS21589
10.1016/j.canlet.2015.10.027
10.1093/neuonc/noad179.0554
10.3390/molecules27238552
10.1093/carcin/bgu089
10.1021/acsami.3c03001
10.1126/scitranslmed.abq6288
10.1128/MCB.00328-17
10.1080/15384047.2015.1028702
10.1038/s42003-019-0455-x
10.1089/ars.2013.5371
10.1111/j.1745-7254.2008.00889.x
10.1016/j.cyto.2007.05.012
10.1021/acsnano.2c05408
10.1615/CritRevImmunol.v32.i1.30
10.1007/s11060-010-0261-2
10.1016/j.jneuroim.2010.05.020
10.1038/s41416-019-0710-4
10.1093/neuonc/noac174.173
10.1016/j.ccell.2016.09.008
10.1158/0008-5472.CAN-16-2310
10.3390/molecules24112159
10.3389/fonc.2022.925666
10.1172/JCI178628
10.1093/neuonc/noae144.049
10.1038/s43018-023-00556-5
10.1158/0008-5472.CAN-19-1577
10.1080/15384101.2018.1444305
10.1093/neuonc/noae106
10.1016/j.bbrc.2017.07.138
10.1158/2159-8290.CD-22-0455
10.1007/s00109-019-01835-4
10.1021/acsami.2c05533
10.1126/scitranslmed.aaz6314
10.15252/emmm.202115343
10.1186/s40478-021-01205-7
10.3389/fonc.2023.1175563
10.3390/ijms22094460
10.1039/D4RA04454A
10.1126/scisignal.2000446
10.1016/j.celrep.2022.110934
10.1038/ncb1881
10.1080/10408360500523878
10.1158/1078-0432.CCR-18-0041
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms26020669
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC11765942
A832518025
39859381
10_3390_ijms26020669
Genre Journal Article
Review
GrantInformation_xml – fundername: Singapore Ministry of Health's National Medical Research Council
  grantid: MOH-000560
– fundername: SingHealth Duke-NUS Academic Medicine Research Grant
  grantid: AM/SU086/2023
– fundername: Singapore Ministry of Health’s National Medical Research Council
  grantid: MOH-000560
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
ESTFP
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c480t-6eb36e5f7dc020aa9c85761a8d9e88a8e11dfef1a355cb62f4515ec16ea0c68d3
IEDL.DBID 7X7
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
1661-6596
IngestDate Tue Nov 04 02:03:45 EST 2025
Fri Sep 05 12:10:06 EDT 2025
Tue Oct 07 07:28:33 EDT 2025
Sat Nov 29 13:51:07 EST 2025
Sat Nov 29 10:33:35 EST 2025
Tue May 06 01:31:52 EDT 2025
Tue Nov 18 21:57:36 EST 2025
Sat Nov 29 07:15:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords glioma
metabolism
GBM
tumor microenvironment
immune infiltration
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-6eb36e5f7dc020aa9c85761a8d9e88a8e11dfef1a355cb62f4515ec16ea0c68d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2948-3726
OpenAccessLink https://www.proquest.com/docview/3159501683?pq-origsite=%requestingapplication%
PMID 39859381
PQID 3159501683
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11765942
proquest_miscellaneous_3159798950
proquest_journals_3159501683
gale_infotracmisc_A832518025
gale_infotracacademiconefile_A832518025
pubmed_primary_39859381
crossref_primary_10_3390_ijms26020669
crossref_citationtrail_10_3390_ijms26020669
PublicationCentury 2000
PublicationDate 20250114
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 1
  year: 2025
  text: 20250114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kelly (ref_96) 2015; 25
Calvert (ref_78) 2017; 19
Cui (ref_80) 2023; 43
ref_136
Menna (ref_7) 2022; 52
ref_98
Luoto (ref_3) 2018; 78
Zhang (ref_88) 2015; 527
ref_95
Liu (ref_162) 2023; 42
Zhou (ref_118) 2015; 17
Ke (ref_41) 2006; 70
Zheng (ref_200) 2020; 8
Moustakas (ref_133) 2002; 115
Lin (ref_93) 2022; 82
Sinha (ref_68) 2005; 65
ref_126
ref_125
Zong (ref_19) 2016; 61
Mahmoud (ref_204) 2019; 150
ref_122
Liu (ref_159) 2021; 13
Rossi (ref_207) 2022; 10
Zadeh (ref_32) 2015; 17
ref_72
Strepkos (ref_169) 2020; 98
ref_71
ref_158
Aspord (ref_167) 2007; 204
Cantley (ref_24) 2009; 324
Smithberger (ref_92) 2019; 21
Norian (ref_172) 2009; 69
ref_79
Wang (ref_165) 2023; 10
Watson (ref_177) 2021; 23
ref_77
ref_76
Eskilsson (ref_82) 2016; 18
Lynch (ref_182) 2019; 7
Anido (ref_187) 2010; 18
Eriksson (ref_90) 2017; 37
Ye (ref_163) 2023; 13
Li (ref_190) 2023; 15
Yu (ref_185) 2015; 367
Yu (ref_168) 2009; 10
Villa (ref_50) 2016; 30
Cooper (ref_59) 2014; 29
Gottfried (ref_154) 2006; 107
Giese (ref_26) 2003; 21
ref_141
ref_86
Shakya (ref_84) 2021; 23
Li (ref_117) 2012; 14
DeBerardinis (ref_57) 2007; 104
Zhang (ref_195) 2019; 19
Lontos (ref_205) 2023; 11
Noman (ref_146) 2014; 211
Rodriguez (ref_64) 2007; 109
Wischhusen (ref_135) 2002; 62
Pieri (ref_179) 2023; 83
Sakuishi (ref_137) 2010; 207
Miska (ref_107) 2022; 39
Wherry (ref_139) 2015; 15
Zhang (ref_121) 2015; 16
Chen (ref_99) 2017; 77
Peng (ref_74) 2022; 35
Woroniecka (ref_138) 2018; 24
Shakya (ref_85) 2021; 9
Moreino (ref_176) 2024; 26
Bashir (ref_30) 2024; 14
Beckner (ref_20) 2010; 126
Wang (ref_40) 2021; 12
Mu (ref_151) 2018; 17
Gomes (ref_89) 2018; 131
Estrela (ref_60) 2006; 43
Almeida (ref_12) 2009; 11
ref_203
ref_202
Oudard (ref_23) 1996; 74
ref_208
ref_201
Dietschy (ref_49) 2001; 12
Eyme (ref_53) 2023; 15
Wang (ref_69) 2023; 11
Li (ref_189) 2019; 29
Hou (ref_206) 2024; 26
Jacobs (ref_145) 2010; 225
Ling (ref_193) 2022; 14
Jin (ref_197) 2019; 9
Chang (ref_140) 2015; 162
Silver (ref_157) 2022; 24
Yang (ref_58) 2012; 15
ref_119
Mashimo (ref_47) 2014; 159
Fultang (ref_63) 2020; 136
Wang (ref_108) 2021; 496
ref_111
ref_110
Smithberger (ref_91) 2020; 22
Long (ref_106) 2020; 80
Wang (ref_45) 2022; 12
Dubinski (ref_109) 2016; 18
Shukla (ref_46) 2018; 499
ref_104
ref_103
Azuma (ref_134) 2008; 111
Perelroizen (ref_173) 2022; 145
Ma (ref_210) 2023; 17
Zhang (ref_153) 2019; 574
Yang (ref_17) 2012; 14
Zea (ref_65) 2005; 65
Uneda (ref_97) 2021; 9
Humphries (ref_143) 2010; 21
Schulte (ref_27) 2016; 18
Kastler (ref_56) 2022; 24
Elstrom (ref_15) 2004; 64
Smith (ref_67) 2012; 2
Cong (ref_155) 2014; 35
Zisakis (ref_131) 2007; 39
Liu (ref_211) 2024; 21
Guyon (ref_34) 2022; 14
Wang (ref_94) 2019; 11
Wang (ref_130) 2008; 29
Brat (ref_16) 2003; 138
ref_10
Yoshino (ref_129) 2006; 29
Fang (ref_164) 2021; 12
Ebert (ref_52) 2003; 23
Dumas (ref_101) 2020; 39
Johnston (ref_148) 2019; 574
Kadekaro (ref_13) 1985; 82
Belanger (ref_11) 2011; 14
ref_25
Watson (ref_178) 2022; 24
Taniguchi (ref_116) 2000; 111
Pearson (ref_128) 2017; 2
ref_29
ref_28
Koukourakis (ref_36) 2017; 491
Ku (ref_114) 2013; 125
Talbot (ref_161) 2024; 26
Hussain (ref_144) 2006; 8
Liu (ref_100) 2024; 134
Parzych (ref_51) 2014; 20
Wijesekera (ref_1) 2020; 147
Rothman (ref_14) 1995; 13
Peng (ref_39) 2021; 40
Bader (ref_4) 2020; 78
Offer (ref_160) 2019; 38
Panitz (ref_61) 2021; 11
Kim (ref_42) 2006; 3
Manzo (ref_183) 2021; 9
Tsai (ref_186) 2023; 25
Zhao (ref_196) 2023; 10
Kaffes (ref_181) 2019; 8
Guo (ref_22) 2009; 2
Brand (ref_149) 2016; 24
Zeng (ref_174) 2020; 23
Kunkel (ref_112) 2001; 3
Guan (ref_156) 2018; 37
Xu (ref_102) 2023; 35
Colegio (ref_152) 2014; 513
Burghardt (ref_124) 2021; 476
Gatenbee (ref_191) 2020; 122
Murnan (ref_75) 2019; 5
Watson (ref_175) 2023; 4
Iyer (ref_132) 2012; 32
Puchalski (ref_6) 2018; 360
Charbonnier (ref_209) 2019; 20
ref_54
Kloosterman (ref_166) 2024; 187
Kumar (ref_2) 2019; 30
Husain (ref_150) 2013; 2
Yang (ref_212) 2023; 145
Raychaudhuri (ref_123) 2011; 101
Khwairakpam (ref_38) 2015; 16
Duan (ref_5) 2020; 6
Granchi (ref_37) 2022; 32
Min (ref_81) 2018; 26
ref_62
McKinney (ref_83) 2019; 18
Hinojosa (ref_113) 2011; 8
Adeshakin (ref_171) 2021; 362
Qiu (ref_127) 2017; 22
Su (ref_199) 2020; 80
Jordan (ref_105) 2008; 57
Husain (ref_147) 2013; 191
ref_35
ref_194
Zhang (ref_198) 2022; 16
ref_33
ref_31
Rohrig (ref_21) 2016; 16
Tian (ref_192) 2022; 10
Dhodapkar (ref_170) 2001; 193
Oizel (ref_70) 2017; 23
Comerford (ref_48) 2014; 159
Gielen (ref_66) 2016; 18
Renoult (ref_44) 2024; 26
ref_184
ref_43
ref_188
Warburg (ref_18) 1956; 123
Kesarwani (ref_73) 2018; 24
Kahlert (ref_120) 2013; 331
Cheng (ref_55) 2020; 32
Kjellman (ref_115) 2000; 89
ref_9
ref_8
Kumagai (ref_142) 2020; 21
Chiarugi (ref_87) 2016; 380
Kesarwani (ref_180) 2019; 68
References_xml – volume: 35
  start-page: 115
  year: 2022
  ident: ref_74
  article-title: Beyond Isocitrate Dehydrogenase Mutations: Emerging Mechanisms for the Accumulation of the Oncometabolite 2-Hydroxyglutarate
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.1c00254
– volume: 26
  start-page: v3
  year: 2024
  ident: ref_161
  article-title: KS01.6.A the Lipid Droplet Phenotype as a Targetable Metabolic Dependency of Tumor Cells and Pro-Tumoral Macrophages in the Peri-Necrotic GBM Niche
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noae144.008
– ident: ref_136
  doi: 10.3389/fimmu.2020.585034
– volume: 21
  start-page: e2406870
  year: 2024
  ident: ref_211
  article-title: Tumor-Selective Nano-Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll-like Receptors
  publication-title: Small
  doi: 10.1002/smll.202406870
– volume: 8
  start-page: 261
  year: 2006
  ident: ref_144
  article-title: The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses
  publication-title: Neuro-Oncology
  doi: 10.1215/15228517-2006-008
– volume: 2
  start-page: e26383
  year: 2013
  ident: ref_150
  article-title: Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology
  publication-title: Oncoimmunology
  doi: 10.4161/onci.26383
– volume: 147
  start-page: 297
  year: 2020
  ident: ref_1
  article-title: Trends in glioblastoma: Outcomes over time and type of intervention: A systematic evidence based analysis
  publication-title: J. Neuro-Oncol.
  doi: 10.1007/s11060-020-03451-6
– volume: 16
  start-page: 156
  year: 2015
  ident: ref_38
  article-title: ATP citrate lyase (ACLY): A promising target for cancer prevention and treatment
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450115666141224125117
– volume: 360
  start-page: 660
  year: 2018
  ident: ref_6
  article-title: An anatomic transcriptional atlas of human glioblastoma
  publication-title: Science
  doi: 10.1126/science.aaf2666
– volume: 29
  start-page: 103
  year: 2019
  ident: ref_189
  article-title: TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.09.020
– volume: 82
  start-page: 1125
  year: 2022
  ident: ref_93
  article-title: Abstract 1125: Elucidating the transcriptomic response to EGFR-targeted therapy in EGFR-driven glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2022-1125
– ident: ref_25
  doi: 10.1371/journal.pcbi.1002018
– ident: ref_126
  doi: 10.3389/fonc.2022.893820
– volume: 10
  start-page: 48
  year: 2009
  ident: ref_168
  article-title: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1674
– volume: 20
  start-page: 1208
  year: 2019
  ident: ref_209
  article-title: Functional reprogramming of regulatory T cells in the absence of Foxp3
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0442-x
– volume: 126
  start-page: 2282
  year: 2010
  ident: ref_20
  article-title: Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24918
– volume: 23
  start-page: 5928
  year: 2003
  ident: ref_52
  article-title: Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-13-05928.2003
– ident: ref_79
  doi: 10.3389/fimmu.2022.869061
– volume: 131
  start-page: 75
  year: 2018
  ident: ref_89
  article-title: p53 and glucose metabolism: An orchestra to be directed in cancer therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2018.03.015
– volume: 80
  start-page: 1438
  year: 2020
  ident: ref_199
  article-title: Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-2994
– volume: 145
  start-page: 3288
  year: 2022
  ident: ref_173
  article-title: Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity
  publication-title: Brain
  doi: 10.1093/brain/awac222
– volume: 25
  start-page: 771
  year: 2015
  ident: ref_96
  article-title: Metabolic reprogramming in macrophages and dendritic cells in innate immunity
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.68
– ident: ref_201
  doi: 10.3389/fimmu.2023.1261257
– volume: 18
  start-page: 1219
  year: 2016
  ident: ref_27
  article-title: Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/now024
– volume: 14
  start-page: 1295
  year: 2012
  ident: ref_17
  article-title: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2629
– volume: 23
  start-page: vi208
  year: 2021
  ident: ref_177
  article-title: TAMI-51. Horizontal Mitochondrial Transfer from the Tumor Microenvironment to Glioblastoma Increases Tumorigenicity
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noab196.834
– volume: 9
  start-page: 265
  year: 2019
  ident: ref_197
  article-title: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery
  publication-title: Theranostics
  doi: 10.7150/thno.27246
– volume: 19
  start-page: 2774
  year: 2019
  ident: ref_195
  article-title: Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04296
– volume: 145
  start-page: 7205
  year: 2023
  ident: ref_212
  article-title: Heterostructural Nanoadjuvant CuSe/CoSe(2) for Potentiating Ferroptosis and Photoimmunotherapy Through Intratumoral Blocked Lactate Efflux
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12772
– volume: 61
  start-page: 667
  year: 2016
  ident: ref_19
  article-title: Mitochondria and Cancer
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.02.011
– ident: ref_103
  doi: 10.3390/cancers13246156
– volume: 70
  start-page: 1469
  year: 2006
  ident: ref_41
  article-title: Hypoxia-Inducible Factor-1 (HIF-1)
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.106.027029
– volume: 3
  start-page: 82
  year: 2001
  ident: ref_112
  article-title: Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas
  publication-title: Neuro-Oncol.
  doi: 10.1093/neuonc/3.2.82
– ident: ref_125
  doi: 10.3389/fonc.2022.1116014
– volume: 162
  start-page: 1229
  year: 2015
  ident: ref_140
  article-title: Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 29
  start-page: 991
  year: 2014
  ident: ref_59
  article-title: Alpha-Ketoglutaramate: An overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-013-9444-9
– ident: ref_62
  doi: 10.5772/intechopen.68939
– ident: ref_184
  doi: 10.3390/cells8121584
– volume: 74
  start-page: 839
  year: 1996
  ident: ref_23
  article-title: High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1996.446
– volume: 12
  start-page: 105
  year: 2001
  ident: ref_49
  article-title: Cholesterol metabolism in the brain
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/00041433-200104000-00003
– volume: 109
  start-page: 1568
  year: 2007
  ident: ref_64
  article-title: L-arginine availability regulates T-lymphocyte cell-cycle progression
  publication-title: Blood
  doi: 10.1182/blood-2006-06-031856
– volume: 14
  start-page: 958
  year: 2012
  ident: ref_117
  article-title: The molecular profile of microglia under the influence of glioma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/nos116
– volume: 12
  start-page: 312
  year: 2021
  ident: ref_40
  article-title: HIF1alpha/HIF2alpha-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03598-8
– volume: 527
  start-page: 100
  year: 2015
  ident: ref_88
  article-title: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth
  publication-title: Nature
  doi: 10.1038/nature15376
– volume: 8
  start-page: e000207
  year: 2020
  ident: ref_200
  article-title: Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000207
– volume: 11
  start-page: e006522
  year: 2023
  ident: ref_205
  article-title: Metabolic reprogramming via an engineered PGC-1alpha improves human chimeric antigen receptor T-cell therapy against solid tumors
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2022-006522
– ident: ref_98
  doi: 10.3389/fimmu.2023.1123853
– volume: 37
  start-page: 255
  year: 2018
  ident: ref_156
  article-title: Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0923-z
– ident: ref_110
  doi: 10.3389/fimmu.2022.993444
– volume: 17
  start-page: 2341
  year: 2023
  ident: ref_210
  article-title: Tumor-Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09033
– volume: 14
  start-page: 724
  year: 2011
  ident: ref_11
  article-title: Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.08.016
– volume: 9
  start-page: A696
  year: 2021
  ident: ref_183
  article-title: 668 Lipid-instructed metabolic rewiring unleash the anti-tumor potential of CD8+ T cells
  publication-title: J. ImmunoTher. Cancer
– volume: 18
  start-page: 807
  year: 2016
  ident: ref_109
  article-title: CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/nov280
– volume: 89
  start-page: 251
  year: 2000
  ident: ref_115
  article-title: Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma
  publication-title: Int. J. Cancer
  doi: 10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5
– volume: 3
  start-page: 177
  year: 2006
  ident: ref_42
  article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.02.002
– volume: 5
  start-page: eaaw4543
  year: 2019
  ident: ref_75
  article-title: Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw4543
– ident: ref_9
  doi: 10.3390/biology11020313
– volume: 13
  start-page: 1213
  year: 1995
  ident: ref_14
  article-title: NMR studies of brain 13C-glucose uptake and metabolism: Present status
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(95)02034-Q
– volume: 362
  start-page: 104286
  year: 2021
  ident: ref_171
  article-title: Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2021.104286
– ident: ref_104
  doi: 10.3389/fimmu.2020.00835
– ident: ref_8
  doi: 10.3389/fonc.2022.1005069
– volume: 15
  start-page: 827
  year: 2012
  ident: ref_58
  article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.05.001
– volume: 574
  start-page: 575
  year: 2019
  ident: ref_153
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– ident: ref_29
  doi: 10.3390/ijms20133374
– volume: 24
  start-page: vii286
  year: 2022
  ident: ref_178
  article-title: TMIC-69. Mitochondrial Transfer from Astrocytes Enhances Metabolism and Drives Proliferation of Glioblastoma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noac209.1112
– volume: 159
  start-page: 1603
  year: 2014
  ident: ref_47
  article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.025
– volume: 24
  start-page: vii283
  year: 2022
  ident: ref_157
  article-title: TMIC-56. Tumor Cell Architectural Heterogeneity and Spatial Interactions with the Tumor Immune Microenvironment in GBM
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noac209.1100
– ident: ref_54
  doi: 10.1038/s41598-021-86789-9
– volume: 21
  start-page: 1624
  year: 2003
  ident: ref_26
  article-title: Cost of migration: Invasion of malignant gliomas and implications for treatment
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2003.05.063
– volume: 193
  start-page: 233
  year: 2001
  ident: ref_170
  article-title: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.193.2.233
– volume: 23
  start-page: 101420
  year: 2020
  ident: ref_174
  article-title: Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101420
– ident: ref_202
  doi: 10.1038/s41598-021-93775-8
– ident: ref_35
  doi: 10.3390/cancers14164003
– ident: ref_76
  doi: 10.3390/ijms22073301
– ident: ref_33
  doi: 10.1038/srep15556
– volume: 107
  start-page: 2013
  year: 2006
  ident: ref_154
  article-title: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression
  publication-title: Blood
  doi: 10.1182/blood-2005-05-1795
– volume: 11
  start-page: 6252
  year: 2023
  ident: ref_69
  article-title: Boosting the therapy of glutamine-addiction glioblastoma by combining glutamine metabolism therapy with photo-enhanced chemodynamic therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/D3BM00897E
– volume: 2
  start-page: 17040
  year: 2017
  ident: ref_128
  article-title: Targeting cellular pathways in glioblastoma multiforme
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/sigtrans.2017.40
– ident: ref_71
  doi: 10.3390/cancers15041010
– volume: 10
  start-page: e2204808
  year: 2023
  ident: ref_196
  article-title: Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202204808
– ident: ref_208
  doi: 10.3389/fimmu.2021.624324
– volume: 19
  start-page: 1858
  year: 2017
  ident: ref_78
  article-title: Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.014
– volume: 11
  start-page: eaau4972
  year: 2019
  ident: ref_94
  article-title: Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aau4972
– volume: 17
  start-page: 170
  year: 2015
  ident: ref_118
  article-title: Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3090
– volume: 24
  start-page: 657
  year: 2016
  ident: ref_149
  article-title: LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.011
– ident: ref_77
  doi: 10.3389/fonc.2022.901951
– volume: 367
  start-page: 58
  year: 2015
  ident: ref_185
  article-title: NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.07.007
– volume: 69
  start-page: 3086
  year: 2009
  ident: ref_172
  article-title: Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2826
– volume: 11
  start-page: 9217
  year: 2021
  ident: ref_61
  article-title: Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma
  publication-title: Theranostics
  doi: 10.7150/thno.60679
– volume: 18
  start-page: 1253
  year: 2016
  ident: ref_66
  article-title: Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/now034
– volume: 115
  start-page: 3355
  year: 2002
  ident: ref_133
  article-title: Smad signalling network
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115.17.3355
– volume: 78
  start-page: 1019
  year: 2020
  ident: ref_4
  article-title: Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.05.034
– volume: 21
  start-page: 125
  year: 2010
  ident: ref_143
  article-title: The role of tregs in glioma-mediated immunosuppression: Potential target for intervention
  publication-title: Neurosurg. Clin. N. Am.
  doi: 10.1016/j.nec.2009.08.012
– volume: 21
  start-page: vi74
  year: 2019
  ident: ref_92
  article-title: DRES-13. Dual Kinase Inhibition to Combat EGFR-Inhibitor Resistance in Glioblastoma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noz175.300
– volume: 111
  start-page: 3635
  year: 2008
  ident: ref_134
  article-title: B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells
  publication-title: Blood
  doi: 10.1182/blood-2007-11-123141
– ident: ref_188
  doi: 10.3389/fimmu.2024.1426657
– volume: 42
  start-page: 445
  year: 2023
  ident: ref_162
  article-title: Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2023.0071
– volume: 26
  start-page: 1850
  year: 2024
  ident: ref_206
  article-title: IL-13Ralpha2/TGF-beta bispecific CAR-T cells counter TGF-beta-mediated immune suppression and potentiate anti-tumor responses in glioblastoma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noae126
– volume: 23
  start-page: 6292
  year: 2017
  ident: ref_70
  article-title: Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3102
– volume: 16
  start-page: 732
  year: 2016
  ident: ref_21
  article-title: The multifaceted roles of fatty acid synthesis in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.89
– volume: 10
  start-page: e2205949
  year: 2023
  ident: ref_165
  article-title: PERK-Mediated Cholesterol Excretion from IDH Mutant Glioma Determines Anti-Tumoral Polarization of Microglia
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202205949
– volume: 8
  start-page: 77
  year: 2011
  ident: ref_113
  article-title: CCL2/MCP-1 modulation of microglial activation and proliferation
  publication-title: J. Neuroinflamm.
  doi: 10.1186/1742-2094-8-77
– volume: 211
  start-page: 781
  year: 2014
  ident: ref_146
  article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131916
– volume: 62
  start-page: 2592
  year: 2002
  ident: ref_135
  article-title: Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma
  publication-title: Cancer Res.
– volume: 22
  start-page: ii29
  year: 2020
  ident: ref_91
  article-title: CSIG-10. Genotype—Kinome Guided Development of Precision EGFR-Targeted Therapeutics for Glioblastoma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noaa215.122
– volume: 9
  start-page: 29
  year: 2021
  ident: ref_97
  article-title: Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-021-01124-7
– volume: 10
  start-page: 3892
  year: 2022
  ident: ref_192
  article-title: Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00650B
– volume: 57
  start-page: 123
  year: 2008
  ident: ref_105
  article-title: Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-007-0336-x
– volume: 30
  start-page: 201
  year: 2019
  ident: ref_2
  article-title: Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.04.003
– volume: 38
  start-page: 241
  year: 2019
  ident: ref_160
  article-title: Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-019-1228-6
– volume: 15
  start-page: 486
  year: 2015
  ident: ref_139
  article-title: Molecular and cellular insights into T cell exhaustion
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3862
– volume: 40
  start-page: 278
  year: 2021
  ident: ref_39
  article-title: The HIF1alpha-PDGFD-PDGFRalpha axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-021-02082-7
– volume: 207
  start-page: 2187
  year: 2010
  ident: ref_137
  article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100643
– volume: 78
  start-page: 5574
  year: 2018
  ident: ref_3
  article-title: Computational Characterization of Suppressive Immune Microenvironments in Glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3714
– ident: ref_119
  doi: 10.3389/fncel.2018.00235
– ident: ref_86
  doi: 10.21203/rs.3.rs-826338/v1
– volume: 68
  start-page: 1107
  year: 2019
  ident: ref_180
  article-title: Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02347-3
– volume: 18
  start-page: 1565
  year: 2019
  ident: ref_83
  article-title: Mechanisms of Resistance to EGFR Inhibition Reveal Metabolic Vulnerabilities in Human GBM
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-1330
– volume: 125
  start-page: 609
  year: 2013
  ident: ref_114
  article-title: GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-013-1079-8
– volume: 26
  start-page: 45
  year: 2018
  ident: ref_81
  article-title: Oncogene-Driven Metabolic Alterations in Cancer
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2017.211
– volume: 204
  start-page: 1037
  year: 2007
  ident: ref_167
  article-title: Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061120
– volume: 35
  start-page: e2209785
  year: 2023
  ident: ref_102
  article-title: Recruiting T-Cells toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Co-Delivery of Cytokines and Immune Checkpoint Antibodies with Macrophage-Membrane-Camouflaged Nanovesicles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209785
– volume: 39
  start-page: e103790
  year: 2020
  ident: ref_101
  article-title: Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment
  publication-title: EMBO J.
  doi: 10.15252/embj.2019103790
– volume: 43
  start-page: 1326
  year: 2023
  ident: ref_80
  article-title: Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12502
– volume: 324
  start-page: 1029
  year: 2009
  ident: ref_24
  article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 12
  start-page: 177
  year: 2021
  ident: ref_164
  article-title: EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20379-7
– volume: 150
  start-page: 104511
  year: 2019
  ident: ref_204
  article-title: Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2019.104511
– volume: 23
  start-page: vi201
  year: 2021
  ident: ref_84
  article-title: TAMI-18. Differential Lipid Metabolism in Cancer Microenvironments Leads to a Requirement for Fatty Acid Desaturases FADS1 and FADS2 in GBM Cancer Stem Cell Maintenance
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noab196.802
– volume: 32
  start-page: 731
  year: 2022
  ident: ref_37
  article-title: ATP-citrate lyase (ACLY) inhibitors as therapeutic agents: A patenting perspective
  publication-title: Expert Opin. Ther. Pat.
  doi: 10.1080/13543776.2022.2067478
– volume: 8
  start-page: e1655360
  year: 2019
  ident: ref_181
  article-title: Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2019.1655360
– volume: 82
  start-page: 6010
  year: 1985
  ident: ref_13
  article-title: Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.17.6010
– volume: 10
  start-page: 1047
  year: 2022
  ident: ref_207
  article-title: TGFbeta and CIS Inhibition Overcomes NK-cell Suppression to Restore Antitumor Immunity
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-21-1052
– volume: 123
  start-page: 309
  year: 1956
  ident: ref_18
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 496
  start-page: 134
  year: 2021
  ident: ref_108
  article-title: Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2020.09.028
– volume: 331
  start-page: 131
  year: 2013
  ident: ref_120
  article-title: Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.12.010
– volume: 22
  start-page: 148
  year: 2017
  ident: ref_127
  article-title: Cyclooxygenase-2 in glioblastoma multiforme
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.09.017
– volume: 574
  start-page: 565
  year: 2019
  ident: ref_148
  article-title: VISTA is an acidic pH-selective ligand for PSGL-1
  publication-title: Nature
  doi: 10.1038/s41586-019-1674-5
– volume: 83
  start-page: 195
  year: 2023
  ident: ref_179
  article-title: Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-22-0677
– ident: ref_203
  doi: 10.3390/ijms222111511
– ident: ref_122
  doi: 10.1038/s41598-019-45535-y
– ident: ref_10
– volume: 159
  start-page: 1591
  year: 2014
  ident: ref_48
  article-title: Acetate dependence of tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.020
– volume: 21
  start-page: 1346
  year: 2020
  ident: ref_142
  article-title: The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0769-3
– volume: 111
  start-page: 177
  year: 2000
  ident: ref_116
  article-title: Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation
  publication-title: J. Neuroimmunol.
  doi: 10.1016/S0165-5728(00)00361-1
– volume: 513
  start-page: 559
  year: 2014
  ident: ref_152
  article-title: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
  publication-title: Nature
  doi: 10.1038/nature13490
– volume: 191
  start-page: 1486
  year: 2013
  ident: ref_147
  article-title: Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202702
– volume: 499
  start-page: 829
  year: 2018
  ident: ref_46
  article-title: Glycolytic inhibitor 2-Deoxy-d-Glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.04.001
– volume: 136
  start-page: 1155
  year: 2020
  ident: ref_63
  article-title: Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity
  publication-title: Blood
  doi: 10.1182/blood.2019004500
– ident: ref_43
  doi: 10.3390/cells10092371
– volume: 29
  start-page: 981
  year: 2006
  ident: ref_129
  article-title: Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells
  publication-title: Int. J. Oncol.
– volume: 65
  start-page: 3044
  year: 2005
  ident: ref_65
  article-title: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-4505
– volume: 7
  start-page: 203
  year: 2019
  ident: ref_182
  article-title: Immune landscapes associated with different glioblastoma molecular subtypes
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-019-0803-6
– volume: 18
  start-page: 1644
  year: 2016
  ident: ref_82
  article-title: EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/now113
– volume: 104
  start-page: 19345
  year: 2007
  ident: ref_57
  article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709747104
– volume: 24
  start-page: 4175
  year: 2018
  ident: ref_138
  article-title: T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-1846
– volume: 32
  start-page: 229
  year: 2020
  ident: ref_55
  article-title: Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.06.002
– volume: 65
  start-page: 11743
  year: 2005
  ident: ref_68
  article-title: Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0045
– volume: 6
  start-page: 605
  year: 2020
  ident: ref_5
  article-title: Turning Cold into Hot: Firing up the Tumor Microenvironment
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.02.022
– volume: 138
  start-page: 659
  year: 2003
  ident: ref_16
  article-title: Malignant glioma physiology: Cellular response to hypoxia and its role in tumor progression
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-138-8-200304150-00014
– volume: 18
  start-page: 655
  year: 2010
  ident: ref_187
  article-title: TGF-beta Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.023
– volume: 64
  start-page: 3892
  year: 2004
  ident: ref_15
  article-title: Akt stimulates aerobic glycolysis in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-2904
– volume: 17
  start-page: v136
  year: 2015
  ident: ref_32
  article-title: METB-08 Inhibition of Hexokinase 2 Using Tumor Glycolysis Inhibitors Identified Through a Drug Screen Inhibits Glioblastoma Growth In Vitro and In Vivo
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/nov221.08
– volume: 187
  start-page: 5336
  year: 2024
  ident: ref_166
  article-title: Macrophage-mediated myelin recycling fuels brain cancer malignancy
  publication-title: Cell
  doi: 10.1016/j.cell.2024.07.030
– ident: ref_95
  doi: 10.3389/fphar.2021.775602
– volume: 476
  start-page: 2963
  year: 2021
  ident: ref_124
  article-title: A tumor-promoting role for soluble TbetaRIII in glioblastoma
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-021-04128-y
– ident: ref_158
  doi: 10.1101/2022.01.25.477703
– volume: 2
  start-page: 722
  year: 2012
  ident: ref_67
  article-title: IDO is a nodal pathogenic driver of lung cancer and metastasis development
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0014
– volume: 52
  start-page: E4
  year: 2022
  ident: ref_7
  article-title: Immunoregulatory effects of glioma-associated stem cells on the glioblastoma peritumoral microenvironment: A differential PD-L1 expression from core to periphery?
  publication-title: Neurosurg. Focus
  doi: 10.3171/2021.11.FOCUS21589
– volume: 380
  start-page: 272
  year: 2016
  ident: ref_87
  article-title: Metabolic exchanges within tumor microenvironment
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.10.027
– volume: 25
  start-page: v146
  year: 2023
  ident: ref_186
  article-title: IMMU-22. Blockade of CD47 Results in Metabolic Reprogramming to Enhance Immune Cell-Mediated Cytotoxicity of Glioblastoma
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noad179.0554
– ident: ref_194
  doi: 10.3390/molecules27238552
– volume: 35
  start-page: 2014
  year: 2014
  ident: ref_155
  article-title: Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H(+) extrusion, cell migration and survival
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgu089
– volume: 15
  start-page: 31150
  year: 2023
  ident: ref_190
  article-title: Macrophage-Cancer Hybrid Membrane-Camouflaged Nanoplatforms for HIF-1alpha Gene Silencing-Enhanced Sonodynamic Therapy of Glioblastoma
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03001
– volume: 15
  start-page: eabq6288
  year: 2023
  ident: ref_53
  article-title: Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abq6288
– volume: 37
  start-page: e00328-17
  year: 2017
  ident: ref_90
  article-title: Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00328-17
– volume: 16
  start-page: 898
  year: 2015
  ident: ref_121
  article-title: Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-kappaB-Snail signaling in glioma
  publication-title: Cancer Biol. Ther.
  doi: 10.1080/15384047.2015.1028702
– ident: ref_72
  doi: 10.1038/s42003-019-0455-x
– volume: 20
  start-page: 460
  year: 2014
  ident: ref_51
  article-title: An overview of autophagy: Morphology, mechanism, and regulation
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2013.5371
– volume: 29
  start-page: 1275
  year: 2008
  ident: ref_130
  article-title: Tumor necrosis factor and cancer, buddies or foes?
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1111/j.1745-7254.2008.00889.x
– volume: 39
  start-page: 99
  year: 2007
  ident: ref_131
  article-title: Comparative analysis of peripheral and localised cytokine secretion in glioblastoma patients
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2007.05.012
– volume: 16
  start-page: 12964
  year: 2022
  ident: ref_198
  article-title: Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05408
– volume: 32
  start-page: 23
  year: 2012
  ident: ref_132
  article-title: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease
  publication-title: Crit. Rev. Immunol.
  doi: 10.1615/CritRevImmunol.v32.i1.30
– volume: 101
  start-page: 227
  year: 2011
  ident: ref_123
  article-title: IL-8 is a mediator of NF-kappaB induced invasion by gliomas
  publication-title: J. Neuro-Oncol.
  doi: 10.1007/s11060-010-0261-2
– volume: 225
  start-page: 195
  year: 2010
  ident: ref_145
  article-title: Prognostic significance and mechanism of Treg infiltration in human brain tumors
  publication-title: J. Neuroimmunol.
  doi: 10.1016/j.jneuroim.2010.05.020
– volume: 122
  start-page: 1118
  year: 2020
  ident: ref_191
  article-title: Correction: Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0710-4
– volume: 24
  start-page: ii50
  year: 2022
  ident: ref_56
  article-title: P10.08.A Lipogenesis inhibition by fatostatin shows effectiveness in glioblastoma models highly expressing fatty acid synthase (FASN)
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noac174.173
– volume: 30
  start-page: 683
  year: 2016
  ident: ref_50
  article-title: An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.09.008
– volume: 77
  start-page: 2266
  year: 2017
  ident: ref_99
  article-title: Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2310
– volume: 12
  start-page: 3729
  year: 2022
  ident: ref_45
  article-title: NDRG2 inhibits pyruvate carboxylase-mediated anaplerosis and combines with glutamine blockade to inhibit the proliferation of glioma cells
  publication-title: Am. J. Cancer Res.
– ident: ref_28
  doi: 10.3390/molecules24112159
– ident: ref_31
  doi: 10.3389/fonc.2022.925666
– volume: 134
  start-page: e178628
  year: 2024
  ident: ref_100
  article-title: Dual targeting macrophages and microglia is a therapeutic vulnerability in models of PTEN-deficient glioblastoma
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI178628
– volume: 26
  start-page: v17
  year: 2024
  ident: ref_176
  article-title: OS03.6.A Mitochondria Transfer in GBM Is Mediated by TGF-Β and Promotes Increased Invasiveness
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noae144.049
– volume: 4
  start-page: 648
  year: 2023
  ident: ref_175
  article-title: GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-023-00556-5
– volume: 80
  start-page: 499
  year: 2020
  ident: ref_106
  article-title: Dysregulation of Glutamate Transport Enhances Treg Function That Promotes VEGF Blockade Resistance in Glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-1577
– volume: 17
  start-page: 428
  year: 2018
  ident: ref_151
  article-title: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1444305
– volume: 26
  start-page: 1572
  year: 2024
  ident: ref_44
  article-title: Metabolic profiling of glioblastoma stem cells reveals pyruvate carboxylase as a critical survival factor and potential therapeutic target
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noae106
– volume: 491
  start-page: 932
  year: 2017
  ident: ref_36
  article-title: Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.07.138
– volume: 13
  start-page: 974
  year: 2023
  ident: ref_163
  article-title: Targeting Microglial Metabolic Rewiring Synergizes with Immune-Checkpoint Blockade Therapy for Glioblastoma
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-22-0455
– volume: 98
  start-page: 1
  year: 2020
  ident: ref_169
  article-title: Insights in the immunobiology of glioblastoma
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-019-01835-4
– volume: 14
  start-page: 27651
  year: 2022
  ident: ref_193
  article-title: Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05533
– volume: 13
  start-page: eaaz6314
  year: 2021
  ident: ref_159
  article-title: Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaz6314
– volume: 14
  start-page: e15343
  year: 2022
  ident: ref_34
  article-title: Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.202115343
– volume: 9
  start-page: 101
  year: 2021
  ident: ref_85
  article-title: Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-021-01205-7
– ident: ref_141
  doi: 10.3389/fonc.2023.1175563
– ident: ref_111
  doi: 10.3390/ijms22094460
– volume: 14
  start-page: 28569
  year: 2024
  ident: ref_30
  article-title: Dual inhibitory potential of ganoderic acid A on GLUT1/3: Computational and in vitro insights into targeting glucose metabolism in human lung cancer
  publication-title: RSC Adv.
  doi: 10.1039/D4RA04454A
– volume: 2
  start-page: ra82
  year: 2009
  ident: ref_22
  article-title: EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000446
– volume: 39
  start-page: 110934
  year: 2022
  ident: ref_107
  article-title: HIF-1alpha Is a Metabolic Switch Between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110934
– volume: 11
  start-page: 747
  year: 2009
  ident: ref_12
  article-title: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1881
– volume: 43
  start-page: 143
  year: 2006
  ident: ref_60
  article-title: Glutathione in cancer biology and therapy
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.1080/10408360500523878
– volume: 24
  start-page: 3632
  year: 2018
  ident: ref_73
  article-title: Tryptophan Metabolism Contributes to Radiation-Induced Immune Checkpoint Reactivation in Glioblastoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0041
SSID ssj0023259
Score 2.4622984
SecondaryResourceType review_article
Snippet Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 669
SubjectTerms Adaptation
Adenosine triphosphate
Animals
Brain cancer
Brain Neoplasms - immunology
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Brain tumors
Dehydrogenases
Disease susceptibility
Energy
Enzymes
Epidermal growth factor
Glioblastoma - genetics
Glioblastoma - immunology
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma - therapy
Glioblastoma multiforme
Glioma
Glucose
Glucose metabolism
Glutamine
Health aspects
Humans
Hypoxia
Immunotherapy
Immunotherapy - methods
Kinases
Lipids
Macrophages
Metabolism
Phosphorylation
Physiological aspects
Review
T cells
Tryptophan
Tumor Microenvironment - immunology
Title The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/39859381
https://www.proquest.com/docview/3159501683
https://www.proquest.com/docview/3159798950
https://pubmed.ncbi.nlm.nih.gov/PMC11765942
Volume 26
WOSCitedRecordID wos001404324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgA2kvfA8KYwoSiAcUrelHmvKCBtpg0u44TYCOpypNU9Hprh1rD8R_j92P2xUJXnipGtmp0tqJ7dT5GeB5Kl2DgY_HrZ-5PPBMwFM_D7l23dzXaaZ1u3Xx5TSaTtV8Hs_6Dbe6T6sc1sR2oc4qQ3vkBz7a3RD9E-W_ufjOqWoU_V3tS2hch20qm016Hs2vAi7fa4ulCbRBXIax7BLffQzzD4rzZY2uPIGZxyOT9OfCvGGZxlmTG2bo-Pb_vsAduNU7oOyw05i7cM2W9-BmV5Ly133QqDfspD06yaqcTWyDWrIoDDuzPwvaA2RFyd4viipFt7uplvo163osV6Vlp3RwmFKqGN4QYTjbxQYUXFs_gM_HR5_efeB9GQZuAuU2XGK8LW2YR5nB74XCMwqDFKFVFlultLJCZLnNhUbXxaTSywP0kawR0mrXSJX5u7BVVqV9BCy3UmlLRPRiMPpTkSfDMNLCoh-Eq4kDrwZJJKbHKKdSGYsEYxWSW7IpNwderLkvOmyOv_C9JKEmNGXxaUb3Jw9wTAR-lRyiroaEhBc6sDfixKlmxuRBtEk_1evkSq4OPFuTqSelr5W2WnU8UayQz4GHnRatR-zHBDmnhANqpF9rBgIAH1PK4lsLBC5EhGodeI__Pa4nsONR1WJXcBHswVZzubJP4Yb50RT15X47Zdqr2oftt0fT2Rm2Jt5HbM1OJrOvvwEj6yTI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UraIv3i_RqiNYfJDQTK4TQaSotUt3l0VqqU9xMplgZDepTdbSP-Vv9Jzc3Aj61gffAudMmCTfuU3OBeB57FsKAx_b1E5ima6tXDN2Us-UlpU6Mk6krI8ujibBbCaOj8P5BvzsamEorbLTibWiTgpFZ-Q7DtpdD_0T4bw5-W7S1Cj6u9qN0GhgcaDPzzBkK1-P3-H33bbtvfeHb_fNdqqAqVxhVaaP4aOvvTRIFLpKuBcl0OfmUiShFkIKzXmS6pRLtMQq9u3URZOvFfe1tJQvEgfvewk2XQL7CDbn4-n8cx_iOXY9no2j1TN9L_SbVHvHCa2d7NuyxOCB2qeHAyP4pylYs4XDPM01w7d34397ZTfheutis91GJm7Bhs5vw5Vm6Ob5HZAoGWxcF4eyImVTXaEcLDLFPuqzjE45WZazD4usiDGwqIqlfMWaFctVrtmESqMpaYzhBRG66jXW9fnV5V34dCHPdw9GeZHrB8BS7QupiYh-Gsa3IrB9zwsk1-jpob404GX35SPVdmGnYSCLCKMxwkm0jhMDtnvuk6b7yF_4XhCIIlJKeDcl29oK3BO194p2URo96vXnGbA14ERloobkDkpRq8zK6DeODHjWk2klJejlulg1PEEokM-A-w1q-x07ITXVE9wAMcBzz0AtzoeUPPtatzrnPEAxcu2H_97XU7i6fzidRJPx7OARXLNpRrPFTe5uwag6XenHcFn9qLLy9EkrsAy-XDTgfwEdt4Al
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UrYov3i_RqiNYfJCwmVwngkixri7dLouo1Kc4mUwwspvUJmvpX_PXeU5ubgR964NvgXMmTJLv3CbnAvA09i2FgY9taiexTNdWrhk7qWdKy0odGSdS1kcXn2bBfC6OjsLFFvzsamEorbLTibWiTgpFZ-RjB-2uh_6JcMZpmxax2J-8Ov5u0gQp-tPajdNoIHKgz04xfCtfTvfxW-_a9uTNh9fvzHbCgKlcYVWmj6Gkr700SBS6TbgvJdD_5lIkoRZCCs15kuqUS7TKKvbt1EXzrxX3tbSULxIH73sBttEld-0RbC-mh4vPfbjn2PWoNo4W0PS90G_S7h0ntMbZt1WJgQS1Ug8HBvFPs7BhF4c5mxtGcHLtf3591-Fq63qzvUZWbsCWzm_CpWYY59ktkCgxbFoXjbIiZYe6QvlYZoq916cZnX6yLGdvl1kRY8BRFSv5gjUrVutcsxmVTFMyGcMLInRVbazr_6vL2_DxXJ7vDozyItf3gKXaF1ITEf03jHtFYPueF0iu0QNEPWrA8w4FkWq7s9OQkGWEURphJtrEjAG7Pfdx05XkL3zPCFARKSu8m5JtzQXuidp-RXsopR71APQM2BlwopJRQ3IHq6hVcmX0G1MGPOnJtJIS93JdrBueIBTIZ8DdBsH9jp2Qmu0JboAYYLtnoNbnQ0qefa1boHMeoEi59v1_7-sxXEaUR7Pp_OABXLFpdLPFTe7uwKg6WeuHcFH9qLLy5FEruwy-nDfefwGMFYjl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Metabolic+Rewiring+in+Glioblastoma%3A+The+Immune+Landscape+and+Therapeutic+Strategies&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Vijayanathan%2C+Yuganthini&rft.au=Ho%2C+Ivy+A+W&rft.date=2025-01-14&rft.eissn=1422-0067&rft.volume=26&rft.issue=2&rft_id=info:doi/10.3390%2Fijms26020669&rft_id=info%3Apmid%2F39859381&rft.externalDocID=39859381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon