The hubs of the human connectome are generally implicated in the anatomy of brain disorders
Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-dist...
Saved in:
| Published in: | Brain (London, England : 1878) Vol. 137; no. Pt 8; p. 2382 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.08.2014
|
| Subjects: | |
| ISSN: | 1460-2156, 1460-2156 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. |
|---|---|
| AbstractList | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. |
| Author | Carletti, Francesco Bullmore, Edward T Scott, Jessica McGuire, Philip Fox, Peter T Mechelli, Andrea Crossley, Nicolas A |
| Author_xml | – sequence: 1 givenname: Nicolas A surname: Crossley fullname: Crossley, Nicolas A email: nicolas.crossley@kcl.ac.uk organization: 1 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK nicolas.crossley@kcl.ac.uk – sequence: 2 givenname: Andrea surname: Mechelli fullname: Mechelli, Andrea organization: 1 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK – sequence: 3 givenname: Jessica surname: Scott fullname: Scott, Jessica organization: 1 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK – sequence: 4 givenname: Francesco surname: Carletti fullname: Carletti, Francesco organization: 1 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK – sequence: 5 givenname: Peter T surname: Fox fullname: Fox, Peter T organization: 2 Research Imaging Institute and Department of Radiology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX 78229, USA – sequence: 6 givenname: Philip surname: McGuire fullname: McGuire, Philip organization: 1 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK – sequence: 7 givenname: Edward T surname: Bullmore fullname: Bullmore, Edward T organization: 3 University of Cambridge, Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, Cambridge CB2 0SZ, UK4 Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK5 GlaxoSmithKline, ImmunoPsychiatry, Alternative Discovery and Development, Stevenage SG1 2NY, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25057133$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkLtPwzAYxC1URB-wMSOPLKF-5jGiipdUiaVMDNEX-wsNSuxiJ0L572lLkZjuht-dTjcnE-cdEnLN2R1nhVxWARq3hO-BS3FGZlylLBFcp5N_fkrmMX4yxpUU6QWZCs10xqWckffNFul2qCL1Ne2PvgNHjXcOTe87pBCQfqDDAG070qbbtY2BHi1t3DEADvbceMgfp1DbRB8shnhJzmtoI16ddEHeHh82q-dk_fr0srpfJ0blrE80B1VrKcRBs9xqVqVZBrmUqa6RKxQFg5SJAi3o3NhCKlS4Z601mdFGLMjtb-8u-K8BY192TTTYtuDQD7HkWuWpZLnO9-jNCR2qDm25C00HYSz_DhE_r29lIQ |
| CitedBy_id | crossref_primary_10_1089_brain_2019_0705 crossref_primary_10_1002_brb3_1031 crossref_primary_10_1089_brain_2017_0494 crossref_primary_10_1038_s41598_020_61522_0 crossref_primary_10_1038_s41598_024_55753_8 crossref_primary_10_1186_s13064_025_00214_9 crossref_primary_10_3389_fpsyt_2021_735623 crossref_primary_10_2217_fnl_2016_0022 crossref_primary_10_1016_j_nicl_2022_102941 crossref_primary_10_1007_s00259_022_05740_w crossref_primary_10_1016_j_neuroimage_2021_117980 crossref_primary_10_1016_j_neuroimage_2019_06_037 crossref_primary_10_1002_hbm_24578 crossref_primary_10_1016_j_neuroimage_2020_117220 crossref_primary_10_1007_s11682_019_00090_y crossref_primary_10_3389_fnins_2017_00125 crossref_primary_10_1186_s13195_023_01327_1 crossref_primary_10_33790_jrpr1100156 crossref_primary_10_1002_hbm_23486 crossref_primary_10_3390_brainsci7050050 crossref_primary_10_1038_s41598_017_17886_x crossref_primary_10_1016_j_eurpsy_2019_02_004 crossref_primary_10_1016_j_neuroimage_2017_02_007 crossref_primary_10_1073_pnas_1513302113 crossref_primary_10_1002_hbm_23479 crossref_primary_10_1007_s00429_015_0999_6 crossref_primary_10_1038_s41598_020_79845_3 crossref_primary_10_1002_hbm_25452 crossref_primary_10_1002_hbm_26543 crossref_primary_10_1016_j_nicl_2025_103860 crossref_primary_10_1016_j_bpsc_2018_03_003 crossref_primary_10_1016_j_tics_2022_09_006 crossref_primary_10_1016_j_nicl_2017_12_029 crossref_primary_10_1093_brain_awv075 crossref_primary_10_1016_j_neuroimage_2017_02_031 crossref_primary_10_1016_j_neuroimage_2019_06_055 crossref_primary_10_3389_fnsys_2021_648928 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1016_j_neuroimage_2023_120265 crossref_primary_10_1016_j_nicl_2025_103870 crossref_primary_10_1016_j_nicl_2017_12_017 crossref_primary_10_1016_j_mri_2014_08_037 crossref_primary_10_1371_journal_pone_0230099 crossref_primary_10_3389_fncom_2022_891384 crossref_primary_10_1007_s00062_019_00802_3 crossref_primary_10_3389_fneur_2021_746493 crossref_primary_10_3389_fnins_2020_00541 crossref_primary_10_1017_S0033291716002609 crossref_primary_10_1073_pnas_2203682119 crossref_primary_10_1038_s41598_017_07846_w crossref_primary_10_1002_hbm_23017 crossref_primary_10_1038_srep43176 crossref_primary_10_1002_hbm_23018 crossref_primary_10_1002_osp4_362 crossref_primary_10_3389_fnins_2023_1217079 crossref_primary_10_1016_j_nicl_2016_09_020 crossref_primary_10_1007_s40263_018_0599_0 crossref_primary_10_1002_hbm_23452 crossref_primary_10_3389_fnagi_2022_999288 crossref_primary_10_1002_jnr_24773 crossref_primary_10_1038_s41531_022_00332_9 crossref_primary_10_1002_mp_17568 crossref_primary_10_1016_j_brainresbull_2024_110925 crossref_primary_10_1016_j_neuroimage_2020_116578 crossref_primary_10_3390_jcm9040990 crossref_primary_10_1523_JNEUROSCI_0754_16_2016 crossref_primary_10_1016_j_neubiorev_2016_08_036 crossref_primary_10_1038_s41598_020_60611_4 crossref_primary_10_1097_ANA_0000000000000550 crossref_primary_10_1016_j_neubiorev_2016_08_035 crossref_primary_10_1016_j_neuroimage_2017_02_058 crossref_primary_10_3389_fnbeh_2022_846919 crossref_primary_10_1097_j_pain_0000000000002480 crossref_primary_10_1016_j_bbih_2025_101018 crossref_primary_10_1016_j_arr_2016_10_001 crossref_primary_10_1007_s00429_015_1096_6 crossref_primary_10_1016_j_neuroimage_2017_11_016 crossref_primary_10_1111_epi_13757 crossref_primary_10_1016_j_bpsc_2018_03_017 crossref_primary_10_1017_S0033291724000643 crossref_primary_10_1002_brb3_2553 crossref_primary_10_1002_cne_24009 crossref_primary_10_7554_eLife_41836 crossref_primary_10_1016_j_bpsc_2018_03_015 crossref_primary_10_1186_s12885_024_11865_y crossref_primary_10_1038_s41380_022_01916_w crossref_primary_10_1093_schbul_sby166 crossref_primary_10_1080_14737175_2023_2174016 crossref_primary_10_1016_j_schres_2021_04_001 crossref_primary_10_1111_cns_12449 crossref_primary_10_1016_j_jad_2020_11_122 crossref_primary_10_1038_s41598_024_80731_5 crossref_primary_10_1038_srep27964 crossref_primary_10_1016_j_jaac_2016_01_004 crossref_primary_10_1002_hipo_23215 crossref_primary_10_3389_fnhum_2016_00158 crossref_primary_10_3389_fncir_2017_00038 crossref_primary_10_1080_00207454_2017_1387116 crossref_primary_10_1038_s41380_019_0554_6 crossref_primary_10_1073_pnas_1510619112 crossref_primary_10_1002_hbm_25403 crossref_primary_10_1038_s41598_020_65948_4 crossref_primary_10_1016_j_nicl_2017_11_025 crossref_primary_10_1016_j_tics_2015_11_005 crossref_primary_10_1016_j_neuron_2017_04_008 crossref_primary_10_1016_j_neuropsychologia_2019_03_019 crossref_primary_10_1002_hbm_24312 crossref_primary_10_1038_nrneurol_2016_84 crossref_primary_10_3233_JAD_220175 crossref_primary_10_1038_s41583_019_0177_6 crossref_primary_10_1038_s41562_017_0069 crossref_primary_10_1002_wps_21110 crossref_primary_10_1016_j_ynirp_2023_100178 crossref_primary_10_1002_hbm_24305 crossref_primary_10_1016_j_neuron_2019_08_037 crossref_primary_10_1038_s41582_021_00529_1 crossref_primary_10_1038_s41598_021_02908_6 crossref_primary_10_1016_j_neuroimage_2017_01_057 crossref_primary_10_1162_netn_a_00324 crossref_primary_10_1016_j_psychres_2022_114742 crossref_primary_10_5409_wjcp_v5_i3_330 crossref_primary_10_1016_j_neurobiolaging_2016_09_001 crossref_primary_10_1136_gpsych_2021_100523 crossref_primary_10_1093_cercor_bhab123 crossref_primary_10_3389_fnhum_2022_948706 crossref_primary_10_1089_neu_2017_5124 crossref_primary_10_1371_journal_pone_0154407 crossref_primary_10_3389_fnhum_2019_00017 crossref_primary_10_1016_j_jpsychires_2015_09_018 crossref_primary_10_1109_ACCESS_2025_3585196 crossref_primary_10_1093_brain_awz009 crossref_primary_10_1007_s11682_015_9501_6 crossref_primary_10_1111_cns_12407 crossref_primary_10_1007_s00429_020_02133_3 crossref_primary_10_1016_j_biopsycho_2015_09_005 crossref_primary_10_1016_j_neuroimage_2018_09_036 crossref_primary_10_1073_pnas_2013232118 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_3389_fnhum_2017_00169 crossref_primary_10_1016_j_isci_2023_106384 crossref_primary_10_1111_cns_12417 crossref_primary_10_1016_j_plrev_2022_03_001 crossref_primary_10_1089_brain_2016_0459 crossref_primary_10_1038_s41380_020_0770_0 crossref_primary_10_1093_brain_awy180 crossref_primary_10_3389_fnagi_2016_00215 crossref_primary_10_3389_fnins_2018_00860 crossref_primary_10_1038_s41583_023_00752_3 crossref_primary_10_1089_brain_2016_0455 crossref_primary_10_1017_S0033291718001010 crossref_primary_10_1016_j_bpsgos_2025_100606 crossref_primary_10_1016_j_neuroimage_2023_120270 crossref_primary_10_1162_netn_a_00362 crossref_primary_10_1093_brain_awx279 crossref_primary_10_1007_s11682_019_00099_3 crossref_primary_10_1016_j_clinph_2016_02_017 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1080_15622975_2016_1274050 crossref_primary_10_3389_fncom_2019_00022 crossref_primary_10_1016_j_neunet_2017_07_009 crossref_primary_10_12688_wellcomeopenres_14572_1 crossref_primary_10_1093_cercor_bhz024 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1002_hbm_22992 crossref_primary_10_1002_brb3_2707 crossref_primary_10_1016_j_neuron_2017_03_037 crossref_primary_10_1371_journal_pbio_2005346 crossref_primary_10_1016_j_nicl_2019_101809 crossref_primary_10_1016_j_neurobiolaging_2018_11_005 crossref_primary_10_1016_j_neuroimage_2020_117252 crossref_primary_10_1371_journal_pone_0201772 crossref_primary_10_3389_fpsyt_2018_00537 crossref_primary_10_1007_s11682_022_00655_4 crossref_primary_10_1007_s11065_021_09481_9 crossref_primary_10_3389_fnagi_2015_00256 crossref_primary_10_1007_s00429_021_02319_3 crossref_primary_10_1038_s42003_024_07223_0 crossref_primary_10_1162_netn_a_00103 crossref_primary_10_1016_j_brainres_2025_149653 crossref_primary_10_1016_j_neuroimage_2021_118612 crossref_primary_10_1016_j_neuroimage_2020_117241 crossref_primary_10_3390_app14083463 crossref_primary_10_1093_schbul_sbw110 crossref_primary_10_3389_fnagi_2018_00365 crossref_primary_10_1080_17434440_2021_1909470 crossref_primary_10_1016_j_neuroimage_2020_117481 crossref_primary_10_1148_radiol_2016160274 crossref_primary_10_1162_netn_a_00339 crossref_primary_10_1371_journal_pone_0184325 crossref_primary_10_1007_s00259_023_06443_6 crossref_primary_10_1016_j_bpsc_2016_01_002 crossref_primary_10_1093_brain_aww194 crossref_primary_10_3389_fnbeh_2022_907707 crossref_primary_10_1017_S0033291717000058 crossref_primary_10_1212_WNL_0000000000003982 crossref_primary_10_1007_s11060_016_2328_1 crossref_primary_10_1212_WNL_0000000000002413 crossref_primary_10_1093_cercor_bhab356 crossref_primary_10_1186_s13024_023_00634_3 crossref_primary_10_1016_j_neuroimage_2025_121205 crossref_primary_10_1111_jcpp_12400 crossref_primary_10_1089_brain_2015_0360 crossref_primary_10_3389_fnagi_2021_680200 crossref_primary_10_1016_j_neuron_2016_07_031 crossref_primary_10_1089_brain_2015_0367 crossref_primary_10_1002_hbm_22830 crossref_primary_10_1176_appi_ajp_2019_18040380 crossref_primary_10_1186_s10194_021_01315_6 crossref_primary_10_3390_app14104197 crossref_primary_10_1016_j_ijrobp_2025_03_019 crossref_primary_10_1016_j_biopsych_2014_08_009 crossref_primary_10_1016_j_nicl_2023_103523 crossref_primary_10_1162_netn_a_00395 crossref_primary_10_1016_j_neuron_2017_02_048 crossref_primary_10_1002_ana_26168 crossref_primary_10_1016_j_neuroimage_2019_116362 crossref_primary_10_3389_fnana_2016_00025 crossref_primary_10_1016_j_tics_2017_03_003 crossref_primary_10_1016_j_neunet_2021_04_027 crossref_primary_10_1038_srep30770 crossref_primary_10_1016_j_nicl_2022_103018 crossref_primary_10_1016_j_neurobiolaging_2020_09_007 crossref_primary_10_1016_j_cortex_2019_09_011 crossref_primary_10_1016_j_bpsc_2022_09_005 crossref_primary_10_1073_pnas_2218007120 crossref_primary_10_1162_netn_a_00140 crossref_primary_10_1109_TNSRE_2025_3590826 crossref_primary_10_1002_hbm_23941 crossref_primary_10_1093_brain_awaa277 crossref_primary_10_1371_journal_pone_0146282 crossref_primary_10_1016_j_evopsy_2016_02_001 crossref_primary_10_1093_cercor_bhy313 crossref_primary_10_1016_j_neures_2018_07_005 crossref_primary_10_1038_s41598_023_32713_2 crossref_primary_10_1016_j_nicl_2019_102048 crossref_primary_10_1093_schbul_sbaa078 crossref_primary_10_1016_j_nicl_2022_103249 crossref_primary_10_1111_ejn_15664 crossref_primary_10_1162_netn_a_00133 crossref_primary_10_1038_s41598_024_84508_8 crossref_primary_10_1038_s41562_019_0659_6 crossref_primary_10_1016_j_nicl_2015_11_017 crossref_primary_10_1038_s41467_021_24306_2 crossref_primary_10_1016_j_bandl_2017_08_006 crossref_primary_10_1016_j_neuroimage_2022_119721 crossref_primary_10_1016_j_dcn_2017_02_004 crossref_primary_10_1089_brain_2018_0584 crossref_primary_10_1111_ejn_15432 crossref_primary_10_3389_fnins_2020_588684 crossref_primary_10_1016_j_nicl_2017_06_025 crossref_primary_10_1093_schizbullopen_sgab033 crossref_primary_10_1007_s11682_021_00479_8 crossref_primary_10_1016_j_neuroimage_2016_04_066 crossref_primary_10_3389_fnhum_2021_647513 crossref_primary_10_1093_cercor_bhv063 crossref_primary_10_3389_fneur_2015_00228 crossref_primary_10_3389_fnagi_2024_1467054 crossref_primary_10_1002_hbm_26159 crossref_primary_10_1038_s41582_020_00428_x crossref_primary_10_1038_s41386_021_01156_6 crossref_primary_10_1111_jcpp_12838 crossref_primary_10_1016_j_pnpbp_2015_11_010 crossref_primary_10_1017_S0033291723000417 crossref_primary_10_1093_cercor_bhy330 crossref_primary_10_3389_fnagi_2015_00090 crossref_primary_10_1503_jpn_150159 crossref_primary_10_1109_TMI_2015_2431294 crossref_primary_10_1093_cercor_bhx273 crossref_primary_10_1016_j_bbr_2016_06_043 crossref_primary_10_7554_eLife_70450 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1016_S2215_0366_16_00045_6 crossref_primary_10_1002_hbm_22817 crossref_primary_10_1016_j_neuron_2017_11_039 crossref_primary_10_1016_j_evopsy_2016_01_007 crossref_primary_10_1371_journal_pone_0331085 crossref_primary_10_1016_j_tins_2020_05_001 crossref_primary_10_1016_j_neuroimage_2016_04_047 crossref_primary_10_1111_acps_12619 crossref_primary_10_3389_fneur_2018_01178 crossref_primary_10_3389_fnins_2019_00080 crossref_primary_10_1038_srep23153 crossref_primary_10_1002_hbm_26177 crossref_primary_10_1038_nrdp_2015_67 crossref_primary_10_1093_cercor_bhad012 crossref_primary_10_3389_fnins_2019_00096 crossref_primary_10_1002_jmri_28896 crossref_primary_10_1016_j_neuropharm_2020_108246 crossref_primary_10_1016_j_bpsc_2020_05_013 crossref_primary_10_1007_s00415_020_10245_3 crossref_primary_10_1073_pnas_1818523116 crossref_primary_10_1016_j_nicl_2022_103295 crossref_primary_10_1016_j_clinph_2016_04_013 crossref_primary_10_1038_s41598_019_54950_0 crossref_primary_10_1109_TIM_2023_3271740 crossref_primary_10_1002_hbm_25037 crossref_primary_10_1016_j_neuroimage_2025_121289 crossref_primary_10_1073_pnas_2018784118 crossref_primary_10_3389_fneur_2022_814940 crossref_primary_10_1002_hbm_25036 crossref_primary_10_1371_journal_pcbi_1005104 crossref_primary_10_1016_j_heliyon_2024_e28957 crossref_primary_10_1148_radiol_2018172808 crossref_primary_10_1097_WCO_0000000000000220 crossref_primary_10_1016_j_brainres_2015_02_002 crossref_primary_10_1186_s12888_024_06411_w crossref_primary_10_1523_JNEUROSCI_3188_14_2015 crossref_primary_10_3758_s13415_018_0645_x crossref_primary_10_1038_s41598_025_14774_7 crossref_primary_10_1109_TNSRE_2021_3105991 crossref_primary_10_1038_s41598_019_42322_7 crossref_primary_10_1016_j_nicl_2020_102419 crossref_primary_10_1016_j_dcn_2016_05_002 crossref_primary_10_1109_TCYB_2025_3585240 crossref_primary_10_1177_1352458515625806 crossref_primary_10_1007_s12021_022_09610_6 crossref_primary_10_1016_j_jpsychires_2017_01_018 crossref_primary_10_3389_fncom_2025_1525785 crossref_primary_10_1007_s11682_018_9989_7 crossref_primary_10_1093_sleep_zsac030 crossref_primary_10_1161_STROKEAHA_119_025637 crossref_primary_10_1007_s00330_014_3541_y crossref_primary_10_1016_j_neuroimage_2016_03_049 crossref_primary_10_1177_0271678X211036606 crossref_primary_10_1007_s11060_018_2987_1 crossref_primary_10_1109_TNSRE_2022_3150834 crossref_primary_10_1016_j_biopsych_2019_05_015 crossref_primary_10_1523_JNEUROSCI_1089_17_2018 crossref_primary_10_1073_pnas_1720186115 crossref_primary_10_1093_brain_awu148 crossref_primary_10_1002_hbm_25287 crossref_primary_10_3390_biomedicines9010082 crossref_primary_10_1371_journal_pone_0115503 crossref_primary_10_1111_jon_12827 crossref_primary_10_1038_s41598_021_04462_7 crossref_primary_10_1176_appi_ajp_2019_19050560 crossref_primary_10_1016_j_cmpb_2025_108771 crossref_primary_10_1016_j_nicl_2017_01_007 crossref_primary_10_1016_j_nicl_2021_102930 crossref_primary_10_1016_j_neuropharm_2018_04_031 crossref_primary_10_1016_j_nicl_2023_103392 crossref_primary_10_3389_fneur_2023_1135305 crossref_primary_10_1016_j_neurobiolaging_2015_04_015 crossref_primary_10_1097_j_pain_0000000000001480 crossref_primary_10_1038_s42003_024_06829_8 crossref_primary_10_1038_s41386_019_0322_y crossref_primary_10_1002_mrm_25790 crossref_primary_10_1038_s41467_017_01189_w crossref_primary_10_1017_S2045796015000074 crossref_primary_10_1038_s41380_024_02442_7 crossref_primary_10_1371_journal_pcbi_1005550 crossref_primary_10_1111_epi_17171 crossref_primary_10_1177_1756286419880664 crossref_primary_10_1097_WCO_0000000000000261 crossref_primary_10_3390_e20070491 crossref_primary_10_1016_j_neurobiolaging_2017_08_005 crossref_primary_10_1007_s00332_019_09545_4 crossref_primary_10_1007_s00429_021_02301_z crossref_primary_10_1017_S0033291724000801 crossref_primary_10_1002_aur_1759 crossref_primary_10_1093_cercor_bhad075 crossref_primary_10_1016_j_neunet_2023_04_039 crossref_primary_10_1371_journal_pcbi_1005776 crossref_primary_10_3389_fnins_2022_856808 crossref_primary_10_1007_s12038_018_9813_y crossref_primary_10_1038_s41598_024_63716_2 crossref_primary_10_1016_j_tics_2024_11_010 crossref_primary_10_1007_s12264_014_1518_0 crossref_primary_10_1002_brb3_441 crossref_primary_10_1002_hbm_26587 crossref_primary_10_1002_dneu_22795 crossref_primary_10_1016_j_jad_2020_04_054 crossref_primary_10_1049_iet_syb_2015_0007 crossref_primary_10_1016_j_cortex_2017_02_011 crossref_primary_10_1097_j_pain_0000000000001696 crossref_primary_10_1111_ejn_16384 crossref_primary_10_1016_j_bbr_2022_113752 crossref_primary_10_3389_fneur_2018_00482 crossref_primary_10_1212_WNL_0000000000008525 crossref_primary_10_1016_j_neuroimage_2016_03_075 crossref_primary_10_1186_s12916_022_02363_8 crossref_primary_10_1002_hbm_23069 crossref_primary_10_1038_s41386_021_01152_w crossref_primary_10_1146_annurev_clinpsy_081219_115627 crossref_primary_10_1111_psyp_14671 crossref_primary_10_1089_brain_2023_0001 crossref_primary_10_3390_brainsci12101355 crossref_primary_10_1002_brb3_448 crossref_primary_10_1016_j_dadm_2016_12_004 crossref_primary_10_3389_fnhum_2014_01047 crossref_primary_10_1016_j_neuroimage_2017_09_009 crossref_primary_10_1007_s10548_025_01104_3 crossref_primary_10_1016_j_nicl_2025_103763 crossref_primary_10_1007_s12264_024_01214_1 crossref_primary_10_1371_journal_pcbi_1005989 crossref_primary_10_1038_s41598_021_95603_5 crossref_primary_10_3389_fnins_2024_1373264 crossref_primary_10_1007_s00429_022_02490_1 crossref_primary_10_1016_j_plrev_2018_12_004 crossref_primary_10_1038_s41467_021_21943_5 crossref_primary_10_1136_jnnp_2019_322402 crossref_primary_10_1038_s42003_021_01832_9 crossref_primary_10_1002_hbm_25308 crossref_primary_10_1016_j_neuroimage_2024_120866 crossref_primary_10_1007_s12021_022_09614_2 crossref_primary_10_1038_s42003_025_08198_2 crossref_primary_10_1016_j_neurobiolaging_2021_07_005 crossref_primary_10_1073_pnas_1820754116 crossref_primary_10_1177_1352458517699875 crossref_primary_10_1093_brain_awx347 crossref_primary_10_3390_ijms21010143 crossref_primary_10_1007_s12021_025_09734_5 crossref_primary_10_1016_j_jalz_2016_12_007 crossref_primary_10_3389_fnhum_2016_00476 crossref_primary_10_1371_journal_pone_0178798 crossref_primary_10_3390_ijms26031062 crossref_primary_10_1016_j_yebeh_2023_109407 crossref_primary_10_1016_j_schres_2023_02_007 crossref_primary_10_1016_S2215_0366_15_00308_9 crossref_primary_10_1016_j_dadm_2018_08_011 crossref_primary_10_1002_hbm_26650 crossref_primary_10_1016_j_ejpn_2023_05_009 crossref_primary_10_1002_hbm_26410 crossref_primary_10_1016_j_euroneuro_2017_11_018 crossref_primary_10_1038_nrn3950 crossref_primary_10_3389_fnins_2017_00238 crossref_primary_10_1007_s13246_023_01273_0 crossref_primary_10_1371_journal_pcbi_1005707 crossref_primary_10_1162_netn_a_00406 crossref_primary_10_1016_j_artmed_2023_102678 crossref_primary_10_1371_journal_pone_0155894 crossref_primary_10_1016_j_nicl_2018_06_029 crossref_primary_10_1016_j_bpsc_2016_08_003 crossref_primary_10_1002_hbm_23323 crossref_primary_10_1212_WNL_0000000000002167 crossref_primary_10_1097_WNR_0000000000002190 crossref_primary_10_3389_fbioe_2020_00309 crossref_primary_10_1016_j_schres_2023_03_016 crossref_primary_10_1038_s41596_024_01023_w crossref_primary_10_1103_PhysRevE_111_034309 crossref_primary_10_1007_s00429_015_1162_0 crossref_primary_10_1007_s00415_016_8221_1 crossref_primary_10_1089_neu_2021_0450 crossref_primary_10_1038_s41398_020_0798_6 crossref_primary_10_1038_s41467_025_60556_0 crossref_primary_10_1016_j_drugalcdep_2024_112416 crossref_primary_10_1109_TNNLS_2023_3240403 crossref_primary_10_1093_brain_awv394 crossref_primary_10_1016_j_nicl_2015_06_007 crossref_primary_10_1089_brain_2020_0801 crossref_primary_10_1002_hbm_25769 crossref_primary_10_1038_s41398_021_01237_6 crossref_primary_10_1038_s41467_022_34367_6 crossref_primary_10_1016_j_mri_2019_01_019 crossref_primary_10_1016_j_neuroimage_2015_06_008 crossref_primary_10_1177_1073858419867083 crossref_primary_10_1016_j_bspc_2020_101864 crossref_primary_10_1371_journal_pbio_3000495 crossref_primary_10_1016_j_nicl_2021_102582 crossref_primary_10_1016_j_nicl_2021_102583 crossref_primary_10_3389_fnhum_2018_00128 crossref_primary_10_1016_j_bpsc_2017_11_004 crossref_primary_10_1038_s41598_019_56806_z crossref_primary_10_1371_journal_pone_0179823 crossref_primary_10_1177_1352458519837704 crossref_primary_10_1093_brain_awv145 crossref_primary_10_1016_j_neuroscience_2018_03_049 crossref_primary_10_3233_JAD_160735 crossref_primary_10_1038_s41467_022_32420_y crossref_primary_10_1093_cercor_bhz113 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1002_hbm_23772 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_1162_netn_a_00449 crossref_primary_10_1016_j_bosn_2025_04_008 crossref_primary_10_1007_s00406_022_01541_2 crossref_primary_10_1371_journal_pbio_1002177 crossref_primary_10_1002_hbm_24617 crossref_primary_10_1016_j_neuroimage_2020_117181 crossref_primary_10_3233_JAD_190174 crossref_primary_10_3389_fncir_2019_00047 crossref_primary_10_1016_j_nicl_2018_07_012 crossref_primary_10_1016_j_pnpbp_2020_110040 crossref_primary_10_3390_ijms20246193 crossref_primary_10_1016_j_neuroscience_2021_10_012 crossref_primary_10_1016_j_bpsc_2019_12_015 crossref_primary_10_1016_j_clinph_2017_05_010 crossref_primary_10_1523_JNEUROSCI_0579_23_2023 crossref_primary_10_1038_s41593_018_0188_z crossref_primary_10_1371_journal_pcbi_1003956 crossref_primary_10_1038_s41598_017_10778_0 crossref_primary_10_1093_brain_awx181 crossref_primary_10_1017_S1355617716000060 crossref_primary_10_1038_s41380_018_0267_2 crossref_primary_10_1016_j_neuroimage_2015_04_033 crossref_primary_10_1038_srep29383 crossref_primary_10_1093_cercor_bhaa167 crossref_primary_10_1093_cercor_bhac346 crossref_primary_10_1016_j_neubiorev_2015_03_007 crossref_primary_10_1016_j_biopsych_2018_11_011 crossref_primary_10_3389_fncom_2016_00012 crossref_primary_10_1038_tp_2015_59 crossref_primary_10_3389_fpsyt_2022_845492 crossref_primary_10_1016_j_tics_2016_03_001 crossref_primary_10_1177_1352458519845109 crossref_primary_10_1016_j_neuropsychologia_2025_109080 crossref_primary_10_1016_j_neuroimage_2015_05_096 crossref_primary_10_1038_s41467_019_12764_8 crossref_primary_10_1038_srep42117 crossref_primary_10_3389_fneur_2022_825177 crossref_primary_10_1016_j_neuroimage_2019_01_032 crossref_primary_10_1038_s41537_025_00658_2 crossref_primary_10_1007_s00234_020_02369_0 crossref_primary_10_3389_fnhum_2019_00146 crossref_primary_10_1503_jpn_250002 crossref_primary_10_7554_eLife_34354 crossref_primary_10_1089_brain_2019_0686 crossref_primary_10_1177_10870547221085505 crossref_primary_10_1093_cercor_bhac115 crossref_primary_10_1016_j_schres_2015_03_012 crossref_primary_10_1016_j_chaos_2022_112018 crossref_primary_10_1038_s41380_021_01319_3 crossref_primary_10_1007_s11065_021_09512_5 crossref_primary_10_1038_s42003_021_02712_y crossref_primary_10_3389_fncom_2018_00091 crossref_primary_10_1002_hbm_26801 crossref_primary_10_1016_j_csbj_2020_06_039 crossref_primary_10_1093_cercor_bhz156 crossref_primary_10_1038_mp_2016_216 crossref_primary_10_1109_TPAMI_2021_3081744 crossref_primary_10_1162_netn_a_00246 crossref_primary_10_3389_fnins_2021_757838 crossref_primary_10_1177_1059712319847993 crossref_primary_10_1007_s11682_023_00809_y crossref_primary_10_1162_netn_a_00245 crossref_primary_10_1002_hbm_22633 crossref_primary_10_1016_j_dcn_2018_12_005 crossref_primary_10_1093_brain_awy008 crossref_primary_10_3389_fnins_2022_856366 crossref_primary_10_1016_j_bpsc_2022_02_008 crossref_primary_10_1016_j_dcn_2021_100957 crossref_primary_10_3233_JAD_170147 crossref_primary_10_1038_s41380_023_02199_5 crossref_primary_10_3389_fncir_2019_00083 crossref_primary_10_1162_netn_a_00232 crossref_primary_10_1016_j_scib_2022_11_012 crossref_primary_10_1093_neuros_nyaa400 crossref_primary_10_1016_j_pnpbp_2015_12_003 crossref_primary_10_1093_brain_aww297 crossref_primary_10_1093_schbul_sbv178 crossref_primary_10_1002_hbm_23952 crossref_primary_10_1093_brain_awx145 crossref_primary_10_1186_s40035_020_00200_7 crossref_primary_10_1038_s44220_023_00111_2 crossref_primary_10_1016_j_neuroimage_2015_04_009 crossref_primary_10_1177_21582440251328082 crossref_primary_10_1162_NETN_a_00025 crossref_primary_10_1093_cercor_bhz171 crossref_primary_10_1111_epi_13225 crossref_primary_10_1162_netn_a_00221 crossref_primary_10_1148_radiol_2017162696 crossref_primary_10_1162_netn_a_00223 crossref_primary_10_3389_fnmol_2024_1507033 crossref_primary_10_1093_braincomms_fcaf218 crossref_primary_10_1007_s40846_017_0259_8 crossref_primary_10_1093_schbul_sbv146 crossref_primary_10_1038_nrn3901 crossref_primary_10_1073_pnas_1502052112 crossref_primary_10_1016_j_schres_2020_01_023 crossref_primary_10_1038_s41380_019_0464_7 crossref_primary_10_1002_hbm_22650 crossref_primary_10_3389_fnins_2018_00935 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1016_j_neuroimage_2019_02_028 crossref_primary_10_1016_j_neuroimage_2021_118743 crossref_primary_10_1016_j_jad_2023_04_028 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1038_s41598_023_43547_3 crossref_primary_10_1111_desc_12662 crossref_primary_10_1002_hbm_23976 crossref_primary_10_1016_j_bbih_2024_100877 crossref_primary_10_3390_app14188336 crossref_primary_10_1093_brain_awac360 crossref_primary_10_1016_j_clinph_2015_04_063 crossref_primary_10_3389_fpsyt_2021_763770 crossref_primary_10_1038_s41598_024_64845_4 crossref_primary_10_1038_s41598_018_37920_w crossref_primary_10_3389_fnins_2016_00381 crossref_primary_10_1162_netn_a_00040 crossref_primary_10_3389_fnana_2018_00111 crossref_primary_10_1038_s41467_023_43567_7 crossref_primary_10_1016_j_neuroimage_2019_02_018 crossref_primary_10_1038_s41398_017_0036_z crossref_primary_10_1016_j_nicl_2016_05_010 crossref_primary_10_31083_JIN25816 crossref_primary_10_3389_fncom_2016_00084 crossref_primary_10_3389_fneur_2017_00739 crossref_primary_10_1016_j_jad_2022_11_029 crossref_primary_10_1002_hbm_22954 crossref_primary_10_1016_j_nicl_2018_02_035 crossref_primary_10_1186_s12883_015_0400_7 crossref_primary_10_1016_j_nicl_2022_103105 crossref_primary_10_1093_brain_awz091 crossref_primary_10_1016_j_nicl_2018_01_002 crossref_primary_10_1016_j_bpsc_2022_01_007 crossref_primary_10_1093_schbul_sbw100 crossref_primary_10_1016_j_nbd_2022_105918 crossref_primary_10_1016_j_nicl_2018_08_008 crossref_primary_10_1177_0271678X17708692 crossref_primary_10_1016_j_neuroimage_2021_118040 crossref_primary_10_1038_s41467_022_34811_7 crossref_primary_10_1192_bjp_bp_114_154393 crossref_primary_10_1093_cercor_bhv171 crossref_primary_10_1371_journal_pone_0137484 crossref_primary_10_1016_j_nicl_2022_103139 crossref_primary_10_1017_S0033291715001361 crossref_primary_10_1038_s41598_021_97450_w crossref_primary_10_1038_s42003_022_04028_x crossref_primary_10_1162_netn_a_00260 crossref_primary_10_1109_TMI_2020_3042873 crossref_primary_10_1016_j_neuroimage_2021_118018 crossref_primary_10_1016_j_nicl_2018_08_015 crossref_primary_10_31083_j_jin2305102 crossref_primary_10_1038_s41598_021_00873_8 crossref_primary_10_1038_s41398_021_01232_x crossref_primary_10_1016_j_neurobiolaging_2016_08_013 crossref_primary_10_1016_j_bandc_2025_106351 crossref_primary_10_1016_j_neuroimage_2022_119414 crossref_primary_10_1057_s41599_021_01013_3 crossref_primary_10_1016_j_nicl_2018_01_028 crossref_primary_10_1016_j_neuropharm_2018_10_025 crossref_primary_10_1097_j_pain_0000000000001762 crossref_primary_10_1016_j_nicl_2018_08_027 crossref_primary_10_1002_mds_26309 crossref_primary_10_1111_andr_12684 crossref_primary_10_1002_hbm_23813 crossref_primary_10_3389_fpsyg_2017_01765 crossref_primary_10_3233_JAD_150249 crossref_primary_10_1161_STROKEAHA_115_009598 crossref_primary_10_3233_RNN_150511 crossref_primary_10_1016_j_neuroimage_2016_11_026 crossref_primary_10_3389_fnins_2016_00585 crossref_primary_10_1038_s41380_023_01949_9 crossref_primary_10_1162_netn_a_00087 crossref_primary_10_1016_j_dadm_2017_03_007 crossref_primary_10_3389_fnins_2019_01044 crossref_primary_10_1038_s41380_023_02157_1 crossref_primary_10_1097_WNR_0000000000001773 crossref_primary_10_3389_fnins_2016_00353 crossref_primary_10_1038_s41398_022_02115_5 crossref_primary_10_3389_fnagi_2020_592469 crossref_primary_10_1016_j_tics_2017_09_006 crossref_primary_10_7554_eLife_08440 crossref_primary_10_1016_j_nicl_2018_03_034 crossref_primary_10_1016_j_neuroimage_2015_01_007 crossref_primary_10_1093_brain_awac388 crossref_primary_10_3389_fnins_2019_01056 crossref_primary_10_1109_TNNLS_2021_3107330 crossref_primary_10_1186_s13024_023_00690_9 crossref_primary_10_1093_brain_awz080 crossref_primary_10_1016_j_neuroimage_2021_118219 crossref_primary_10_1145_3023363 crossref_primary_10_1162_jocn_a_00810 crossref_primary_10_1016_j_neuroimage_2018_10_078 crossref_primary_10_1038_s41380_023_02279_6 crossref_primary_10_1002_jmri_27453 crossref_primary_10_1016_j_medp_2024_100038 crossref_primary_10_3389_fnhum_2019_00343 crossref_primary_10_1007_s00415_018_8846_3 crossref_primary_10_1093_brain_awac378 crossref_primary_10_1002_hbm_26056 crossref_primary_10_1016_j_msard_2022_103496 crossref_primary_10_1016_j_neuroimage_2015_03_057 crossref_primary_10_1007_s12264_021_00812_7 crossref_primary_10_1111_psyp_14159 crossref_primary_10_1016_j_drugalcdep_2022_109436 crossref_primary_10_1017_S0033291715002895 crossref_primary_10_1016_j_jpsychires_2015_08_003 crossref_primary_10_1162_netn_a_00054 crossref_primary_10_3389_fnagi_2022_834145 crossref_primary_10_1162_netn_a_00291 crossref_primary_10_1038_s41380_019_0603_1 crossref_primary_10_1111_jcpp_12365 crossref_primary_10_1016_j_neubiorev_2023_105144 crossref_primary_10_1016_j_nicl_2018_03_005 crossref_primary_10_1177_25424823241307617 crossref_primary_10_3389_fneur_2017_00580 crossref_primary_10_1038_srep34156 crossref_primary_10_1016_j_neuroimage_2020_116654 crossref_primary_10_1007_s00406_021_01344_x crossref_primary_10_1093_cercor_bhv305 crossref_primary_10_1016_j_neurobiolaging_2020_03_009 crossref_primary_10_1016_j_neuroimage_2019_07_008 crossref_primary_10_3389_fninf_2022_886365 crossref_primary_10_1016_j_neubiorev_2017_03_018 crossref_primary_10_1016_j_neuropharm_2022_108989 crossref_primary_10_1016_j_schres_2016_01_025 crossref_primary_10_1016_j_nicl_2020_102530 crossref_primary_10_1093_cercor_bhv300 crossref_primary_10_1093_schbul_sbad047 crossref_primary_10_1016_j_npbr_2016_01_008 crossref_primary_10_1371_journal_pcbi_1006550 crossref_primary_10_1016_j_schres_2019_11_058 crossref_primary_10_1093_noajnl_vdaf163 crossref_primary_10_1016_j_neuroimage_2022_119263 crossref_primary_10_1016_j_copsyc_2021_10_010 crossref_primary_10_3390_brainsci13101493 crossref_primary_10_1016_j_jad_2024_02_089 crossref_primary_10_1093_brain_awac180 crossref_primary_10_1016_j_neuroscience_2024_12_016 crossref_primary_10_1093_cercor_bhu246 crossref_primary_10_1007_s10548_022_00892_2 crossref_primary_10_1016_j_csda_2019_06_007 crossref_primary_10_1038_s41598_018_20123_8 crossref_primary_10_1093_scan_nsw154 crossref_primary_10_1098_rstb_2016_0011 crossref_primary_10_1503_jpn_180038 crossref_primary_10_1016_j_neubiorev_2017_04_028 crossref_primary_10_1016_j_bpsc_2018_01_007 crossref_primary_10_1002_hbm_24078 crossref_primary_10_1515_revneuro_2017_0028 crossref_primary_10_1016_j_clineuro_2022_107481 crossref_primary_10_3389_fnins_2024_1305284 crossref_primary_10_1002_hbm_25161 crossref_primary_10_1016_j_jad_2016_11_015 crossref_primary_10_1016_j_nicl_2015_09_008 crossref_primary_10_1016_j_yebeh_2020_106948 crossref_primary_10_1038_s42003_024_05873_8 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_1016_j_nbd_2018_08_003 crossref_primary_10_1016_j_dcn_2018_02_001 crossref_primary_10_1016_j_neuroimage_2023_119962 crossref_primary_10_1016_j_bpsc_2018_01_013 crossref_primary_10_1016_j_neuroimage_2020_116611 crossref_primary_10_1016_j_schres_2020_11_026 crossref_primary_10_1093_cercor_bhu259 crossref_primary_10_1148_radiol_232454 crossref_primary_10_1089_brain_2020_0745 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1038_s41598_022_07730_2 crossref_primary_10_1093_cercor_bhae039 crossref_primary_10_1016_j_pscychresns_2017_03_003 crossref_primary_10_1212_WNL_0000000000010731 crossref_primary_10_2147_JPR_S515047 crossref_primary_10_1002_hbm_24014 crossref_primary_10_1016_j_bpsc_2022_12_013 crossref_primary_10_1016_j_cmet_2017_07_015 crossref_primary_10_1017_S1355617715000995 crossref_primary_10_1016_j_wneu_2020_12_146 crossref_primary_10_1002_bdr2_1530 crossref_primary_10_1007_s40473_015_0056_z crossref_primary_10_1002_bdr2_1529 crossref_primary_10_1111_adb_13096 crossref_primary_10_1016_j_pscychresns_2022_111528 crossref_primary_10_1038_s41537_021_00157_0 crossref_primary_10_1038_s44220_024_00323_0 crossref_primary_10_1016_j_jneumeth_2015_06_016 crossref_primary_10_1002_hbm_24041 crossref_primary_10_1016_j_schres_2020_12_045 crossref_primary_10_1089_brain_2021_0049 crossref_primary_10_1016_j_jad_2021_05_018 crossref_primary_10_1002_hbm_24281 crossref_primary_10_1016_j_nic_2019_09_004 crossref_primary_10_1073_pnas_1922248117 crossref_primary_10_3389_fnins_2020_00051 crossref_primary_10_1111_ner_12339 crossref_primary_10_1038_s41467_020_15701_2 crossref_primary_10_1007_s11682_016_9533_6 crossref_primary_10_1002_hbm_26450 crossref_primary_10_1038_s41598_021_95932_5 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1016_j_nicl_2021_102619 crossref_primary_10_1093_brain_awad060 crossref_primary_10_1016_j_nicl_2021_102613 crossref_primary_10_1038_ncomms9414 crossref_primary_10_1016_j_neurobiolaging_2022_07_007 crossref_primary_10_1016_j_neuroscience_2020_08_037 crossref_primary_10_1016_j_biopsych_2019_10_026 crossref_primary_10_1161_STROKEAHA_119_025738 crossref_primary_10_1016_j_brs_2025_06_007 crossref_primary_10_1016_j_nicl_2016_01_022 crossref_primary_10_1016_j_media_2021_102162 crossref_primary_10_1016_j_yebeh_2015_06_005 crossref_primary_10_1002_brb3_329 |
| ContentType | Journal Article |
| Copyright | The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. |
| Copyright_xml | – notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/brain/awu132 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1460-2156 |
| ExternalDocumentID | 25057133 |
| Genre | Meta-Analysis Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH074457 – fundername: Medical Research Council grantid: G1000183 – fundername: Wellcome Trust grantid: 095844 – fundername: Medical Research Council grantid: G0001354 |
| GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CGR COF CS3 CUY CVF CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NPM NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 7X8 |
| ID | FETCH-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 886 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340051100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2156 |
| IngestDate | Wed Oct 01 17:17:32 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 8 |
| Keywords | VBM graph analysis tractography rich club topology |
| Language | English |
| License | The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/brain/article-pdf/137/8/2382/13797791/awu132.pdf |
| PMID | 25057133 |
| PQID | 1548630858 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1548630858 pubmed_primary_25057133 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-01 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Brain (London, England : 1878) |
| PublicationTitleAlternate | Brain |
| PublicationYear | 2014 |
| References | 25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148. 26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122. |
| References_xml | – reference: 26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122. – reference: 25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148. |
| SSID | ssj0014326 |
| Score | 2.6475523 |
| SecondaryResourceType | review_article |
| Snippet | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2382 |
| SubjectTerms | Adult Brain - anatomy & histology Brain - pathology Brain - physiopathology Computer Simulation Connectome - methods Diffusion Tensor Imaging - methods Female Humans Male Nerve Net - anatomy & histology Nerve Net - pathology Nerve Net - physiopathology |
| Title | The hubs of the human connectome are generally implicated in the anatomy of brain disorders |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25057133 https://www.proquest.com/docview/1548630858 |
| Volume | 137 |
| WOSCitedRecordID | wos000340051100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4fj-I4HVpukk2yUlEFC-WHhQKHkqazGrB7tZ2q_jvneymeBIEL5s97EAyTCbfZGbnI-SSIaYwQ9FJpHEaAxRuEpOqPLHWKc1ASeAN2YTqdnW_b3rxwm0WyyoXPrF21L504Y68HaB1xhEg6KvJexJYo0J2NVJoLJMWRygTrFr1f7IIgqfx7yKW4NGWxcJ3DOLbw0DA0Laf804gHvkNXNaHzN3mf6e3RTYivKTXjT1skyUodsjaQ0yg75JnNAv6is6Cljmt6vexLagL5S6uKsdA7RToS9OL-u2LjmLBOXg6KmoBW2CYPv4K8vXqqI_9O2d75Onu9vHmPon8CokTmlWJ7FiRS9zRYVTaSzbMlLKa80zm0BGQGmYzlhrwVmrnDRcgAL_13iknXbpPVoqygENCmcYwRjLA9QuRM2alh1Q4bphEUciPyMVCbQO035CUsAWU89ngR3FH5KDR_WDSNNoYBHgWgujjP0ifkHXEMqKpzTslrRx3L5yRVfdRjWbT89ow8NntPXwDK-DDJg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hubs+of+the+human+connectome+are+generally+implicated+in+the+anatomy+of+brain+disorders&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Crossley%2C+Nicolas+A&rft.au=Mechelli%2C+Andrea&rft.au=Scott%2C+Jessica&rft.au=Carletti%2C+Francesco&rft.date=2014-08-01&rft.eissn=1460-2156&rft.volume=137&rft.issue=Pt+8&rft.spage=2382&rft_id=info:doi/10.1093%2Fbrain%2Fawu132&rft_id=info%3Apmid%2F25057133&rft_id=info%3Apmid%2F25057133&rft.externalDocID=25057133 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon |