Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient
The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothn...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 107; číslo 498; s. 800 - 813 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria
Taylor & Francis Group
01.06.2012
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothness parameter s. It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and ν, for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting. |
|---|---|
| AbstractList | The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James–Stein thresholding function has two regularization parameters λ and ν, and a smoothness parameter s . It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and ν, for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting. The proposed smooth hlockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters and v, and a smoothness parameter s. It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of and v. for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting. [PUBLICATION ABSTRACT] The proposed smooth hlockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and v, and a smoothness parameter s. It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and v. for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting. [PUBLICATION ABSTRACT] |
| Author | Sardy, Sylvain |
| Author_xml | – sequence: 1 fullname: Sardy, Sylvain |
| BookMark | eNqFkt9qFDEUxgdpwf7xDRQD3niza_5NkumNtKWthQWFtuBdyMxkOtlmc2qStfbO1_D1fBKzTBXpzeYmIef3fYecL_vVToBgq-o1wXOCFf6AiaCE182cYkLnQvCayhfVHqmZnFHJv-78d35Z7ae0xGVJpfaqeLUCyCM68dDdPbhk0WW20WT33aLrMdo0gu9duD1Cx-gJPXc_bI--gAsZnaXsViZDRCcmlVsIKI8WLdyd9W4E6H___JUmc3QRTe9syIfV7mB8sq-e9oPq5vzs-vTTbPH54vL0eDHruMJ5RohR7UCxlZTRRg2cNUKRprGKKi5w08oeq0aallLGe9XLXti2G4QRnFDSWnZQvZ987yN8W9uU9cqlznpvgoV10kRhhhspiNqOUkoUl5ht0HfP0CWsYygP0QSzWhBcc1koPlFdhJSiHfR9LIOKjwXSm8z038z0JjM9ZVZkR89kncslDAg5Gue3id9M4mUqgfxrWKZXJkdoqX-c6i4MEFfmAaLvdTaPHuIQTehc0mxLh7eTw2BAm9tYBDdXBRDlN6maKcL-AGXFwzA |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1007_s11222_015_9554_9 |
| Cites_doi | 10.1214/009053604000000030 10.1137/S1064827596304010 10.1111/j.1467-9868.2005.00532.x 10.1111/j.1467-9868.2005.00503.x 10.1214/009053607000000127 10.1137/1.9781611970128 10.1088/0264-9381/21/20/025 10.1093/biomet/82.3.619 10.1017/S0962492906230010 10.1111/1467-9868.00071 10.1111/j.2517-6161.1996.tb02080.x 10.1080/10618600.2000.10474885 10.1214/009053605000000345 10.1198/016214501753382273 10.1111/j.1751-5823.2008.00050.x 10.1080/00401706.1979.10489751 10.1080/00401706.1970.10488634 10.1080/01621459.1995.10476626 10.2307/2344614 10.1198/016214501753208942 10.1111/j.1467-9868.2005.00490.x 10.1198/016214504000000188 10.1007/BF01360282 10.1214/aos/1176345632 10.1093/biomet/81.3.425 10.1111/j.1467-9469.2009.00654.x 10.1002/cpa.20042 10.1109/78.827536 10.1080/01621459.2000.10473913 10.1214/aos/1018031262 10.1111/j.1467-9868.2007.00607.x 10.1080/00401706.1995.10484371 10.1007/978-3-642-33483-2 10.1214/aos/1032181158 10.1198/016214506000000735 10.1214/009053604000000067 10.1080/10618600.1998.10474784 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright © 2012 American Statistical Association Copyright American Statistical Association Jun 2012 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright © 2012 American Statistical Association – notice: Copyright American Statistical Association Jun 2012 |
| DBID | FBQ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2012.664527 |
| DatabaseName | AGRIS CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 813 |
| ExternalDocumentID | 2747092251 10_1080_01621459_2012_664527 23239612 664527 US201600085381 |
| Genre | Feature |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVI AAAVZ AABCJ AAENE AAFWJ AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABRLO ABTAI ABUWG ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADODI ADULT AEGYZ AEISY AELPN AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFOLD AFSUE AFVYC AFWLO AFXHP AFXKK AGCQS AGDLA AGLEN AGMYJ AGROQ AHDLD AHMOU AI. AIHXQ AIJEM AIRXU AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMATQ AMXXU AQRUH AQUVI AVBZW AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EFSUC EJD E~A E~B F20 F5P FBQ FEDTE FJW FRNLG FUNRP FVMVE FVPDL FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI U5U UB9 UKHRP UPT UQL UT5 UU3 V1K VH1 VOH WH7 WHG WZA XFK YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHBH AAHIA AAWIL ABAWQ ABPAQ ABPQH ABUFD ABXSQ ACHJO ADMHG AFRVT AGLNM AHDZW AIHAF AIYEW ALRMG AQTUD AWYRJ H13 IPSME TASJS TBQAZ TDBHL TUROJ ADYSH ALIPV AMPGV AAYXX ACGEE ACTCW ADXHL AFFHD AFQQW AMEWO AMVHM CITATION PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c480t-11a8bf20e723298f43968199e8284609b7d0897ab2234d8d7d6ebcf6a64121be3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307490500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Fri Oct 03 00:04:59 EDT 2025 Thu Oct 02 07:46:25 EDT 2025 Mon Nov 10 21:30:52 EST 2025 Sat Nov 29 03:56:38 EST 2025 Tue Nov 18 22:02:54 EST 2025 Thu May 29 08:44:01 EDT 2025 Mon Oct 20 23:38:41 EDT 2025 Wed Dec 27 19:21:43 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 498 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-11a8bf20e723298f43968199e8284609b7d0897ab2234d8d7d6ebcf6a64121be3 |
| Notes | http://dx.doi.org/10.1080/01621459.2012.664527 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1035610547 |
| PQPubID | 41715 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1221847038 jstor_primary_23239612 informaworld_taylorfrancis_310_1080_01621459_2012_664527 proquest_miscellaneous_1803097618 crossref_primary_10_1080_01621459_2012_664527 fao_agris_US201600085381 proquest_journals_1035610547 crossref_citationtrail_10_1080_01621459_2012_664527 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-01 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis Group Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
| References | Embrechts P. (CIT0013) 1997 Sardy S. (CIT0029) 2008; 76 Fan J. (CIT0015) 2001; 96 Sardy S. (CIT0031) 2000; 9 Cai T. T. (CIT0006) 1999; 27 Golub G. H. (CIT0018) 1979; 21 Percival D. P. (CIT0027) 1995; 82 Tibshirani R. (CIT0035) 1996; 58 Johnstone I. M. (CIT0023) 2005; 33 Stein C. (CIT0034) 1981; 9 Hoerl A. E. (CIT0019) 1970; 12 Park M. Y. (CIT0026) 2007; 69 Breiman L. (CIT0004) 1995; 37 Efron B. (CIT0012) 2004; 32 Tibshirani R. (CIT0036) 2005; 67 Chen S. S. (CIT0008) 1999; 20 Wahba G. (CIT0037) 1990 Zou H. (CIT0039) 2006; 101 Donoho D. L. (CIT0011) 1995; 90 James W. (CIT0020) 1961 Sardy S. (CIT0028) 2000; 48 Breiman L. (CIT0005) 1996; 24 Klimenko S. (CIT0024) 2004; 21 Candès E. (CIT0007) 2005; 15 Sardy S. (CIT0032) 2004; 99 Sardy S. (CIT0030) 2009; 36 Antoniadis A. (CIT0001) 2001; 96 Johnstone I. M. (CIT0021) 1997; 59 Johnstone I. M. (CIT0022) 2004; 32 Yuan M. (CIT0038) 2006; 68 Zou H. (CIT0041) 2007; 35 Donoho D. L. (CIT0010) 1994; 81 Serroukh A. (CIT0033) 2000; 95 Bertsekas D. P. (CIT0003) 1999 Gale D. (CIT0017) 1965; 159 Fu W. J. (CIT0016) 1998; 7 Nelder J. A. (CIT0025) 1972; 135 Zou H. (CIT0040) 2005; 67 Daubechies I. (CIT0009) 2004; 57 Fan J. (CIT0014) 2001; 96 |
| References_xml | – volume: 32 start-page: 1594 year: 2004 ident: CIT0022 publication-title: The Annals of Statistics doi: 10.1214/009053604000000030 – volume: 20 start-page: 33 issue: 1 year: 1999 ident: CIT0008 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/S1064827596304010 – volume: 68 start-page: 49 issue: 1 year: 2006 ident: CIT0038 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2005.00532.x – volume: 67 start-page: 301 year: 2005 ident: CIT0040 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 35 start-page: 2173 year: 2007 ident: CIT0041 publication-title: The Annals of Statistics doi: 10.1214/009053607000000127 – volume-title: Spline Models for Observational Data year: 1990 ident: CIT0037 doi: 10.1137/1.9781611970128 – volume: 21 start-page: 1819 year: 2004 ident: CIT0024 publication-title: Classical and Quantum Gravity doi: 10.1088/0264-9381/21/20/025 – volume: 82 start-page: 619 year: 1995 ident: CIT0027 publication-title: Biometrika doi: 10.1093/biomet/82.3.619 – volume: 15 start-page: 257 year: 2005 ident: CIT0007 publication-title: Acta Numerica doi: 10.1017/S0962492906230010 – volume: 59 start-page: 319 year: 1997 ident: CIT0021 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00071 – volume: 58 start-page: 267 year: 1996 ident: CIT0035 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 9 start-page: 361 year: 2000 ident: CIT0031 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2000.10474885 – volume: 33 start-page: 1700 year: 2005 ident: CIT0023 publication-title: The Annals of Statistics doi: 10.1214/009053605000000345 – volume: 96 start-page: 1348 year: 2001 ident: CIT0015 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382273 – volume: 76 start-page: 285 year: 2008 ident: CIT0029 publication-title: International Statistical Review doi: 10.1111/j.1751-5823.2008.00050.x – volume-title: Nonlinear Programming year: 1999 ident: CIT0003 – volume: 21 start-page: 215 year: 1979 ident: CIT0018 publication-title: Technometrics doi: 10.1080/00401706.1979.10489751 – start-page: 361 volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1) year: 1961 ident: CIT0020 – volume: 12 start-page: 55 year: 1970 ident: CIT0019 publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 90 start-page: 1200 year: 1995 ident: CIT0011 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476626 – volume: 135 start-page: 370 year: 1972 ident: CIT0025 publication-title: Journal of the Royal Statistical Society, Series A doi: 10.2307/2344614 – volume: 96 start-page: 939 year: 2001 ident: CIT0001 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753208942 – volume: 67 start-page: 91 issue: 1 year: 2005 ident: CIT0036 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2005.00490.x – volume: 99 start-page: 191 year: 2004 ident: CIT0032 publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000000188 – volume: 159 start-page: 81 year: 1965 ident: CIT0017 publication-title: Mathematischen Annalen doi: 10.1007/BF01360282 – volume: 9 start-page: 1135 year: 1981 ident: CIT0034 publication-title: The Annals of Statistics doi: 10.1214/aos/1176345632 – volume: 81 start-page: 425 year: 1994 ident: CIT0010 publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 36 start-page: 577 year: 2009 ident: CIT0030 publication-title: Scandinavian Journal of Statistics doi: 10.1111/j.1467-9469.2009.00654.x – volume: 57 start-page: 1413 year: 2004 ident: CIT0009 publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.20042 – volume: 48 start-page: 1023 issue: 4 year: 2000 ident: CIT0028 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.827536 – volume: 95 start-page: 184 issue: 449 year: 2000 ident: CIT0033 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2000.10473913 – volume: 27 start-page: 898 issue: 3 year: 1999 ident: CIT0006 publication-title: The Annals of Statistics doi: 10.1214/aos/1018031262 – volume: 69 start-page: 659 issue: 4 year: 2007 ident: CIT0026 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2007.00607.x – volume: 37 start-page: 373 year: 1995 ident: CIT0004 publication-title: Technometrics doi: 10.1080/00401706.1995.10484371 – volume-title: Modelling Extremal Events: For Insurance and Finance year: 1997 ident: CIT0013 doi: 10.1007/978-3-642-33483-2 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: CIT0014 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382273 – volume: 24 start-page: 2350 year: 1996 ident: CIT0005 publication-title: The Annals of Statistics doi: 10.1214/aos/1032181158 – volume: 101 start-page: 1418 year: 2006 ident: CIT0039 publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000735 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: CIT0012 publication-title: The Annals of Statistics doi: 10.1214/009053604000000067 – volume: 7 start-page: 397 year: 1998 ident: CIT0016 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1998.10474784 |
| SSID | ssj0000788 |
| Score | 2.0433795 |
| Snippet | The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a... The proposed smooth hlockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a... |
| SourceID | proquest crossref jstor informaworld fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 800 |
| SubjectTerms | Adaptive lasso Analytical estimating Bias Estimation Estimation methods Estimators Function Grammatical aspect Gravitational waves Inequality Information criterion Iterative block thresholding James-Stein estimator Mathematical independent variables Modeling Monte Carlo method Monte Carlo methods Monte Carlo simulation Motivation Multivariate analysis Multivariate time series Oracles Property Regression analysis Risk risk estimate Simulation Sparse model selection Statistics Theory and Methods Threshing Time series time series analysis Time series models Unbiased estimators Universal threshold Wavelet smoothing |
| Title | Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.664527 https://www.jstor.org/stable/23239612 https://www.proquest.com/docview/1035610547 https://www.proquest.com/docview/1221847038 https://www.proquest.com/docview/1803097618 |
| Volume | 107 |
| WOSCitedRecordID | wos000307490500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 1537-274X databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9wwDI4G2gMvsI0hjrEpkybtKVuTa9OUN5i4bRJCSBwab1HSJqg6aNG1DH4-dtre2NBAgsdTY6vnOM6X2vlMyKcMk0WJkyxxRrI4845ZZRMmjAT47yPrfehacpAeHqrT0-zozi1-LKvEM7TviCJCrMbFbWwzVMR9BZSC_Np4zYSLLxJTc3idHIA91vRNJ7_-hOI0NJ5EAYYSw925_yj5a29a8qb-h790qFm8F7fDZjRZe_7feEVWeyBKdzvPeU1euOoNWUHs2VE3r5PL44sa5pHuwX43uy4bR38GCmaIj3QKLtD0masdukv7oZPyxhX0qC6rlu6Dmgs80tM92CkLWlcUwCY9KGfuvEQy5c9Np5p-n4e6s_YtOZnsT7_9YH2DBpbHKmoZ50ZZLyKXAi7LlAdwIwFhZA6OcbGMMpsWkcpSYwGDxIUq0kI6m3tpZMwFt268QZarunKbhBY8x2-beSK8iUVh4GCVZ5hCBbkoN25ExsPU6LxnL8cmGueaDySnvTk1mlN35hwRtpC67Ng7Hhm_CbOuzRkEWH1yLJB-D0EpwJoRUXddQbfhg4rvup_o8cNaN4LbLF4BrAWW4mJEtgc_0n3oaEDNGDFtEoPcx8VjWPSYyTGVq69gjMCTOQRr9cAYhdmzVHK19fRXf0dW8FdXG7dNltv5lXtPXua_wRfnH8JiuwWr7CBD |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9QwDI7YQGIv_J52bIMgIfEUaHJtmu5tQzs2cZwm7Sb2FqVtMlXb2unaAX8-dpoeDMSQEM-NrTZxnM-x-5mQ1xkmixIrWWKNZHHmLMtVnjBhJMB_F-XO-a4l03Q2U6en2VGoJmxDWSXG0K4nivC-Gjc3XkYPJXHvAKYgwTb-Z8LFW4m5uXSF3MXmdBh_zSeffzjj1LeeRAmGIsPfc3_QcuN0WnGm-YXBdKha_M1z--No8vA_fMgj8iBgUbrbG89jcsfWT8gaws-evfkpuTq-bGAp6R4ceedfq9bSQ8_CDC6SzsEK2pC82qG7NAydVN9sSY-aqu7oPqi5xKie7sFhWdKmpoA36bQ6txcV8im_aXvV9MPCl551z8jJZH_-_oCFHg2siFXUMc6Nyp2IbArQLFMO8I0EkJFZiORiGWV5WkYqS00OMCQuVZmW0uaFk0bGXPDcjtfJat3UdoPQkhd4vVkkwplYlAZiqyLDLCrIRYWxIzIe1kYXgcAc-2hcaD7wnIbp1Didup_OEWFLqauewOMv4zdg2bU5Ax-rT44FMvAhLgVkMyLqZ1vQnb9TcX0DFD2-Xeu6t5vlK8BswUxxMSJbgyHp4D1aUDNGWJvEIPdq-Rj2PSZzTG2baxgjMDgHf61uGaMwgZZKrp7_-6u_JPcP5p-meno4-7hJ1vBJXyq3RVa7xbXdJveKL2CXixd-530H18skZg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYQGgv_J5WGGAkJJ4MsZs4Dm8bLDBRVZXWib1ZTmxP0bakajPgz-fOScoAMSR4ju-UnM_n73Lnz4S8zLBYlDjJEmckizPvWKGKhAkjAf77qPA-3FoySadTdXKSza6c4se2SsyhfUcUEWI1Lu6F9UNH3BtAKcivjcdMuHgtsTSXbpCbgJwT9Ot5_vlHLE7DzZMowVBkODz3By0_bU4b3jS_EJgOTYu_Be6wG-V3__877pE7PRKle53r3Cc3XP2AbCH47LibH5LF0UUDE0n3YcM7-1qtHD0MHMwQIOkcfGDVl67e0j3aD82rb87SWVPVLT0ANReY09N92CotbWoKaJNOqjN3XiGb8qtVp5p-WIbGs_YROc4P5u8-sv6GBlbGKmoZ50YVXkQuBWCWKQ_oRgLEyBzkcbGMsiK1kcpSUwAIia2yqZWuKL00MuaCF268TTbrpnY7hFpe4s_NMhHexMIayKzKDGuoIBeVxo3IeJgaXfb05XiLxrnmA8tpb06N5tSdOUeEraUWHX3HX8bvwKxrcwoRVh8fCeTfQ1QKuGZE1FVX0G34o-K760_0-Hqt28Ft1q8A1gJLcTEiu4Mf6T52rEDNGEFtEoPci_VjWPVYyjG1ay5hjMDUHKK1umaMwvJZKrl6_O-v_pzcnr3P9eRw-ukJ2cIHXZ_cLtlsl5fuKblVfgG3XD4L6-47NvgjGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smooth+Blockwise+Iterative+Thresholding%3A+A+Smooth+Fixed+Point+Estimator+Based+on+the+Likelihood%E2%80%99s+Block+Gradient&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sardy%2C+Sylvain&rft.date=2012-06-01&rft.issn=1537-274X&rft.volume=107&rft.issue=498+p.800-813&rft.spage=800&rft.epage=813&rft_id=info:doi/10.1080%2F01621459.2012.664527&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |