M-ary Rank Classifier Combination: A Binary Linear Programming Problem
The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-c...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 21; číslo 5; s. 440 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2019
MDPI |
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer. |
|---|---|
| AbstractList | The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer. The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer.The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer. |
| Author | Vigneron, Vincent Maaref, Hichem |
| AuthorAffiliation | Informatique, Bio-informatique et Systèmes Complexes (IBISC) EA 4526, univ Evry, Université Paris-Saclay, 40 rue du Pelvoux, 91020 Evry, France |
| AuthorAffiliation_xml | – name: Informatique, Bio-informatique et Systèmes Complexes (IBISC) EA 4526, univ Evry, Université Paris-Saclay, 40 rue du Pelvoux, 91020 Evry, France |
| Author_xml | – sequence: 1 givenname: Vincent orcidid: 0000-0001-5917-6041 surname: Vigneron fullname: Vigneron, Vincent – sequence: 2 givenname: Hichem surname: Maaref fullname: Maaref, Hichem |
| BackLink | https://hal.science/hal-02159642$$DView record in HAL |
| BookMark | eNplkktvEzEUhS3Uir5Y8A9GYgOLoX47ZoEUIkorBVEhWFse-07qMGO39qQS_x6nKS0tKx9dn_vdI_seob2YIiD0muD3jGl8CpRggTnHL9AhwVq3nGG8948-QEelrDGmjBL5Eh0wRqUigh-is6-tzb-b7zb-ahaDLSX0AXKzSGMXop1Cih-aefOp6upahgg2N5c5rbIdxxBXW90NMJ6g_d4OBV7dn8fo59nnH4vzdvnty8Vivmwdn-Gp5d5Cx4WnUlBCPbheO0F64p0iSnbc11Beg6BYUdH1zFPArvNWC840F5gdo4sd1ye7Ntc5jDWXSTaYu0LKK2PzFNwAxpKZF4oT14PijKnOVyUFgV522ntWWR93rOtNN4J3EKdshyfQpzcxXJlVujVKEK7prALe7QBXz9rO50uzrWFKhJac3pLqfXs_LKebDZTJjKE4GAYbIW2KoVxKJTXVW-ybZ9Z12uRYn9VQwWdMcUx5dZ3uXC6nUjL0xoXp7sNq1jAYgs12N8zDbjzGfej4m_l_7x9m3rcz |
| CitedBy_id | crossref_primary_10_3390_e21070653 |
| Cites_doi | 10.1111/j.1468-0394.2004.00285.x 10.1214/ss/1042727940 10.1109/TMI.2016.2535865 10.1007/978-3-642-40997-4 10.1016/j.inffus.2013.04.006 10.1002/cyto.b.20173 10.1007/978-3-540-25966-4_1 10.1198/jasa.2010.tm09415 10.1371/journal.pone.0013715 10.1016/j.comcom.2011.01.012 10.1007/978-3-319-53547-0 10.1109/BTAS.2009.5339081 10.1109/IJCNN.2018.8489127 10.1007/978-0-387-21579-2 10.1016/j.neucom.2003.12.002 10.1017/9781316795699 10.1016/j.inffus.2008.04.001 10.1016/j.compmedimag.2010.03.006 10.1007/978-3-642-03107-6 10.1016/j.csda.2016.01.011 10.1186/1471-2105-11-427 10.1109/5.726791 10.1016/j.neucom.2005.08.006 10.1016/j.neucom.2011.04.044 10.1007/BF00058655 10.1109/34.58871 10.1023/A:1015609200117 10.1007/3-540-45014-9_1 10.1007/978-1-4419-8477-7 10.1016/j.inffus.2007.07.002 10.1016/S0167-6393(99)00054-0 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES 5PM DOA |
| DOI | 10.3390/e21050440 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_a18d5741cfe74337bdcfe651ef6b9dd3 PMC7514928 oai:HAL:hal-02159642v1 10_3390_e21050440 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 1XC C1A CH8 IPNFZ ITC RIG VOOES 5PM |
| ID | FETCH-LOGICAL-c480t-4daeb45d265212decf9c51f1dc7176b4d715d9e520725bf3d2e0cbda954394503 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472675900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:51:43 EDT 2025 Tue Nov 04 01:48:28 EST 2025 Sat Nov 01 11:24:21 EDT 2025 Fri Sep 05 11:47:03 EDT 2025 Fri Jul 25 12:10:09 EDT 2025 Sat Nov 29 07:09:17 EST 2025 Tue Nov 18 20:58:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Aggregation Plurality voting Classifier combination Binary linear programming Total order Independence Data fusion Rank Mutual information Cervical cancer HPV |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-4daeb45d265212decf9c51f1dc7176b4d715d9e520725bf3d2e0cbda954394503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC7514928 |
| ORCID | 0000-0001-5917-6041 0000-0002-1192-7333 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2548374024?pq-origsite=%requestingapplication% |
| PMID | 33267154 |
| PQID | 2548374024 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a18d5741cfe74337bdcfe651ef6b9dd3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514928 hal_primary_oai_HAL_hal_02159642v1 proquest_miscellaneous_2466769298 proquest_journals_2548374024 crossref_citationtrail_10_3390_e21050440 crossref_primary_10_3390_e21050440 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Han (ref_4) 2012; 78 Breiman (ref_20) 1996; 24 Corchado (ref_2) 2014; 16 ref_14 LeCun (ref_33) 1998; 86 ref_12 ref_11 ref_32 Nanni (ref_7) 2006; 69 Hansen (ref_23) 1990; 12 ref_31 ref_30 Li (ref_34) 2012; 34 ref_19 ref_18 ref_17 ref_15 Oza (ref_3) 2008; 9 Scheurer (ref_35) 2007; 72 Demirekler (ref_9) 2000; 30 Yang (ref_10) 2004; 21 Bhatt (ref_13) 2013; 69 Safo (ref_38) 2016; 99 ref_25 (ref_16) 2002; 112 Kondo (ref_37) 2016; 72 Lee (ref_21) 2010; 34 Zhong (ref_39) 2004; 57 Witten (ref_36) 2010; 105 ref_1 Selvakumar (ref_5) 2011; 34 Panigrahi (ref_22) 2009; 10 Anthimopoulos (ref_24) 2016; 35 ref_29 ref_28 ref_27 ref_26 Bolton (ref_6) 2002; 17 ref_8 |
| References_xml | – volume: 21 start-page: 279 year: 2004 ident: ref_10 article-title: Neural network ensembles: Combining multiple models for enhanced performance using a multistage approach publication-title: Expert Syst. doi: 10.1111/j.1468-0394.2004.00285.x – volume: 17 start-page: 235 year: 2002 ident: ref_6 article-title: Statistical Fraud Detection: A Review publication-title: Stat. Sci. doi: 10.1214/ss/1042727940 – ident: ref_32 – volume: 35 start-page: 1207 year: 2016 ident: ref_24 article-title: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535865 – ident: ref_11 doi: 10.1007/978-3-642-40997-4 – volume: 72 start-page: 1 year: 2016 ident: ref_37 article-title: RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm publication-title: J. Stat. Softw. Artic. – volume: 16 start-page: 3 year: 2014 ident: ref_2 article-title: A survey of multiple classifier systems as hybrid systems. Special Issue on Information Fusion in Hybrid Intelligent Fusion Systems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.04.006 – volume: 72 start-page: 324 year: 2007 ident: ref_35 article-title: Human papillomavirus-related cellular changes measured by cytometric analysis of DNA ploidy and chromatin texture publication-title: Cytom. Part B Clin. Cytom. doi: 10.1002/cyto.b.20173 – ident: ref_12 doi: 10.1007/978-3-540-25966-4_1 – volume: 105 start-page: 713 year: 2010 ident: ref_36 article-title: A framework for feature selection in clustering publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09415 – ident: ref_1 – ident: ref_15 doi: 10.1371/journal.pone.0013715 – volume: 34 start-page: 1328 year: 2011 ident: ref_5 article-title: Distributed Denial of Service Attack Detection Using an Ensemble of Neural Classifier publication-title: Comput. Commun. doi: 10.1016/j.comcom.2011.01.012 – volume: 69 start-page: 31 year: 2013 ident: ref_13 article-title: Ranking of Classifiers based on Dataset Characteristics using Active Meta Learning publication-title: Int.J. Comput. Appl. – ident: ref_30 doi: 10.1007/978-3-319-53547-0 – ident: ref_14 doi: 10.1109/BTAS.2009.5339081 – ident: ref_8 doi: 10.1109/IJCNN.2018.8489127 – ident: ref_19 doi: 10.1007/978-0-387-21579-2 – ident: ref_25 – volume: 57 start-page: 469 year: 2004 ident: ref_39 article-title: An EM algorithm for learning sparse and overcomplete representations publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.12.002 – ident: ref_29 doi: 10.1017/9781316795699 – ident: ref_27 – volume: 10 start-page: 354 year: 2009 ident: ref_22 article-title: Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2008.04.001 – volume: 34 start-page: 535 year: 2010 ident: ref_21 article-title: Random forest based lung nodule classification aided by clustering publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.03.006 – volume: 34 start-page: 273 year: 2012 ident: ref_34 article-title: Double staining cytologic samples with quantitative Feulgen-thionin and anti-Ki-67 immunocytochemistry as a method of distinguishing cells with abnormal DNA content from normal cycling cells publication-title: Anal. Quant. Cytopathol. Histopathol. – ident: ref_31 doi: 10.1007/978-3-642-03107-6 – volume: 99 start-page: 81 year: 2016 ident: ref_38 article-title: General Sparse Multi-class Linear Discriminant Analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2016.01.011 – ident: ref_26 doi: 10.1186/1471-2105-11-427 – volume: 86 start-page: 2278 year: 1998 ident: ref_33 article-title: Gradient-Based Learning Applied to Document Recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 69 start-page: 850 year: 2006 ident: ref_7 article-title: Ensemble of classifiers for protein fold recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.08.006 – ident: ref_17 – volume: 78 start-page: 133 year: 2012 ident: ref_4 article-title: Remote sensing image classification based on neural network ensemble algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.044 – volume: 24 start-page: 123 year: 1996 ident: ref_20 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 12 start-page: 993 year: 1990 ident: ref_23 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – volume: 112 start-page: 167 year: 2002 ident: ref_16 article-title: Borda Count Versus Approval Voting: A Fuzzy Approach publication-title: Public Choice doi: 10.1023/A:1015609200117 – ident: ref_18 doi: 10.1007/3-540-45014-9_1 – ident: ref_28 doi: 10.1007/978-1-4419-8477-7 – volume: 9 start-page: 4 year: 2008 ident: ref_3 article-title: Classifier ensembles: Select real-world applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2007.07.002 – volume: 30 start-page: 255 year: 2000 ident: ref_9 article-title: An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification publication-title: Speech Commun. doi: 10.1016/S0167-6393(99)00054-0 |
| SSID | ssj0023216 |
| Score | 2.1621377 |
| Snippet | The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we... |
| SourceID | doaj pubmedcentral hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 440 |
| SubjectTerms | aggregation Algorithms binary linear programming cervical cancer classifier combination Classifiers Cytology data fusion Decision making Decision theory Decisions Engineering Sciences HPV independence Linear programming mutual information Optimization plurality voting Probability rank Ranking Signal and Image processing total order |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePAiior1iygevJRt2qRpvK3isgcVEQVvJc0Hu6hV1lXw3zuTdpctCF68hSQ07UzCm0cnbwg5lZ7nzrM0zpPKAkGxWax5rmNlASw408I2nr6Wt7fF05O6Wyr1hTlhjTxwY7i-ZoUVAHvGOwC7TFYWWrlgzueVsjbofCZSzclUS7WylOWNjlAGpL7vgNgILK7cQZ8g0g-YMsYUyKX4spsduQQ3ww2y3saJdNC83yZZcfUWGd7EevpN73X9TEM1y4kHVKNwpoHfBhOf0wG9CFdsKbBM2MX0rknAegWIwjZWj9kmj8Orh8tR3BZCiA0vklnMrXYVFzbN8aatdcYrI5hn1gAZyytuJRNWOQGGSEXlM5u6xFRWK4H3XkWS7ZBe_Va7XUKdllht2GD-N68QnCBCMol2OpOZNy4iZ3MDlaZVCcdiFS8lsAW0ZbmwZUROFlPfG2mM3yZdoJUXE1DNOnSAj8vWx-VfPoaVwEedZ4wG1yX2YciigEN9sYgczF1YtufwowT6CwwcODKPyPFiGE4Q_hbRtXv7hDk85PmmqoiI7Li-s2J3pJ6Mgxa3hIBTpcXef3zmPlmDcEw16ZQHpDebfrpDsmq-ZpOP6VHY4D_RlAFU priority: 102 providerName: Directory of Open Access Journals |
| Title | M-ary Rank Classifier Combination: A Binary Linear Programming Problem |
| URI | https://www.proquest.com/docview/2548374024 https://www.proquest.com/docview/2466769298 https://hal.science/hal-02159642 https://pubmed.ncbi.nlm.nih.gov/PMC7514928 https://doaj.org/article/a18d5741cfe74337bdcfe651ef6b9dd3 |
| Volume | 21 |
| WOSCitedRecordID | wos000472675900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQcufAgQgSUKiAOXqHFixzEX1KJWi7RbRQtI5RQ5tsNWQLq03ZW48NuZSdKwkRAnLpFlW3GU8Xjm2c8zAK9kxVNXsThMo9IiQLFJqHmqQ2XRWHCmhW0lfSqXy2y1Unl3PXrX0SoPa2KzULfRnom3jYvwxG4M7ZhPENYgskLsw99e_ggphxSdtXYJNY5gTIG3ohGM8_dn-ecegCUxS9voQglC_YlDuCMo5fLAJjWh-9HSXBAx8obXOeRM3jBCi3v_9_Pvw93OGQ2m7ex5ALdc_RAWZ6He_gzOdf01aFJmris0nQEuHAiiGzm-CabBrLnHGyCURVUJ8pbl9R3tIJUpRc0j-LSYf3x3EnbZFkLDs2gfcqtdyYWNU7rOa52plBGsYtYg4ktLbiUTVjkRRzIWZZXY2EWmtFoJulwrouQxjOpN7Z5A4LSklMaGSOa8JAuIbpiJtNOJTCrjPHh9-N-F6UKRU0aMbwVCEhJN0YvGg5d918s2_sbfOs1IaH0HCpndVGy2X4pOAwvNMivQfzKVQ68pkaXFUiqYq9JSWZvgSCjywTtOpqcF1ZFfpBCoXTMPjg_iLTpl3xV_pOnBi74Z1ZTOXnTtNlfYhzdk4lhlHsjBTBqMOGyp1xdNwG-JXq2Ks6f_HvwZ3EFvTrVszGMY7bdX7jncNtf79W7rw5FcZT6MZ_Nlfu43Ww8-EV0_0PPX3O905TcBESCb |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQIQwGDQOJi1d6H7UVCKAWiRE2iCBWpnMx6d02jFqckaVH_FL-RGT9CLSFuPXCz7NGu5ZmdmW89Ox_Ay6QQsSsiFsRhbhGgWB5oEetAWQwWItLS1poeJ9NpenioZlvwqz0LQ2WVrU-sHLVdGNoj30Ugg1gK0Y54d_ojINYo-rvaUmjUZrHvLn4iZFu9HX1A_b5ibPDx4P0waFgFAiPScB0Iq10upGUxHVu1zhTKyKiIrEFkE-fCJpG0ykkWJkzmBbfMhSa3Wkk6RCpDjuNeg22Bxh72YHs2msy-bCAeZ1Fc9y_iXIW7DgGVJFLnTtSryAEwlh1R6eWlvLZblXkpzA1u_28f6A7cahJqv1-vgLuw5cp7MJgEennhf9LlsV_Rfs4LDP8-Or98Xm9_vvH7_l51FtlHOI6v7c_qSrXvGMvpmmh27sPnK3n1B9ArF6V7CL7TCdEyGyqUFzlFcUwlTaid5gkvjPPgdavRzDTt1InV4yRDWEXKzzbK9-DFRvS07iHyN6E9MouNALX9rm4slt-yxotkOkqtxBzQFA4zP57kFq9iGbkizpW1HGdCo-qMMeyPM7pHuZ1CsHkeebDTGlDWOKxV9sd6PHi-eYyuhv4f6dItzlBGVAXRTKUeJB1b7czYfVLOj6qm5Qlm5oqlj_49-TO4MTyYjLPxaLr_GG5idqrq6tId6K2XZ-4JXDfn6_lq-bRZeT58vWpb_g1qxGyY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceAgQgQIGgcQl2sSO4xgJoV3aVasuq1UFUm_B8YOugGzZ3Rb1r_HrGOdFIyFuPXCLHCuO4i8z32ePZwBeCpek1sU0TKPCoEAxLFRJqkJp0FkkseKmnumpmM2y42M534Jf7VkYH1bZ2sTKUJul9mvkQxQyqKVQ7SRD14RFzHcn705_hL6ClN9pbctp1BA5tBc_Ub6t3x7s4ly_onSy9_H9fthUGAh1kkWbMDHKFgk3NPVHWI3VTmoeu9hoVDlpkRgRcyMtp5GgvHDMUBvpwijJ_YFSHjF87jXYFgxFzwC2x3uz-VEn9xiN0zqXEWMyGloUV9wXeO55wKpQAPq1Ex-GeYnj9iM0L7m8ye3_-WPdgVsN0Saj-s-4C1u2vAeTD6FaXZAjVX4lVTnQhUNaQNAoFot6WfQNGZFxdUaZoEzH1ybzOoLtO_p4f-3L79yHT1fy6g9gUC5L-xCIVcKXa9Y-gD4pvHdHiqkjZRUTzGkbwOt2dnPdpFn31T6-5Si3PBDyDggBvOi6nta5Rf7Waewh0nXw6cCrhuXqS95Yl1zFmeHIDbWzyAiZKAxepTy2Li2kMQxHQoD1nrE_mua-zXM-iSL0PA5gpwVT3hiydf4HSQE8726jCfL7Sqq0yzPsk1SB0lRmAYgebnsj9u-Ui5MqmblAxi5p9ujfgz-DGwjgfHowO3wMN5G0yjrodAcGm9WZfQLX9flmsV49bX5CAp-vGsq_Ab1LdTI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-ary+Rank+Classifier+Combination%3A+A+Binary+Linear+Programming+Problem&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=21&rft.issue=5&rft.spage=440&rft_id=info:doi/10.3390%2Fe21050440&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |