Real‐time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector

In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in motorcycle accidents is that motorcycle riders or passengers do not wear helmets. In this paper, an automatic helmet detection of motorcyclists method...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 15; číslo 14; s. 3623 - 3637
Hlavní autoři: Jia, Wei, Xu, Shiquan, Liang, Zhen, Zhao, Yang, Min, Hai, Li, Shujie, Yu, Ye
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.12.2021
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in motorcycle accidents is that motorcycle riders or passengers do not wear helmets. In this paper, an automatic helmet detection of motorcyclists method based on deep learning is presented. The method consists of two steps. The first step uses the improved YOLOv5 detector to detect motorcycles (including motorcyclists) from video surveillance. The second step takes the motorcycles detected in the previous step as input and continues to use the improved YOLOv5 detector to detect whether the motorcyclists wear helmets. The improvement of the YOLOv5 detector includes the fusion of triplet attention and the use of soft‐NMS instead of NMS. A new motorcycle helmet dataset (HFUT‐MH) is being proposed, which is larger and more comprehensive than the existing dataset derived from multiple traffic monitoring in Chinese cities. Finally, the proposed method is verified by experiments and compared with other state‐of‐the‐art methods. Our method achieves mAP of 97.7%, F1‐score of 92.7% and frames per second (FPS) of 63, which outperforms other state‐of‐the‐art detection methods.
AbstractList Abstract In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in motorcycle accidents is that motorcycle riders or passengers do not wear helmets. In this paper, an automatic helmet detection of motorcyclists method based on deep learning is presented. The method consists of two steps. The first step uses the improved YOLOv5 detector to detect motorcycles (including motorcyclists) from video surveillance. The second step takes the motorcycles detected in the previous step as input and continues to use the improved YOLOv5 detector to detect whether the motorcyclists wear helmets. The improvement of the YOLOv5 detector includes the fusion of triplet attention and the use of soft‐NMS instead of NMS. A new motorcycle helmet dataset (HFUT‐MH) is being proposed, which is larger and more comprehensive than the existing dataset derived from multiple traffic monitoring in Chinese cities. Finally, the proposed method is verified by experiments and compared with other state‐of‐the‐art methods. Our method achieves mAP of 97.7%, F1‐score of 92.7% and frames per second (FPS) of 63, which outperforms other state‐of‐the‐art detection methods.
In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in motorcycle accidents is that motorcycle riders or passengers do not wear helmets. In this paper, an automatic helmet detection of motorcyclists method based on deep learning is presented. The method consists of two steps. The first step uses the improved YOLOv5 detector to detect motorcycles (including motorcyclists) from video surveillance. The second step takes the motorcycles detected in the previous step as input and continues to use the improved YOLOv5 detector to detect whether the motorcyclists wear helmets. The improvement of the YOLOv5 detector includes the fusion of triplet attention and the use of soft‐NMS instead of NMS. A new motorcycle helmet dataset (HFUT‐MH) is being proposed, which is larger and more comprehensive than the existing dataset derived from multiple traffic monitoring in Chinese cities. Finally, the proposed method is verified by experiments and compared with other state‐of‐the‐art methods. Our method achieves mAP of 97.7%, F1‐score of 92.7% and frames per second (FPS) of 63, which outperforms other state‐of‐the‐art detection methods.
Author Liang, Zhen
Jia, Wei
Min, Hai
Xu, Shiquan
Zhao, Yang
Yu, Ye
Li, Shujie
Author_xml – sequence: 1
  givenname: Wei
  surname: Jia
  fullname: Jia, Wei
  organization: Hefei University of Technology
– sequence: 2
  givenname: Shiquan
  surname: Xu
  fullname: Xu, Shiquan
  organization: Hefei University of Technology
– sequence: 3
  givenname: Zhen
  surname: Liang
  fullname: Liang, Zhen
  organization: Hefei University of Technology
– sequence: 4
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: Hefei University of Technology
– sequence: 5
  givenname: Hai
  surname: Min
  fullname: Min, Hai
  organization: Hefei University of Technology
– sequence: 6
  givenname: Shujie
  surname: Li
  fullname: Li, Shujie
  organization: Hefei University of Technology
– sequence: 7
  givenname: Ye
  orcidid: 0000-0001-5628-6237
  surname: Yu
  fullname: Yu, Ye
  email: yuye@hfut.edu.cn
  organization: Hefei University of Technology
BookMark eNp9kE1rGzEQhkVwIR_NJb9A54JTaaXZj2MJbWowuJj00JOY1Y5cmd2V0couvuUn5Df2l3QdGx9KyGmGYd4H3ueaTfrQE2N3UtxLoavPfhOze5llFVywK1mAnFZ5XkzOO1SX7HoY1kJAJUq4YqslYfv3-SX5jjhuU-gwect_U9tR4g0lssmHngfHu5BCtHvb-iEN3Pd8G2vseYro3BjZDr5fcd9tYthRw38t5osdnAghfmQfHLYD3Z7mDfv57evTw_fpfPE4e_gyn1pdCpg6TbUrHCqAsUONUFinSFtnXWV1LRTKWoGjsoDMybEoQVPXmhSQzYG0umGzI7cJuDab6DuMexPQm9dDiCuDcWzYkik1lKoqixoz0LLMKk2FzSnHApWQqhlZn44sG8MwRHJnnhTmoNscdJtX3eOz-O_Z-oQHd6Mg374dkcfIH9_S_h24mf1YZsfMP_N9lwk
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3357519
crossref_primary_10_3390_s24186063
crossref_primary_10_1016_j_eswa_2025_126847
crossref_primary_10_1371_journal_pone_0303866
crossref_primary_10_1049_ipr2_13140
crossref_primary_10_3390_electronics11152330
crossref_primary_10_1007_s10846_023_02024_9
crossref_primary_10_3390_su142315892
crossref_primary_10_3390_drones5040146
crossref_primary_10_1109_ACCESS_2023_3284472
crossref_primary_10_32604_cmc_2023_036893
crossref_primary_10_1007_s11042_023_15019_3
crossref_primary_10_1016_j_eswa_2023_120220
crossref_primary_10_1109_ACCESS_2022_3220665
crossref_primary_10_3390_app13158759
crossref_primary_10_3390_a17050202
crossref_primary_10_1016_j_ultrasmedbio_2023_03_013
crossref_primary_10_3390_info15030134
crossref_primary_10_1016_j_eswa_2023_119764
crossref_primary_10_3390_electronics14132523
crossref_primary_10_3390_s22052021
crossref_primary_10_3390_s23135824
crossref_primary_10_1049_ipr2_12617
crossref_primary_10_1049_ipr2_12595
crossref_primary_10_1088_1742_6596_2560_1_012042
crossref_primary_10_3389_fpls_2022_806878
crossref_primary_10_32604_csse_2023_037266
crossref_primary_10_1016_j_trpro_2023_11_258
crossref_primary_10_1109_TIM_2024_3451598
crossref_primary_10_1109_TITS_2023_3258683
crossref_primary_10_3390_s22187026
crossref_primary_10_3390_drones6120415
crossref_primary_10_3390_app14177703
crossref_primary_10_1109_JSEN_2023_3260360
crossref_primary_10_1109_ACCESS_2023_3323588
crossref_primary_10_1007_s11227_023_05293_1
crossref_primary_10_3390_app142310770
crossref_primary_10_3390_e26080617
crossref_primary_10_20965_jaciii_2025_p0349
crossref_primary_10_1038_s41598_025_02824_z
crossref_primary_10_1109_ACCESS_2023_3296309
crossref_primary_10_1007_s11370_024_00519_4
crossref_primary_10_1007_s42452_024_06029_3
crossref_primary_10_3390_electronics13122271
crossref_primary_10_3390_machines10070523
crossref_primary_10_1080_00071668_2024_2356656
crossref_primary_10_1080_19392699_2024_2331542
crossref_primary_10_1109_ACCESS_2023_3313166
crossref_primary_10_1186_s13638_022_02188_2
crossref_primary_10_3390_app13105882
crossref_primary_10_1016_j_compeleceng_2024_109289
crossref_primary_10_1088_1742_6596_2087_1_012081
crossref_primary_10_3390_agronomy14050910
crossref_primary_10_1080_19439962_2023_2169801
crossref_primary_10_1007_s44163_025_00263_3
Cites_doi 10.1016/j.aap.2019.105319
10.1007/s11042-020-08627-w
10.1109/IJCNN.2017.7966233
10.1109/ICCV.2017.324
10.1109/IJCNN.2018.8489629
10.1109/ICCV.2017.593
10.1109/WACV45572.2020.9093538
10.1109/IJCNN.2016.7727586
10.1109/ICOEI.2019.8862543
10.1109/TIP.2020.3002345
10.1109/ICSEC.2018.8712778
10.1109/ICCVW.2019.00246
10.1109/ICIRCA48905.2020.9183287
10.1007/s11042-017-4482-7
10.1007/978-3-030-58595-2_22
10.1109/TITS.2020.2997084
10.1109/ICCV.2019.00972
10.1109/TITS.2017.2749964
10.1109/CICT48419.2019.9066191
10.1109/CVPR.2019.00060
10.1109/ICOSEC49089.2020.9215415
10.1109/CVPR42600.2020.00978
10.1109/CLEI.2013.6670613
10.1109/CVPR.2019.00093
10.1609/aaai.v33i01.3301922
10.1109/ICCV.2017.322
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2019.00091
10.1109/CVPR.2016.91
10.1007/s11042-016-3565-1
10.1109/ICOSEC49089.2020.9215266
10.1109/CVPRW50498.2020.00203
10.1109/WACV48630.2021.00318
10.1109/CVPR46437.2021.00841
10.1109/TIP.2019.2910667
10.1007/978-3-030-00563-4_6
10.1109/ACCESS.2020.3021357
10.1109/CVPR.2018.00644
10.1109/CVPR.2019.00754
10.1007/s11042-017-4975-4
10.1007/978-3-030-58555-6_16
10.1109/ICCV.2019.00975
10.1049/iet-its.2018.5241
10.22214/ijraset.2020.30426
10.1109/CVPR.2018.00813
10.1007/978-3-030-01234-2_1
10.1007/978-981-13-0680-8_11
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12295
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 3637
ExternalDocumentID oai_doaj_org_article_84583987ba25418294e7c6e6a7a3013d
10_1049_ipr2_12295
IPR212295
Genre article
GrantInformation_xml – fundername: Key Research and Development Program in Anhui Province
  funderid: 202004d07020008; 201904d07020010
– fundername: National Natural Science Foundation of China
  funderid: 62076086; 61673157; 61972129; 61972127
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4805-f4ebf7fa355295ba57cf3e4cfcf9c4b03a1b35fe8752f1122e5dbb4e35ec65e43
IEDL.DBID 24P
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000667737400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:53:49 EDT 2025
Tue Nov 18 21:32:48 EST 2025
Wed Oct 29 21:24:41 EDT 2025
Wed Jan 22 16:26:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4805-f4ebf7fa355295ba57cf3e4cfcf9c4b03a1b35fe8752f1122e5dbb4e35ec65e43
ORCID 0000-0001-5628-6237
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12295
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_84583987ba25418294e7c6e6a7a3013d
crossref_primary_10_1049_ipr2_12295
crossref_citationtrail_10_1049_ipr2_12295
wiley_primary_10_1049_ipr2_12295_IPR212295
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2020; 8
2018; 19
2014; 931–932
2021
2019; 33
2020
2019; 13
2017; 76
2016; 9905
2019; 28
2019; 06
2019
2018
2017
2016
2020; 79
2020; 134
2013
2018; 77
2019; 182
2020; 29
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
Marayatr T. (e_1_2_9_24_1) 2014; 931
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Allamki L. (e_1_2_9_33_1) 2019; 06
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
Swapna M. (e_1_2_9_23_1) 2019; 182
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 8
  start-page: 162073
  year: 2020
  end-page: 162084
  article-title: Helmet use detection of tracked motorcycles using CNN‐based multi‐task learning
  publication-title: IEEE Access
– volume: 77
  start-page: 13557
  issue: 11
  year: 2018
  end-page: 13570
  article-title: Moving object detection via robust background modeling with recurring patterns voting
  publication-title: Multimedia Tools Appl
– year: 2019
  article-title: Grid r‐cnn
– volume: 06
  start-page: 5
  issue: 12
  year: 2019
  article-title: Helmet detection using machine learning and automatic license plate recognition
  publication-title: International Research Journal of Engineering and Technology
– volume: 28
  start-page: 4376
  issue: 9
  year: 2019
  end-page: 4386
  article-title: Weakly supervised adversarial domain adaptation for semantic segmentation in urban scenes
  publication-title: IEEE Trans. Image Process.
– year: 2018
  article-title: Automatic detector for bikers with no helmet using deep learning
– start-page: 1
  year: 2020
  end-page: 16
  article-title: Detection of motorcycles in urban traffic using video analysis: A review
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2013
  article-title: Automatic detection of motorcyclists without helmet
– year: 2020
  article-title: CSPNet: A new backbone that can enhance learning capability of CNN
– year: 2020
  article-title: Helmet and number plate detection of motorcyclists using deep learning and advanced machine vision techniques
– year: 2020
  article-title: Low cost, high performance automatic motorcycle helmet violation detection
– year: 2019
  article-title: RepPoints: Point set representation for object detection
– volume: 29
  start-page: 7389
  year: 2020
  end-page: 7398
  article-title: FoveaBox: beyound anchor‐based object detection
  publication-title: IEEE Trans. Image Process.
– year: 2021
– volume: 134
  year: 2020
  article-title: Detecting motorcycle helmet use with deep learning. Accident
  publication-title: Anal. Prev.
– volume: 33
  start-page: 922
  year: 2019
  end-page: 929
– volume: 19
  start-page: 230
  issue: 1
  year: 2018
  end-page: 241
  article-title: Embedding structured contour and location prior in siamesed fully convolutional networks for road detection
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2020
  article-title: Real time automatic detection of motorcyclists with and without a safety helmet
– year: 2016
– year: 2018
– volume: 76
  start-page: 11003
  issue: 8
  year: 2017
  end-page: 11019
  article-title: Local‐to‐global background modeling for moving object detection from non‐static cameras
  publication-title: Multimedia Tools Appl
– volume: 8
  start-page: 1112
  issue: 7
  year: 2020
  end-page: 1116
  article-title: Real‐time helmet detection of motorcyclists without helmet using convolutional neural network'IJRASET
  publication-title: International Journal for Research in Applied Science and Engineering Technology
– volume: 931–932
  start-page: 588
  year: 2014
  end-page: 592
  article-title: Motorcyclist's helmet wearing detection using image processing
  publication-title: Adv. Mat. Res
– start-page: 10
– year: 2021
  article-title: Rotate to attend: Convolutional triplet attention module
– volume: 9905
  start-page: 21
  year: 2016
  end-page: 37
– year: 2019
  article-title: An efficient helmet detection for MVD using deep learning
– year: 2017
  article-title: Detection of motorcyclists without helmet in videos using convolutional neural network
– year: 2018
  article-title: Cascade R‐CNN: delving into high quality object detection
– volume: 77
  start-page: 5659
  issue: 5
  year: 2018
  end-page: 5683
  article-title: Detection of helmets on motorcyclists
  publication-title: Multimedia Tools Appl
– year: 2020
– year: 2019
  article-title: Feature selective anchor‐free module for single‐shot object detection
– volume: 182
  start-page: 50
  issue: 37
  year: 2019
  end-page: 55
  article-title: A hybrid approach for helmet detection for riders safety using Image processing
  publication-title: Mach. Learn. Artif. Intell.
– start-page: 9
– year: 2016
  article-title: Automatic detection of bike‐riders without helmet using surveillance videos in real‐time
– volume: 79
  start-page: 14179
  issue: 19–20
  year: 2020
  end-page: 14199
  article-title: Automated detection of helmet on motorcyclists from traffic surveillance videos: A comparative analysis using hand‐crafted features and CNN
  publication-title: Multimedia Tools Appl
– year: 2018
  article-title: A robust real‐time automatic license plate recognition based on the YOLO detector
– year: 2017
– year: 2020
  article-title: Machine learning based surveillance system for detection of bike riders without helmet and triple rides
– year: 2019
  article-title: Libra R‐CNN: towards balanced learning for object detection
– year: 2020
  article-title: Bridging the gap between anchor‐based and anchor‐free detection via adaptive training sample selection
– year: 2019
– volume: 13
  start-page: 1190
  issue: 7
  year: 2019
  end-page: 1198
  article-title: Deep learning‐based helmet wear analysis of a motorcycle rider for intelligent surveillance system
  publication-title: IET Intell. Transp. Syst.
– article-title: Automated helmet detection for multiple motorcycle riders using CNN
– ident: e_1_2_9_42_1
  doi: 10.1016/j.aap.2019.105319
– ident: e_1_2_9_56_1
– ident: e_1_2_9_30_1
  doi: 10.1007/s11042-020-08627-w
– ident: e_1_2_9_3_1
– ident: e_1_2_9_31_1
  doi: 10.1109/IJCNN.2017.7966233
– ident: e_1_2_9_9_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_9_16_1
  doi: 10.1109/IJCNN.2018.8489629
– ident: e_1_2_9_18_1
  doi: 10.1109/ICCV.2017.593
– ident: e_1_2_9_47_1
– ident: e_1_2_9_38_1
  doi: 10.1109/WACV45572.2020.9093538
– ident: e_1_2_9_21_1
  doi: 10.1109/IJCNN.2016.7727586
– volume: 06
  start-page: 5
  issue: 12
  year: 2019
  ident: e_1_2_9_33_1
  article-title: Helmet detection using machine learning and automatic license plate recognition
  publication-title: International Research Journal of Engineering and Technology
– ident: e_1_2_9_37_1
  doi: 10.1109/ICOEI.2019.8862543
– ident: e_1_2_9_58_1
  doi: 10.1109/TIP.2020.3002345
– ident: e_1_2_9_2_1
– ident: e_1_2_9_43_1
  doi: 10.1109/ICSEC.2018.8712778
– ident: e_1_2_9_35_1
– ident: e_1_2_9_48_1
  doi: 10.1109/ICCVW.2019.00246
– ident: e_1_2_9_5_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_34_1
  doi: 10.1109/ICIRCA48905.2020.9183287
– ident: e_1_2_9_25_1
  doi: 10.1007/s11042-017-4482-7
– ident: e_1_2_9_57_1
  doi: 10.1007/978-3-030-58595-2_22
– ident: e_1_2_9_19_1
  doi: 10.1109/TITS.2020.2997084
– ident: e_1_2_9_11_1
  doi: 10.1109/ICCV.2019.00972
– ident: e_1_2_9_14_1
  doi: 10.1109/TITS.2017.2749964
– ident: e_1_2_9_40_1
  doi: 10.1109/CICT48419.2019.9066191
– volume: 182
  start-page: 50
  issue: 37
  year: 2019
  ident: e_1_2_9_23_1
  article-title: A hybrid approach for helmet detection for riders safety using Image processing
  publication-title: Mach. Learn. Artif. Intell.
– ident: e_1_2_9_49_1
  doi: 10.1109/CVPR.2019.00060
– ident: e_1_2_9_22_1
  doi: 10.1109/ICOSEC49089.2020.9215415
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR42600.2020.00978
– ident: e_1_2_9_20_1
  doi: 10.1109/CLEI.2013.6670613
– ident: e_1_2_9_59_1
  doi: 10.1109/CVPR.2019.00093
– ident: e_1_2_9_15_1
  doi: 10.1609/aaai.v33i01.3301922
– ident: e_1_2_9_6_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_9_53_1
  doi: 10.1109/CVPR.2019.00091
– ident: e_1_2_9_7_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_9_28_1
  doi: 10.1007/s11042-016-3565-1
– ident: e_1_2_9_36_1
  doi: 10.1109/ICOSEC49089.2020.9215266
– ident: e_1_2_9_44_1
  doi: 10.1109/CVPRW50498.2020.00203
– ident: e_1_2_9_51_1
  doi: 10.1109/WACV48630.2021.00318
– ident: e_1_2_9_60_1
  doi: 10.1109/CVPR46437.2021.00841
– ident: e_1_2_9_13_1
– ident: e_1_2_9_4_1
  doi: 10.1109/TIP.2019.2910667
– ident: e_1_2_9_17_1
  doi: 10.1007/978-3-030-00563-4_6
– ident: e_1_2_9_41_1
  doi: 10.1109/ACCESS.2020.3021357
– ident: e_1_2_9_52_1
  doi: 10.1109/CVPR.2018.00644
– ident: e_1_2_9_54_1
  doi: 10.1109/CVPR.2019.00754
– ident: e_1_2_9_29_1
  doi: 10.1007/s11042-017-4975-4
– ident: e_1_2_9_55_1
  doi: 10.1007/978-3-030-58555-6_16
– ident: e_1_2_9_12_1
  doi: 10.1109/ICCV.2019.00975
– ident: e_1_2_9_32_1
  doi: 10.1049/iet-its.2018.5241
– ident: e_1_2_9_39_1
  doi: 10.22214/ijraset.2020.30426
– ident: e_1_2_9_46_1
  doi: 10.1109/CVPR.2018.00813
– volume: 931
  start-page: 588
  year: 2014
  ident: e_1_2_9_24_1
  article-title: Motorcyclist's helmet wearing detection using image processing
  publication-title: Adv. Mat. Res
– ident: e_1_2_9_50_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_2_9_61_1
– ident: e_1_2_9_26_1
  doi: 10.1007/978-981-13-0680-8_11
– ident: e_1_2_9_45_1
SSID ssj0059085
Score 2.5793643
Snippet In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in motorcycle...
Abstract In traffic accidents, motorcycle accidents are the main cause of casualties, especially in developing countries. The main cause of fatal injuries in...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3623
SubjectTerms Computer vision and image processing techniques
Image recognition
Optical, image and video signal processing
Other topics in statistics
Traffic engineering computing
Video signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXAb0oVLd59HFUURRERVT0VJJ0ogtrK92u4M2f4G_0lzhJu6IgevFWSmjamWnyTTL5PkI2Q4tjHDdhABZkILiOAgWCYapikyjnzFh_Qu7mND47S25v04svUl-uJqyhB24Mt5u4jT1MjLXCVAbBcCogNhFEKlYYmzx3oy-inlEy1YzBTshb-qOQTkQ-kumImFSku72niu2ETsX621TkGfu_I1Q_xRzNkKkWG9K95p1myRgUc2S6xYm0_QsH8-T-EtHd--ub04WnaliXnnaVPkD_EWqaQ-3LqwpaWoqOKCvzYvrozQHtFXRYaVXQulKOOoK6qvd72vMLC9jF3fnp-bNsn1BWC-T66PDq4DhoBRMCI5KuDKwAbWOrEEPg52klY2M5CGPR4kboLleh5tIC5ijMItBiIHOtBXAJJpIg-CIZL8oClggFG-XCikgapkTXKCVkmFuRJ0x1dZjoDtka2S4zLZu4E7XoZ35XW6SZs3Pm7dwhG59tnxoOjR9b7TsXfLZwvNf-BkZD1kZD9lc0dMi2d-Av_WQnF5fMXy3_R48rZJK5Mhdf4bJKxutqCGtkwjzXvUG17qPyA9s75j0
  priority: 102
  providerName: Directory of Open Access Journals
Title Real‐time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12295
https://doaj.org/article/84583987ba25418294e7c6e6a7a3013d
Volume 15
WOSCitedRecordID wos000667737400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEC7W1YMX1yc7PpaAXhRap5NKP8CLiosLy-yw-FhPTZKujANj99LTs-DNn-Bv9JdYyfSMLIggXpqmqe4OqVSlKql8H8CT1LOPUy5NyJNOUNksMYSSUxVfZLWSzscTch-P88mkODsrpzvwcnMWZo0PsV1wC5YR_XUwcGPXLCQc1LIS5-edfJ4GNuorcDVNVRGIGyRON344kHnreBwyEMlnutyAk2L54ve7l6ajiNp_OUqN08zh3v818CbcGMJL8Wo9Hm7BDjW3YW8INcVgyMs7MDvlAPHn9x-BWl6YVd9G5FbxhRZfqRc19bFCqxGtF6zLtnPf3IIHxFLMG7HqrGlE35mAPiFC4fxMzOPaBP_i88nxyYUevtB2d-HD4dv3b94lA-dC4rAY68QjWZ97w2EIN9wanTuvCJ1npTm0Y2VSq7QnTnOk51hNkq6tRVKaXKYJ1T3YbdqG9kGQz2r0mGknDY6dMajT2mNdSDO2aWFH8HTT9ZUbAMkDL8aiihvjWFahB6vYgyN4vJU9X8Nw_FHqddDgViJAZ8cHbTerBkusirBTXBa5NZwbc3ZVIuUuo8zkhp2dqkfwLGr1L_-pjqanMt7d_xfhB3BdhoqYWAzzEHb7bkWP4Jq76OfL7iAO3oO4JsDXT0eTX1qh9e0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEA9aBX2x1j942tZA-6KweptM9s9jWyw9vF5LqVqfliQ7OQ_O3bK3V_DNj-Bn9JM0k9u7UhBBfFuW2U3IZCYzyeT3Y2w3dt7HSRtH6FBFIE0SaQThUxWXJaUU1oUbcp-H6WiUXVzkp11tDt2FWeBDrDbcyDKCvyYDpw3pRcIJBJI5uWzEu5joqO-ye-AjDWJu-DIYLR0xsXmrcB-SmOQTlS_RSSF_f_PtrfUowPbfDlPDOnO4_p89fMwedQEm31vMiA12B6snbL0LNnlnyrOnbHzmQ8TfP38RuTzX87YO2K38G06_Y8tLbEONVsVrx70268b-sFM_JWZ8UvF5Y3TF20YT_gSn0vkxn4TdCd_E15PhyZXq_lA3z9inww_nB0dRx7oQWcj6KnKAxqVO-0DEd9xolVonEazzarNg-lLHRiqHPtERzkdrAlVpDKBUaBOFIJ-ztaqu8AXj6JISnFeNFRr6VmtQcemgzITumzgzPfZmOfaF7SDJiRljWoSjccgLGsEijGCP7axkLxdAHH-U2icVriQIPDu8qJtx0dlikdFZcZ6lRvvs2OdXOWBqE0x0qr27k2WPvQ1q_Us7xeD0TISnl_8i_Jo9ODo_HhbDwejjK_ZQUH1MKI3ZZGttM8ctdt9etZNZsx1m8jUAfvhB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aRXyx9aN4VWtAXxTW3iaT_Xi0H4fF43oUlfq0JNnJ9eC6e-ztFXzzT_Bv9C8xk9s7KYggvi3L7CbMV2aSyW8Yex077-OkjSN0qCKQJok0gvCpisuSUgrrwg25L8N0NMouLvJxV5tDd2FW-BCbDTeyjOCvycBxXrpVwgkEkjmdN-JdTO2ob7M7oNKYlFrAeO2IqZu3CvchqZN8ovI1OinkB7-_vbEeBdj-m2FqWGcG2_85wx32oAsw-fuVRjxkt7B6xLa7YJN3prx4zCbnPkT8-f0HNZfnetnWAbuVX-LsClteYhtqtCpeO-6lWTf2m515lVjwacWXjdEVbxtN-BOcSucnfBp2J_wQX8-GZ9eq-0PdPGGfByefjj5EXdeFyELWV5EDNC512gcifuJGq9Q6iWCdF5sF05c6NlI59ImOcD5aE6hKYwClQpsoBLnLtqq6wqeMo0tKcJAoKzT0rdag4tJBmQndN3FmeuzNmveF7SDJqTPGrAhH45AXxMEicLDHXm1o5ysgjj9SHZIINxQEnh1e1M2k6GyxyOisOM9So3127POrHDC1CSY61d7dybLH3gax_mWc4nR8LsLT3r8Qv2T3xseDYng6-viM3RdUHhMqY56zrbZZ4gt2116300WzHxT5Fxww91g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+automatic+helmet+detection+of+motorcyclists+in+urban+traffic+using+improved+YOLOv5+detector&rft.jtitle=IET+image+processing&rft.au=Jia%2C+Wei&rft.au=Xu%2C+Shiquan&rft.au=Liang%2C+Zhen&rft.au=Zhao%2C+Yang&rft.date=2021-12-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=14&rft.spage=3623&rft.epage=3637&rft_id=info:doi/10.1049%2Fipr2.12295&rft.externalDBID=10.1049%252Fipr2.12295&rft.externalDocID=IPR212295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon