An efficient and layout‐independent automatic license plate recognition system based on the YOLO detector
This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition res...
Gespeichert in:
| Veröffentlicht in: | IET intelligent transport systems Jg. 15; H. 4; S. 483 - 503 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.04.2021
|
| Schlagworte: | |
| ISSN: | 1751-956X, 1751-9578 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community. |
|---|---|
| AbstractList | This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community. Abstract This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community. |
| Author | Schwartz, William Robson Todt, Eduardo Laroca, Rayson Gonçalves, Gabriel R. Menotti, David Zanlorensi, Luiz A. |
| Author_xml | – sequence: 1 givenname: Rayson orcidid: 0000-0003-1943-2711 surname: Laroca fullname: Laroca, Rayson email: rblsantos@inf.ufpr.br organization: Federal University of Paraná – sequence: 2 givenname: Luiz A. orcidid: 0000-0003-2545-0588 surname: Zanlorensi fullname: Zanlorensi, Luiz A. organization: Federal University of Paraná – sequence: 3 givenname: Gabriel R. orcidid: 0000-0001-9133-0221 surname: Gonçalves fullname: Gonçalves, Gabriel R. organization: Federal University of Minas Gerais – sequence: 4 givenname: Eduardo orcidid: 0000-0001-6045-1274 surname: Todt fullname: Todt, Eduardo organization: Federal University of Paraná – sequence: 5 givenname: William Robson orcidid: 0000-0003-1449-8834 surname: Schwartz fullname: Schwartz, William Robson organization: Federal University of Minas Gerais – sequence: 6 givenname: David orcidid: 0000-0003-2430-2030 surname: Menotti fullname: Menotti, David organization: Federal University of Paraná |
| BookMark | eNp9kMtqGzEUhkVJoM5l0yfQuuBEt9GMlsa0jcFgCAkkK3FGcyZVOpaMJFO8yyPkGfMkGcclixC6Off_g_OfkKMQAxLyjbMLzpS59CWJCy6YZF_IhNcVn5qqbo7ea333lZzk_MhYpYXgE_JnFij2vXceQ6EQOjrALm7Ly9OzDx1ucAz7xbbENRTv6OAdhox0M0BBmtDFh-CLj4HmXS64pi1k7OjYl99I71fLFe2woCsxnZHjHoaM5__yKbn9-eNmfjVdrn4t5rPl1KmGsakSwJ1Trq-5RsVR6BpYx7DptdGqaauaKelqxisNQtRat0Z20CrTKlQdgjwliwO3i_BoN8mvIe1sBG_fBjE9WEjjLwNaM4IaIVxjGFMKGpDStFBLqY2ESoiR9f3AcinmnLB_53Fm95bbveX2zfLxmH04dr7A3pySwA-fS_hB8tcPuPsP3C5ursVB8wreEJar |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105066 crossref_primary_10_1007_s11042_023_15656_8 crossref_primary_10_3390_agriengineering7060169 crossref_primary_10_1016_j_jvcir_2024_104314 crossref_primary_10_1109_ACCESS_2024_3505208 crossref_primary_10_1016_j_sigpro_2023_109196 crossref_primary_10_1177_14727978251361843 crossref_primary_10_1051_matecconf_202235502054 crossref_primary_10_1007_s00521_025_11302_6 crossref_primary_10_3390_app13084902 crossref_primary_10_1051_matecconf_202235503024 crossref_primary_10_3390_s23208439 crossref_primary_10_1109_TITS_2021_3087158 crossref_primary_10_1007_s00521_025_11257_8 crossref_primary_10_1142_S021951942440058X crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_1017_S0263574724001991 crossref_primary_10_1007_s10489_021_02628_4 crossref_primary_10_3390_technologies12090164 crossref_primary_10_1088_1742_6596_2560_1_012006 crossref_primary_10_1007_s00371_021_02375_0 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_3233_JCM_247308 crossref_primary_10_1088_1742_6596_2424_1_012028 crossref_primary_10_1109_ACCESS_2021_3092938 crossref_primary_10_1049_ipr2_12674 crossref_primary_10_1049_itr2_70086 crossref_primary_10_1109_TIM_2024_3476570 crossref_primary_10_1016_j_measurement_2022_112025 crossref_primary_10_1051_shsconf_202419401004 crossref_primary_10_32604_cmc_2023_040086 crossref_primary_10_1007_s12555_024_0899_8 crossref_primary_10_3390_s22030921 crossref_primary_10_1007_s10032_025_00529_7 crossref_primary_10_1088_1742_6596_2504_1_012039 crossref_primary_10_1007_s00530_023_01119_5 crossref_primary_10_5753_jbcs_2025_5159 crossref_primary_10_1007_s11760_024_03514_5 crossref_primary_10_1016_j_patcog_2025_111918 crossref_primary_10_1016_j_robot_2023_104608 crossref_primary_10_1109_ACCESS_2021_3097964 crossref_primary_10_1109_TCSVT_2024_3421559 crossref_primary_10_1155_2021_8592216 crossref_primary_10_1016_j_cag_2023_05_005 crossref_primary_10_1007_s13177_025_00481_0 crossref_primary_10_1109_JSEN_2024_3453498 crossref_primary_10_1109_TITS_2025_3554986 crossref_primary_10_1016_j_jvcir_2022_103541 crossref_primary_10_1016_j_asej_2025_103483 crossref_primary_10_1109_ACCESS_2021_3077415 |
| Cites_doi | 10.1016/j.jvcir.2020.102773 10.1049/iet-its.2017.0224 10.1109/IVMSPW.2016.7528222 10.1007/978-3-030-01258-8_36 10.1007/978-3-030-01219-9_19 10.1109/CVPRW.2017.60 10.1016/j.imavis.2018.02.002 10.1109/TITS.2015.2496545 10.1117/1.JEI.26.3.033017 10.1007/s00500-017-2503-0 10.1109/TITS.2016.2586520 10.1109/TITS.2008.922938 10.1109/TITS.2016.2639020 10.1109/TIP.2016.2535375 10.1109/SIBGRAPI.2018.00021 10.1007/s11263-009-0275-4 10.1109/TMM.2017.2751966 10.1049/iet-its.2019.0481 10.1016/j.eswa.2017.09.036 10.1117/1.JEI.25.5.053034 10.1109/ICIP.2017.8296912 10.1109/TVT.2019.2927353 10.1109/ISCAS.2017.8050867 10.1109/ITSC.2016.7795970 10.1109/ICMEW.2015.7169772 10.1117/1.JEI.26.5.053027 10.1007/978-3-030-01261-8_16 10.1109/VETEC.1991.140605 10.1109/SIBGRAPI.2014.52 10.1109/TIP.2016.2631901 10.1109/IJCNN.2018.8489629 10.1038/nature14539 10.1109/CVPR.2019.01083 10.1109/TITS.2018.2847291 10.1109/CVPR.2016.91 10.1016/j.eswa.2019.06.036 10.1109/TCSVT.2012.2203741 10.1109/CVPR.2019.00412 10.1109/ICCV.2017.324 10.1109/TIP.2012.2199506 10.1109/AVSS.2017.8078493 10.1109/AVSS.2017.8078501 10.5244/C.31.175 10.1109/ICNC.2015.7378092 10.1016/j.compeleceng.2015.02.014 10.1117/1.JEI.28.1.013023 10.1007/978-3-030-33904-3_23 10.1049/iet-its.2017.0136 10.1109/TITS.2017.2784093 10.1109/CVPR.2017.690 10.1007/978-3-319-10602-1_48 10.1109/ICIP.2016.7533077 10.1109/SIBGRAPI.2017.14 10.1007/978-3-319-46448-0_2 10.1007/s11263-019-01247-4 10.1016/j.ijleo.2018.10.098 10.1109/CVPRW.2017.56 10.1109/TVT.2019.2908425 10.1109/TVT.2012.2226218 10.1016/j.cviu.2019.03.001 10.1117/1.JEI.27.4.043056 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/itr2.12030 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9578 |
| EndPage | 503 |
| ExternalDocumentID | oai_doaj_org_article_93c7822c890044a8a339ba733693a522 10_1049_itr2_12030 ITR212030 |
| Genre | article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: DeepEyes Project; Social Demand Program – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 428333/2016‐8; 311053/2016‐5; 313423/2017‐2; 438629/2018‐3 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais funderid: PPM‐00540‐17; APQ‐00567‐14 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4800-42a1cc4cf716e41e267a0d0e8f69648b57043c70156a22766b93dab49b4e4dea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620191900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-956X |
| IngestDate | Fri Oct 03 12:53:38 EDT 2025 Wed Oct 29 21:06:00 EDT 2025 Tue Nov 18 20:42:55 EST 2025 Wed Jan 22 16:58:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4800-42a1cc4cf716e41e267a0d0e8f69648b57043c70156a22766b93dab49b4e4dea3 |
| ORCID | 0000-0003-1449-8834 0000-0003-2545-0588 0000-0001-9133-0221 0000-0001-6045-1274 0000-0003-1943-2711 0000-0003-2430-2030 |
| OpenAccessLink | https://doaj.org/article/93c7822c890044a8a339ba733693a522 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_93c7822c890044a8a339ba733693a522 crossref_primary_10_1049_itr2_12030 crossref_citationtrail_10_1049_itr2_12030 wiley_primary_10_1049_itr2_12030_ITR212030 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | IET intelligent transport systems |
| PublicationYear | 2021 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2017; 26 2015; 521 2013; 23 2013; 62 2008; 9 2020; 14 2019; 128 1991 2016; 17 2018; 22 2019; 182 2018; 20 2018; 27 2015; 46 2010; 88 2018; 19 1990 2019; 20 2020 2019; 68 2020; 71 2018; 92 2019; 28 2019 2018 2017 2019; 136 2016 2017; 18 2015 2018; 72 2014 2018; 12 2012; 21 2016; 25 2019; 178 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – start-page: 251 year: 2019 end-page: 261 article-title: Multi‐task learning for low‐resolution license plate recognition – volume: 26 start-page: 1102 issue: 3 year: 2017 end-page: 1114 article-title: A robust and efficient approach to license plate detection publication-title: IEEE Trans. Image Process – volume: 71 year: 2020 article-title: Real‐time license plate detection and recognition using deep convolutional neural networks publication-title: J. Visual Commun. Image Represent. – start-page: 110 year: 2018 end-page: 117 article-title: Real‐time automatic license plate recognition through deep multi‐task networks – volume: 178 start-page: 1185 year: 2019 end-page: 1194 article-title: Lightweight fully convolutional network for license plate detection publication-title: Optik – start-page: 798 year: 1991 end-page: 804 article-title: Development of vehicle‐license number recognition system using real‐time image processing and its application to travel‐time measurement – start-page: 1 year: 2016 end-page: 5 article-title: A comparison study on real‐time tracking motorcycle license plates – year: 2018 – volume: 23 start-page: 311 issue: 2 year: 2013 end-page: 325 article-title: Automatic license plate recognition (ALPR): A state‐of‐the‐art review publication-title: IEEE Trans. Circuits Syst. Video Technol – start-page: 10,573 year: 2019 end-page: 10,582 article-title: Privacy protection in street‐view panoramas using depth and multi‐view imagery – start-page: 1 year: 2015 end-page: 6 article-title: A comparison study on motorcycle license plate detection – volume: 12 start-page: 542 issue: 6 year: 2018 end-page: 549 article-title: Improved license plate localisation algorithm based on morphological operations publication-title: IET Intel. Transport Syst. – volume: 12 start-page: 213 issue: 3 year: 2018 end-page: 219 article-title: Chinese vehicle license plate recognition using kernel‐based extreme learning machine with deep convolutional features publication-title: IET Intel. Transport Syst. – volume: 18 start-page: 2351 issue: 9 year: 2017 end-page: 2363 article-title: Segmentation‐ and annotation‐free license plate recognition with deep localization and failure identification publication-title: IEEE Trans. Intell. Transp. Syst – start-page: 1 year: 2017 end-page: 6 article-title: Holistic recognition of low quality license plates by CNN using track annotated data – volume: 20 start-page: 1126 issue: 3 year: 2019 end-page: 1136 article-title: Toward end‐to‐end car license plate detection and recognition with deep neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 261 year: 2018 end-page: 277 article-title: Towards end‐to‐end license plate detection and recognition: A large dataset and baseline – start-page: 791 year: 2015 end-page: 796 article-title: Robust chinese traffic sign detection and recognition with deep convolutional neural network – start-page: 21 year: 2016 end-page: 37 article-title: SSD: Single shot multibox detector – start-page: 1 year: 2017 end-page: 6 article-title: Robust license plate detection in the wild – start-page: 593 year: 2018 end-page: 609 article-title: License plate detection and recognition in unconstrained scenarios – volume: 72 start-page: 14 year: 2018 end-page: 23 article-title: Reading car license plates using deep neural networks publication-title: Image Vision Comput. – start-page: 1 year: 1990 end-page: 6 article-title: Automatic number‐plate recognition – volume: 14 start-page: 119 issue: 2 year: 2020 end-page: 126 article-title: License plate segmentation and recognition system using deep learning and OpenVINO publication-title: IET Intel. Transport Syst. – start-page: 3395 year: 2017 end-page: 3399 article-title: Convolutional neural networks for license plate detection in images – start-page: 6517 year: 2017 end-page: 6525 article-title: YOLO9000: Better, faster, stronger – start-page: 2577 year: 2016 end-page: 2582 article-title: License plate recognition based on temporal redundancy – volume: 17 start-page: 1096 issue: 4 year: 2016 end-page: 1107 article-title: Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines publication-title: IEEE Trans. Intell. Transp. Syst – volume: 88 start-page: 303 issue: 2 year: 2010 end-page: 338 article-title: The pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vision – start-page: 3832 year: 2016 end-page: 3836 article-title: CNN for license plate motion deblurring – start-page: 298 year: 2014 end-page: 303 article-title: Vehicle license plate recognition with random convolutional networks – volume: 28 issue: 1 year: 2019 article-title: Convolutional neural networks for automatic meter reading publication-title: J. Electron. Imaging – volume: 21 start-page: 4269 issue: 9 year: 2012 end-page: 4279 article-title: Principal visual word discovery for automatic license plate detection publication-title: IEEE Trans. Image Process – volume: 27 issue: 4 year: 2018 article-title: Vehicle license plate detection and recognition using deep neural networks and generative adversarial networks publication-title: J. Electron. Imaging – volume: 26 issue: 3 year: 2017 article-title: License plate detection in an open environment by density‐based boundary clustering publication-title: J. Electron. Imaging – start-page: 446 year: 2017 end-page: 454 article-title: SqueezeDet: Unified, small, low power fully convolutional neural networks for real‐time object detection for autonomous driving – volume: 22 start-page: 2403 issue: 7 year: 2018 end-page: 2419 article-title: Convolutional neural networks‐based intelligent recognition of Chinese license plates publication-title: Soft Comput – start-page: 3992 year: 2019 end-page: 4000 article-title: Part‐regularized near‐duplicate vehicle re‐identification – volume: 128 start-page: 261 year: 2019 end-page: 318 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vision – volume: 25 start-page: 2311 issue: 5 year: 2016 end-page: 2323 article-title: Robust blur kernel estimation for license plate images from fast moving vehicles publication-title: IEEE Trans. Image Process – volume: 18 start-page: 767 issue: 4 year: 2017 end-page: 779 article-title: Accurate detection and recognition of dirty vehicle plate numbers for high‐speed applications publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 68 start-page: 8512 issue: 9 year: 2019 end-page: 8522 article-title: Deep quadruplet appearance learning for vehicle re‐identification publication-title: IEEE Trans. Veh. Technol – start-page: 314 year: 2018 end-page: 329 article-title: Towards human‐level license plate recognition – start-page: 1 year: 2019 end-page: 11 – volume: 46 start-page: 539 year: 2015 end-page: 553 article-title: A two‐stage character segmentation method for chinese license plate publication-title: Comput. Electr. Eng. – volume: 26 issue: 5 year: 2017 article-title: License plate detection based on fully convolutional networks publication-title: J. Electron. Imaging – start-page: 740 year: 2014 end-page: 755 article-title: Microsoft COCO: Common objects in context – volume: 62 start-page: 552 issue: 2 year: 2013 end-page: 561 article-title: Application‐oriented license plate recognition publication-title: IEEE Trans. Veh. Technol. – volume: 68 start-page: 5379 issue: 6 year: 2019 end-page: 5390 article-title: Driver activity recognition for intelligent vehicles: A deep learning approach publication-title: IEEE Trans. Veh. Technol – start-page: 1 year: 2017 end-page: 4 article-title: Spatially supervised recurrent convolutional neural networks for visual object tracking – start-page: 55 year: 2017 end-page: 62 article-title: Real‐time Brazilian license plate detection and recognition using deep convolutional neural networks – start-page: 1 year: 2017 end-page: 12 article-title: A CNN‐based approach for automatic license plate recognition in the wild – volume: 25 issue: 5 year: 2016 article-title: Benchmark for license plate character segmentation publication-title: J. Electron. Imaging – volume: 92 start-page: 216 year: 2018 end-page: 235 article-title: Ensemble of adaboost cascades of 3L‐LBPs classifiers for license plates detection with low quality images publication-title: Expert Syst. Appl. – volume: 19 start-page: 507 issue: 2 year: 2018 end-page: 517 article-title: A new CNN‐based method for multi‐directional car license plate detection publication-title: IEEE Trans. Intell. Transp. Syst – volume: 136 start-page: 159 year: 2019 end-page: 170 article-title: A two‐stage deep neural network for multi‐norm license plate detection and recognition publication-title: Expert Syst. Appl. – volume: 20 start-page: 645 issue: 3 year: 2018 end-page: 658 article-title: PROVID: Progressive and multimodal vehicle reidentification for large‐scale urban surveillance publication-title: IEEE Trans. Multimedia – year: 2020 – start-page: 2999 year: 2017 end-page: 3007 article-title: Focal loss for dense object detection – start-page: 779 year: 2016 end-page: 788 article-title: You only look once: Unified, real‐time object detection – volume: 182 start-page: 50 year: 2019 end-page: 63 article-title: A survey of advances in vision‐based vehicle re‐identification publication-title: Comput. Vision Image Understanding – start-page: 1 year: 2018 end-page: 10 article-title: A robust real‐time automatic license plate recognition based on the YOLO detector – year: 2017 – volume: 9 start-page: 377 issue: 3 year: 2008 end-page: 391 article-title: License plate recognition from still images and video sequences: A survey publication-title: IEEE Trans. Intell. Transp. Syst – start-page: 411 year: 2017 end-page: 420 article-title: LCDet: Low‐complexity fully‐convolutional neural networks for object detection in embedded systems – ident: e_1_2_8_38_1 doi: 10.1016/j.jvcir.2020.102773 – ident: e_1_2_8_42_1 doi: 10.1049/iet-its.2017.0224 – ident: e_1_2_8_45_1 doi: 10.1109/IVMSPW.2016.7528222 – ident: e_1_2_8_54_1 – ident: e_1_2_8_59_1 – ident: e_1_2_8_8_1 doi: 10.1007/978-3-030-01258-8_36 – ident: e_1_2_8_39_1 doi: 10.1007/978-3-030-01219-9_19 – ident: e_1_2_8_56_1 doi: 10.1109/CVPRW.2017.60 – ident: e_1_2_8_13_1 doi: 10.1016/j.imavis.2018.02.002 – ident: e_1_2_8_21_1 doi: 10.1109/TITS.2015.2496545 – ident: e_1_2_8_72_1 doi: 10.1117/1.JEI.26.3.033017 – ident: e_1_2_8_64_1 doi: 10.1007/s00500-017-2503-0 – ident: e_1_2_8_58_1 doi: 10.1109/TITS.2016.2586520 – ident: e_1_2_8_4_1 doi: 10.1109/TITS.2008.922938 – ident: e_1_2_8_10_1 doi: 10.1109/TITS.2016.2639020 – ident: e_1_2_8_40_1 doi: 10.1109/TIP.2016.2535375 – ident: e_1_2_8_66_1 – ident: e_1_2_8_9_1 doi: 10.1109/SIBGRAPI.2018.00021 – ident: e_1_2_8_30_1 doi: 10.1007/s11263-009-0275-4 – ident: e_1_2_8_24_1 doi: 10.1109/TMM.2017.2751966 – ident: e_1_2_8_75_1 – ident: e_1_2_8_46_1 doi: 10.1049/iet-its.2019.0481 – ident: e_1_2_8_61_1 – ident: e_1_2_8_50_1 doi: 10.1016/j.eswa.2017.09.036 – ident: e_1_2_8_34_1 doi: 10.1117/1.JEI.25.5.053034 – ident: e_1_2_8_36_1 doi: 10.1109/ICIP.2017.8296912 – ident: e_1_2_8_53_1 – ident: e_1_2_8_27_1 doi: 10.1109/TVT.2019.2927353 – ident: e_1_2_8_29_1 – ident: e_1_2_8_55_1 doi: 10.1109/ISCAS.2017.8050867 – ident: e_1_2_8_6_1 doi: 10.1109/ITSC.2016.7795970 – ident: e_1_2_8_74_1 doi: 10.1109/ICMEW.2015.7169772 – ident: e_1_2_8_68_1 doi: 10.1117/1.JEI.26.5.053027 – ident: e_1_2_8_67_1 doi: 10.1007/978-3-030-01261-8_16 – ident: e_1_2_8_3_1 doi: 10.1109/VETEC.1991.140605 – ident: e_1_2_8_43_1 doi: 10.1109/SIBGRAPI.2014.52 – ident: e_1_2_8_73_1 – ident: e_1_2_8_22_1 doi: 10.1109/TIP.2016.2631901 – ident: e_1_2_8_18_1 doi: 10.1109/IJCNN.2018.8489629 – ident: e_1_2_8_65_1 – ident: e_1_2_8_14_1 doi: 10.1038/nature14539 – ident: e_1_2_8_76_1 doi: 10.1109/CVPR.2019.01083 – ident: e_1_2_8_16_1 doi: 10.1109/TITS.2018.2847291 – ident: e_1_2_8_17_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_8_19_1 doi: 10.1016/j.eswa.2019.06.036 – ident: e_1_2_8_25_1 – ident: e_1_2_8_33_1 – ident: e_1_2_8_5_1 doi: 10.1109/TCSVT.2012.2203741 – ident: e_1_2_8_26_1 doi: 10.1109/CVPR.2019.00412 – ident: e_1_2_8_48_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_8_32_1 doi: 10.1109/TIP.2012.2199506 – ident: e_1_2_8_35_1 doi: 10.1109/AVSS.2017.8078493 – ident: e_1_2_8_11_1 doi: 10.1109/AVSS.2017.8078501 – ident: e_1_2_8_2_1 – ident: e_1_2_8_15_1 doi: 10.5244/C.31.175 – ident: e_1_2_8_71_1 doi: 10.1109/ICNC.2015.7378092 – ident: e_1_2_8_20_1 doi: 10.1016/j.compeleceng.2015.02.014 – ident: e_1_2_8_60_1 – ident: e_1_2_8_63_1 doi: 10.1117/1.JEI.28.1.013023 – ident: e_1_2_8_52_1 – ident: e_1_2_8_12_1 doi: 10.1007/978-3-030-33904-3_23 – ident: e_1_2_8_44_1 doi: 10.1049/iet-its.2017.0136 – ident: e_1_2_8_37_1 doi: 10.1109/TITS.2017.2784093 – ident: e_1_2_8_28_1 doi: 10.1109/CVPR.2017.690 – ident: e_1_2_8_31_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_8_41_1 doi: 10.1109/ICIP.2016.7533077 – ident: e_1_2_8_7_1 doi: 10.1109/SIBGRAPI.2017.14 – ident: e_1_2_8_47_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_8_51_1 doi: 10.1007/s11263-019-01247-4 – ident: e_1_2_8_69_1 doi: 10.1016/j.ijleo.2018.10.098 – ident: e_1_2_8_57_1 doi: 10.1109/CVPRW.2017.56 – ident: e_1_2_8_49_1 doi: 10.1109/TVT.2019.2908425 – ident: e_1_2_8_62_1 doi: 10.1109/TVT.2012.2226218 – ident: e_1_2_8_23_1 doi: 10.1016/j.cviu.2019.03.001 – ident: e_1_2_8_70_1 doi: 10.1117/1.JEI.27.4.043056 |
| SSID | ssj0056221 |
| Score | 2.478998 |
| Snippet | This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once... Abstract This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 483 |
| SubjectTerms | Computer vision and image processing techniques Image recognition Neural nets |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD7Urg_ug-6uinV1CawvK4w2l85MwJcqll0obZEK9WnI5CLFMlPa6cK-7U_wN_pL9iTTjhZEWHybyxkmJCf5viQn3wF4Y33mYpnLyFCFExSpbZRqZSMjEIucSxFBg4jrMBmN0tlMTlrwYXcWptaHaBbcfM8I47Xv4Cqvs5AgqcVGnFcr9o4ydNIHcEApT7xPMzHZjcMI7PWpq8Qnku_Fs504qZDvf3-7B0dBtX-fpQaYGTz5vwIeweMtvST92h-OoWWLEzj8Q3TwKfzoF8QG4QjEG6IKQxbqptxUv25_zpucuPhiU5VBzpUscCwp1pYsF8hLSRNxVBakloEmHgkNwXskk-TbeDgmxlZhN-AZfB18nn66jLYpFyItkDpGgimqtdAOp1FWUMviRHVN16YulrFI817SFVwn_vy1YiyJ41xyo3Ihc2GFsYo_h3ZRFvYFEOG4ZtQ5bXIjtDLSsTTWoieplZRb14GLXc1neqtH7tNiLLKwLy5k5iswCxXYgfPGdlmrcPzV6qNvwMbCK2eHB-Xqe7btiJnE4iMp0qn0e9kqVZzLXHlRSMkVktEOvA2N-o__ZFfTLyxcvbyP8Sk8Yj4gJoT9vIJ2tdrY1_BQX1fz9eos-O4d-nDyCA priority: 102 providerName: Wiley-Blackwell |
| Title | An efficient and layout‐independent automatic license plate recognition system based on the YOLO detector |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12030 https://doaj.org/article/93c7822c890044a8a339ba733693a522 |
| Volume | 15 |
| WOSCitedRecordID | wos000620191900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60eNCD-MT6KAt6UYhNNtskc6xisVDaIhXrKWz2AcWQljYVvPkT_I3-Enc3baggevES8hjYMDvMN7M7-w1CF9J0LoYEHOExnaAAl07EmXQE1VikVKQR1JK4dsJuNxoOob_S6svUhBX0wIXi6uBzA2I8ArP3yCLm-5AwQ-IHPtPBg_G-bgjLZKrwwRrUixNXoWki3wiGS2JSCvVRPiXXHrF1zytQZBn7v0eoFmJaO2h7ERviZvFPu2hNZntoa4UxcB-9NDMsLeuDBgvMMoFT9jae55_vH6Oyoa3-MM_HlosVp9oRZDOJJ6kOKnFZLjTOcMHhjA2MCayfdSSIn3udHhYyt0v5B-ixdTe4vXcW_RIcTnXc51DCPM4pVzoHktSTJAiZK1wZqQACGiWN0KVam-bwNCMkDIIEfMESCgmVVEjmH6JKNs7kEcJU-Zx4SnGRCMqZAEWigNMGeBI8X6oqulyqLuYLMnHT0yKN7aY2hdioObZqrqLzUnZSUGj8KHVjZqCUMLTX9oU2hnhhDPFfxlBFV3b-fhknbg8eiL07_o8RT9AmMVUutpbnFFXy6VyeoQ3-mo9m0xpaJ7Rfs6apr0_t7hcqReXw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVrA-aL3R9daB-qIQ3UzOJpnHKpYWt9siK6xPYTIXWVySss0KvvkT_I3-Es-ZZKMFKUjfcjkhw9y-78yc-Q7AC8eZi1WpIhtrclCUcVFutIssEhZ5nxOCBhHXcTaZ5LOZOutic_gsTKsP0S-48cgI8zUPcF6Qbh1OZJHMebOUr2NJvfQGbCHBDCcwkHi2nogJ2dtjVxlnkh-ls7U6Kao3f769hEdBtv8yTQ04c3j3miXcgTsdwRQHbY-4Bxuuug-3_5IdfABfDyrhgnQEIY7QlRUL_b1eNb9-_Jz3WXHpxaqpg6CrWNBsUl04cb4gZir6mKO6Eq0QtGAstILuiU6Kz6fjU2FdE_YDHsKnw_fTd0dRl3QhMkjkMUKpY2PQeHKkHMZOppke2qHLfapSzMtRNsTEZHwCW0uZpWmpEqtLVCU6tE4nj2Czqiu3CwJ9YmTsvbGlRaOt8jJPDY5U7FScOD-Al-uqL0ynSM6JMRZF2BlHVXAFFqECB7Df2563Ohz_tHrLLdhbsHZ2eFAvvxTdUCwUFZ9okckV72brXCeJKjXLQqpEEx0dwKvQqlf8pziefpTh6vH_GO_BraPpybgYH08-PIFtyeExIQjoKWw2y5V7BjfNt2Z-sXweOvJvVMv16g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oKrI-rNfFcb0E9EWh6zQ90zaP62VwcZgdZIXxqaTJyTLs0A6zHcE3f4K_0V_iSdqpLoggvvVySkMu5_uSnHwH4Dn5zMWqVJGNNU9QlKEoN5oii4xFzuWMoEHEdZJNp_l8rmZdbI4_C9PqQ_QLbn5kBH_tBzitrGsnnOhFMhfNWh7GknvpVbiGI3ayXtgZZ1tHzMjeHrvKfCb5UTrfqpOievXr20t4FGT7L9PUgDPjW_9Zwtuw1xFMcdT2iDtwhaq7cPM32cF7cH5UCQrSEYw4QldWLPXXetP8-PZ90WfF5Rebpg6CrmLJ3qS6ILFaMjMVfcxRXYlWCFp4LLSC75lOis8nkxNhqQn7Affh0_jd6Zv3UZd0ITLI5DFCqWNj0DieSBHGJNNMD-2QcpeqFPNylA0xMZk_ga2lzNK0VInVJaoSCS3pZB92qrqiByDQJUbGzhlbWjTaKifz1OBIxaTihNwAXmyrvjCdIrlPjLEsws44qsJXYBEqcADPettVq8PxR6vXvgV7C6-dHR7U67OiG4qF4uIzLTK58rvZOtdJokrtZSFVopmODuBlaNW__Kc4Pv0ow9XDfzF-Cjdmb8fF5Hj64QB2pY-OCTFAj2CnWW_oMVw3X5rFxfpJ6Mc_AQeG9W4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+layout%E2%80%90independent+automatic+license+plate+recognition+system+based+on+the+YOLO+detector&rft.jtitle=IET+intelligent+transport+systems&rft.au=Rayson+Laroca&rft.au=Luiz+A.+Zanlorensi&rft.au=Gabriel+R.+Gon%C3%A7alves&rft.au=Eduardo+Todt&rft.date=2021-04-01&rft.pub=Wiley&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=4&rft.spage=483&rft.epage=503&rft_id=info:doi/10.1049%2Fitr2.12030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93c7822c890044a8a339ba733693a522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |