M-ary Rank Classifier Combination: A Binary Linear Programming Problem

The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 21; číslo 5; s. 440
Hlavní autoři: Vigneron, Vincent, Maaref, Hichem
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2019
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer.
AbstractList The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer.
The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer.The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we propose a method based on the combination of weak rank classifiers because rankings contain more information than unique choices for a many-class problem. The problem of combining the decisions of more than one classifier with raw outputs in the form of candidate class rankings is considered and formulated as a general discrete optimization problem with an objective function based on the distance between the data and the consensus decision. This formulation uses certain performance statistics about the joint behavior of the ensemble of classifiers. Assuming that each classifier produces a ranking list of classes, an initial approach leads to a binary linear programming problem with a simple and global optimum solution. The consensus function can be considered as a mapping from a set of individual rankings to a combined ranking, leading to the most relevant decision. We also propose an information measure that quantifies the degree of consensus between the classifiers to assess the strength of the combination rule that is used. It is easy to implement and does not require any training. The main conclusion is that the classification rate is strongly improved by combining rank classifiers globally. The proposed algorithm is tested on real cytology image data to detect cervical cancer.
Author Vigneron, Vincent
Maaref, Hichem
AuthorAffiliation Informatique, Bio-informatique et Systèmes Complexes (IBISC) EA 4526, univ Evry, Université Paris-Saclay, 40 rue du Pelvoux, 91020 Evry, France
AuthorAffiliation_xml – name: Informatique, Bio-informatique et Systèmes Complexes (IBISC) EA 4526, univ Evry, Université Paris-Saclay, 40 rue du Pelvoux, 91020 Evry, France
Author_xml – sequence: 1
  givenname: Vincent
  orcidid: 0000-0001-5917-6041
  surname: Vigneron
  fullname: Vigneron, Vincent
– sequence: 2
  givenname: Hichem
  surname: Maaref
  fullname: Maaref, Hichem
BackLink https://hal.science/hal-02159642$$DView record in HAL
BookMark eNplkktvEzEUhS3Uir5Y8A9GYgOLoX47ZoEUIkorBVEhWFse-07qMGO39qQS_x6nKS0tKx9dn_vdI_seob2YIiD0muD3jGl8CpRggTnHL9AhwVq3nGG8948-QEelrDGmjBL5Eh0wRqUigh-is6-tzb-b7zb-ahaDLSX0AXKzSGMXop1Cih-aefOp6upahgg2N5c5rbIdxxBXW90NMJ6g_d4OBV7dn8fo59nnH4vzdvnty8Vivmwdn-Gp5d5Cx4WnUlBCPbheO0F64p0iSnbc11Beg6BYUdH1zFPArvNWC840F5gdo4sd1ye7Ntc5jDWXSTaYu0LKK2PzFNwAxpKZF4oT14PijKnOVyUFgV522ntWWR93rOtNN4J3EKdshyfQpzcxXJlVujVKEK7prALe7QBXz9rO50uzrWFKhJac3pLqfXs_LKebDZTJjKE4GAYbIW2KoVxKJTXVW-ybZ9Z12uRYn9VQwWdMcUx5dZ3uXC6nUjL0xoXp7sNq1jAYgs12N8zDbjzGfej4m_l_7x9m3rcz
CitedBy_id crossref_primary_10_3390_e21070653
Cites_doi 10.1111/j.1468-0394.2004.00285.x
10.1214/ss/1042727940
10.1109/TMI.2016.2535865
10.1007/978-3-642-40997-4
10.1016/j.inffus.2013.04.006
10.1002/cyto.b.20173
10.1007/978-3-540-25966-4_1
10.1198/jasa.2010.tm09415
10.1371/journal.pone.0013715
10.1016/j.comcom.2011.01.012
10.1007/978-3-319-53547-0
10.1109/BTAS.2009.5339081
10.1109/IJCNN.2018.8489127
10.1007/978-0-387-21579-2
10.1016/j.neucom.2003.12.002
10.1017/9781316795699
10.1016/j.inffus.2008.04.001
10.1016/j.compmedimag.2010.03.006
10.1007/978-3-642-03107-6
10.1016/j.csda.2016.01.011
10.1186/1471-2105-11-427
10.1109/5.726791
10.1016/j.neucom.2005.08.006
10.1016/j.neucom.2011.04.044
10.1007/BF00058655
10.1109/34.58871
10.1023/A:1015609200117
10.1007/3-540-45014-9_1
10.1007/978-1-4419-8477-7
10.1016/j.inffus.2007.07.002
10.1016/S0167-6393(99)00054-0
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
5PM
DOA
DOI 10.3390/e21050440
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_a18d5741cfe74337bdcfe651ef6b9dd3
PMC7514928
oai:HAL:hal-02159642v1
10_3390_e21050440
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
1XC
C1A
CH8
IPNFZ
ITC
RIG
VOOES
5PM
ID FETCH-LOGICAL-c480t-4daeb45d265212decf9c51f1dc7176b4d715d9e520725bf3d2e0cbda954394503
IEDL.DBID PIMPY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472675900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:51:43 EDT 2025
Tue Nov 04 01:48:28 EST 2025
Sat Nov 01 11:24:21 EDT 2025
Fri Sep 05 11:47:03 EDT 2025
Fri Jul 25 12:10:09 EDT 2025
Sat Nov 29 07:09:17 EST 2025
Tue Nov 18 20:58:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Aggregation
Plurality voting
Classifier combination
Binary linear programming
Total order
Independence
Data fusion
Rank
Mutual information
Cervical cancer
HPV
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-4daeb45d265212decf9c51f1dc7176b4d715d9e520725bf3d2e0cbda954394503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7514928
ORCID 0000-0001-5917-6041
0000-0002-1192-7333
OpenAccessLink https://www.proquest.com/publiccontent/docview/2548374024?pq-origsite=%requestingapplication%
PMID 33267154
PQID 2548374024
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_a18d5741cfe74337bdcfe651ef6b9dd3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514928
hal_primary_oai_HAL_hal_02159642v1
proquest_miscellaneous_2466769298
proquest_journals_2548374024
crossref_citationtrail_10_3390_e21050440
crossref_primary_10_3390_e21050440
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Han (ref_4) 2012; 78
Breiman (ref_20) 1996; 24
Corchado (ref_2) 2014; 16
ref_14
LeCun (ref_33) 1998; 86
ref_12
ref_11
ref_32
Nanni (ref_7) 2006; 69
Hansen (ref_23) 1990; 12
ref_31
ref_30
Li (ref_34) 2012; 34
ref_19
ref_18
ref_17
ref_15
Oza (ref_3) 2008; 9
Scheurer (ref_35) 2007; 72
Demirekler (ref_9) 2000; 30
Yang (ref_10) 2004; 21
Bhatt (ref_13) 2013; 69
Safo (ref_38) 2016; 99
ref_25
(ref_16) 2002; 112
Kondo (ref_37) 2016; 72
Lee (ref_21) 2010; 34
Zhong (ref_39) 2004; 57
Witten (ref_36) 2010; 105
ref_1
Selvakumar (ref_5) 2011; 34
Panigrahi (ref_22) 2009; 10
Anthimopoulos (ref_24) 2016; 35
ref_29
ref_28
ref_27
ref_26
Bolton (ref_6) 2002; 17
ref_8
References_xml – volume: 21
  start-page: 279
  year: 2004
  ident: ref_10
  article-title: Neural network ensembles: Combining multiple models for enhanced performance using a multistage approach
  publication-title: Expert Syst.
  doi: 10.1111/j.1468-0394.2004.00285.x
– volume: 17
  start-page: 235
  year: 2002
  ident: ref_6
  article-title: Statistical Fraud Detection: A Review
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1042727940
– ident: ref_32
– volume: 35
  start-page: 1207
  year: 2016
  ident: ref_24
  article-title: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535865
– ident: ref_11
  doi: 10.1007/978-3-642-40997-4
– volume: 72
  start-page: 1
  year: 2016
  ident: ref_37
  article-title: RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm
  publication-title: J. Stat. Softw. Artic.
– volume: 16
  start-page: 3
  year: 2014
  ident: ref_2
  article-title: A survey of multiple classifier systems as hybrid systems. Special Issue on Information Fusion in Hybrid Intelligent Fusion Systems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.04.006
– volume: 72
  start-page: 324
  year: 2007
  ident: ref_35
  article-title: Human papillomavirus-related cellular changes measured by cytometric analysis of DNA ploidy and chromatin texture
  publication-title: Cytom. Part B Clin. Cytom.
  doi: 10.1002/cyto.b.20173
– ident: ref_12
  doi: 10.1007/978-3-540-25966-4_1
– volume: 105
  start-page: 713
  year: 2010
  ident: ref_36
  article-title: A framework for feature selection in clustering
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2010.tm09415
– ident: ref_1
– ident: ref_15
  doi: 10.1371/journal.pone.0013715
– volume: 34
  start-page: 1328
  year: 2011
  ident: ref_5
  article-title: Distributed Denial of Service Attack Detection Using an Ensemble of Neural Classifier
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2011.01.012
– volume: 69
  start-page: 31
  year: 2013
  ident: ref_13
  article-title: Ranking of Classifiers based on Dataset Characteristics using Active Meta Learning
  publication-title: Int.J. Comput. Appl.
– ident: ref_30
  doi: 10.1007/978-3-319-53547-0
– ident: ref_14
  doi: 10.1109/BTAS.2009.5339081
– ident: ref_8
  doi: 10.1109/IJCNN.2018.8489127
– ident: ref_19
  doi: 10.1007/978-0-387-21579-2
– ident: ref_25
– volume: 57
  start-page: 469
  year: 2004
  ident: ref_39
  article-title: An EM algorithm for learning sparse and overcomplete representations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.12.002
– ident: ref_29
  doi: 10.1017/9781316795699
– ident: ref_27
– volume: 10
  start-page: 354
  year: 2009
  ident: ref_22
  article-title: Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2008.04.001
– volume: 34
  start-page: 535
  year: 2010
  ident: ref_21
  article-title: Random forest based lung nodule classification aided by clustering
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.03.006
– volume: 34
  start-page: 273
  year: 2012
  ident: ref_34
  article-title: Double staining cytologic samples with quantitative Feulgen-thionin and anti-Ki-67 immunocytochemistry as a method of distinguishing cells with abnormal DNA content from normal cycling cells
  publication-title: Anal. Quant. Cytopathol. Histopathol.
– ident: ref_31
  doi: 10.1007/978-3-642-03107-6
– volume: 99
  start-page: 81
  year: 2016
  ident: ref_38
  article-title: General Sparse Multi-class Linear Discriminant Analysis
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.01.011
– ident: ref_26
  doi: 10.1186/1471-2105-11-427
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_33
  article-title: Gradient-Based Learning Applied to Document Recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 69
  start-page: 850
  year: 2006
  ident: ref_7
  article-title: Ensemble of classifiers for protein fold recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.08.006
– ident: ref_17
– volume: 78
  start-page: 133
  year: 2012
  ident: ref_4
  article-title: Remote sensing image classification based on neural network ensemble algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.044
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_20
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 12
  start-page: 993
  year: 1990
  ident: ref_23
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 112
  start-page: 167
  year: 2002
  ident: ref_16
  article-title: Borda Count Versus Approval Voting: A Fuzzy Approach
  publication-title: Public Choice
  doi: 10.1023/A:1015609200117
– ident: ref_18
  doi: 10.1007/3-540-45014-9_1
– ident: ref_28
  doi: 10.1007/978-1-4419-8477-7
– volume: 9
  start-page: 4
  year: 2008
  ident: ref_3
  article-title: Classifier ensembles: Select real-world applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2007.07.002
– volume: 30
  start-page: 255
  year: 2000
  ident: ref_9
  article-title: An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(99)00054-0
SSID ssj0023216
Score 2.1621377
Snippet The goal of classifier combination can be briefly stated as combining the decisions of individual classifiers to obtain a better classifier. In this paper, we...
SourceID doaj
pubmedcentral
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 440
SubjectTerms aggregation
Algorithms
binary linear programming
cervical cancer
classifier combination
Classifiers
Cytology
data fusion
Decision making
Decision theory
Decisions
Engineering Sciences
HPV
independence
Linear programming
mutual information
Optimization
plurality voting
Probability
rank
Ranking
Signal and Image processing
total order
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePAiior1iygevJRt2qRpvK3isgcVEQVvJc0Hu6hV1lXw3zuTdpctCF68hSQ07UzCm0cnbwg5lZ7nzrM0zpPKAkGxWax5rmNlASw408I2nr6Wt7fF05O6Wyr1hTlhjTxwY7i-ZoUVAHvGOwC7TFYWWrlgzueVsjbofCZSzclUS7WylOWNjlAGpL7vgNgILK7cQZ8g0g-YMsYUyKX4spsduQQ3ww2y3saJdNC83yZZcfUWGd7EevpN73X9TEM1y4kHVKNwpoHfBhOf0wG9CFdsKbBM2MX0rknAegWIwjZWj9kmj8Orh8tR3BZCiA0vklnMrXYVFzbN8aatdcYrI5hn1gAZyytuJRNWOQGGSEXlM5u6xFRWK4H3XkWS7ZBe_Va7XUKdllht2GD-N68QnCBCMol2OpOZNy4iZ3MDlaZVCcdiFS8lsAW0ZbmwZUROFlPfG2mM3yZdoJUXE1DNOnSAj8vWx-VfPoaVwEedZ4wG1yX2YciigEN9sYgczF1YtufwowT6CwwcODKPyPFiGE4Q_hbRtXv7hDk85PmmqoiI7Li-s2J3pJ6Mgxa3hIBTpcXef3zmPlmDcEw16ZQHpDebfrpDsmq-ZpOP6VHY4D_RlAFU
  priority: 102
  providerName: Directory of Open Access Journals
Title M-ary Rank Classifier Combination: A Binary Linear Programming Problem
URI https://www.proquest.com/docview/2548374024
https://www.proquest.com/docview/2466769298
https://hal.science/hal-02159642
https://pubmed.ncbi.nlm.nih.gov/PMC7514928
https://doaj.org/article/a18d5741cfe74337bdcfe651ef6b9dd3
Volume 21
WOSCitedRecordID wos000472675900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQcufAgQgSUKiAOXqHFixzEX1KJWi7RbRQtI5RQ5tsNWQLq03ZW48NuZSdKwkRAnLpFlW3GU8Xjm2c8zAK9kxVNXsThMo9IiQLFJqHmqQ2XRWHCmhW0lfSqXy2y1Unl3PXrX0SoPa2KzULfRnom3jYvwxG4M7ZhPENYgskLsw99e_ggphxSdtXYJNY5gTIG3ohGM8_dn-ecegCUxS9voQglC_YlDuCMo5fLAJjWh-9HSXBAx8obXOeRM3jBCi3v_9_Pvw93OGQ2m7ex5ALdc_RAWZ6He_gzOdf01aFJmris0nQEuHAiiGzm-CabBrLnHGyCURVUJ8pbl9R3tIJUpRc0j-LSYf3x3EnbZFkLDs2gfcqtdyYWNU7rOa52plBGsYtYg4ktLbiUTVjkRRzIWZZXY2EWmtFoJulwrouQxjOpN7Z5A4LSklMaGSOa8JAuIbpiJtNOJTCrjPHh9-N-F6UKRU0aMbwVCEhJN0YvGg5d918s2_sbfOs1IaH0HCpndVGy2X4pOAwvNMivQfzKVQ68pkaXFUiqYq9JSWZvgSCjywTtOpqcF1ZFfpBCoXTMPjg_iLTpl3xV_pOnBi74Z1ZTOXnTtNlfYhzdk4lhlHsjBTBqMOGyp1xdNwG-JXq2Ks6f_HvwZ3EFvTrVszGMY7bdX7jncNtf79W7rw5FcZT6MZ_Nlfu43Ww8-EV0_0PPX3O905TcBESCb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQIQwGDQOJi1d6H7UVCKAWiRE2iCBWpnMx6d02jFqckaVH_FL-RGT9CLSFuPXCz7NGu5ZmdmW89Ox_Ay6QQsSsiFsRhbhGgWB5oEetAWQwWItLS1poeJ9NpenioZlvwqz0LQ2WVrU-sHLVdGNoj30Ugg1gK0Y54d_ojINYo-rvaUmjUZrHvLn4iZFu9HX1A_b5ibPDx4P0waFgFAiPScB0Iq10upGUxHVu1zhTKyKiIrEFkE-fCJpG0ykkWJkzmBbfMhSa3Wkk6RCpDjuNeg22Bxh72YHs2msy-bCAeZ1Fc9y_iXIW7DgGVJFLnTtSryAEwlh1R6eWlvLZblXkpzA1u_28f6A7cahJqv1-vgLuw5cp7MJgEennhf9LlsV_Rfs4LDP8-Or98Xm9_vvH7_l51FtlHOI6v7c_qSrXvGMvpmmh27sPnK3n1B9ArF6V7CL7TCdEyGyqUFzlFcUwlTaid5gkvjPPgdavRzDTt1InV4yRDWEXKzzbK9-DFRvS07iHyN6E9MouNALX9rm4slt-yxotkOkqtxBzQFA4zP57kFq9iGbkizpW1HGdCo-qMMeyPM7pHuZ1CsHkeebDTGlDWOKxV9sd6PHi-eYyuhv4f6dItzlBGVAXRTKUeJB1b7czYfVLOj6qm5Qlm5oqlj_49-TO4MTyYjLPxaLr_GG5idqrq6tId6K2XZ-4JXDfn6_lq-bRZeT58vWpb_g1qxGyY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceAgQgQIGgcQl2sSO4xgJoV3aVasuq1UFUm_B8YOugGzZ3Rb1r_HrGOdFIyFuPXCLHCuO4i8z32ePZwBeCpek1sU0TKPCoEAxLFRJqkJp0FkkseKmnumpmM2y42M534Jf7VkYH1bZ2sTKUJul9mvkQxQyqKVQ7SRD14RFzHcn705_hL6ClN9pbctp1BA5tBc_Ub6t3x7s4ly_onSy9_H9fthUGAh1kkWbMDHKFgk3NPVHWI3VTmoeu9hoVDlpkRgRcyMtp5GgvHDMUBvpwijJ_YFSHjF87jXYFgxFzwC2x3uz-VEn9xiN0zqXEWMyGloUV9wXeO55wKpQAPq1Ex-GeYnj9iM0L7m8ye3_-WPdgVsN0Saj-s-4C1u2vAeTD6FaXZAjVX4lVTnQhUNaQNAoFot6WfQNGZFxdUaZoEzH1ybzOoLtO_p4f-3L79yHT1fy6g9gUC5L-xCIVcKXa9Y-gD4pvHdHiqkjZRUTzGkbwOt2dnPdpFn31T6-5Si3PBDyDggBvOi6nta5Rf7Waewh0nXw6cCrhuXqS95Yl1zFmeHIDbWzyAiZKAxepTy2Li2kMQxHQoD1nrE_mua-zXM-iSL0PA5gpwVT3hiydf4HSQE8726jCfL7Sqq0yzPsk1SB0lRmAYgebnsj9u-Ui5MqmblAxi5p9ujfgz-DGwjgfHowO3wMN5G0yjrodAcGm9WZfQLX9flmsV49bX5CAp-vGsq_Ab1LdTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-ary+Rank+Classifier+Combination%3A+A+Binary+Linear+Programming+Problem&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=21&rft.issue=5&rft.spage=440&rft_id=info:doi/10.3390%2Fe21050440&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon