Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient

The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothn...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 107; číslo 498; s. 800 - 813
Hlavný autor: Sardy, Sylvain
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis Group 01.06.2012
Taylor & Francis Ltd
Predmet:
ISSN:1537-274X, 0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James-Stein thresholding function has two regularization parameters λ and ν, and a smoothness parameter s. It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and ν, for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting.
Bibliografia:http://dx.doi.org/10.1080/01621459.2012.664527
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1537-274X
0162-1459
1537-274X
DOI:10.1080/01621459.2012.664527