Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient
The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothn...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 107; číslo 498; s. 800 - 813 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Alexandria
Taylor & Francis Group
01.06.2012
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothness parameter s. It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and ν, for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting. |
|---|---|
| Bibliografie: | http://dx.doi.org/10.1080/01621459.2012.664527 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1537-274X 0162-1459 1537-274X |
| DOI: | 10.1080/01621459.2012.664527 |