An efficient and layout‐independent automatic license plate recognition system based on the YOLO detector

This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET intelligent transport systems Jg. 15; H. 4; S. 483 - 503
Hauptverfasser: Laroca, Rayson, Zanlorensi, Luiz A., Gonçalves, Gabriel R., Todt, Eduardo, Schwartz, William Robson, Menotti, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.04.2021
Schlagworte:
ISSN:1751-956X, 1751-9578
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community.
AbstractList This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community.
Abstract This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community.
Author Schwartz, William Robson
Todt, Eduardo
Laroca, Rayson
Gonçalves, Gabriel R.
Menotti, David
Zanlorensi, Luiz A.
Author_xml – sequence: 1
  givenname: Rayson
  orcidid: 0000-0003-1943-2711
  surname: Laroca
  fullname: Laroca, Rayson
  email: rblsantos@inf.ufpr.br
  organization: Federal University of Paraná
– sequence: 2
  givenname: Luiz A.
  orcidid: 0000-0003-2545-0588
  surname: Zanlorensi
  fullname: Zanlorensi, Luiz A.
  organization: Federal University of Paraná
– sequence: 3
  givenname: Gabriel R.
  orcidid: 0000-0001-9133-0221
  surname: Gonçalves
  fullname: Gonçalves, Gabriel R.
  organization: Federal University of Minas Gerais
– sequence: 4
  givenname: Eduardo
  orcidid: 0000-0001-6045-1274
  surname: Todt
  fullname: Todt, Eduardo
  organization: Federal University of Paraná
– sequence: 5
  givenname: William Robson
  orcidid: 0000-0003-1449-8834
  surname: Schwartz
  fullname: Schwartz, William Robson
  organization: Federal University of Minas Gerais
– sequence: 6
  givenname: David
  orcidid: 0000-0003-2430-2030
  surname: Menotti
  fullname: Menotti, David
  organization: Federal University of Paraná
BookMark eNp9kMtqGzEUhkVJoM5l0yfQuuBEt9GMlsa0jcFgCAkkK3FGcyZVOpaMJFO8yyPkGfMkGcclixC6Off_g_OfkKMQAxLyjbMLzpS59CWJCy6YZF_IhNcVn5qqbo7ea333lZzk_MhYpYXgE_JnFij2vXceQ6EQOjrALm7Ly9OzDx1ucAz7xbbENRTv6OAdhox0M0BBmtDFh-CLj4HmXS64pi1k7OjYl99I71fLFe2woCsxnZHjHoaM5__yKbn9-eNmfjVdrn4t5rPl1KmGsakSwJ1Trq-5RsVR6BpYx7DptdGqaauaKelqxisNQtRat0Z20CrTKlQdgjwliwO3i_BoN8mvIe1sBG_fBjE9WEjjLwNaM4IaIVxjGFMKGpDStFBLqY2ESoiR9f3AcinmnLB_53Fm95bbveX2zfLxmH04dr7A3pySwA-fS_hB8tcPuPsP3C5ursVB8wreEJar
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105066
crossref_primary_10_1007_s11042_023_15656_8
crossref_primary_10_3390_agriengineering7060169
crossref_primary_10_1016_j_jvcir_2024_104314
crossref_primary_10_1109_ACCESS_2024_3505208
crossref_primary_10_1016_j_sigpro_2023_109196
crossref_primary_10_1177_14727978251361843
crossref_primary_10_1051_matecconf_202235502054
crossref_primary_10_1007_s00521_025_11302_6
crossref_primary_10_3390_app13084902
crossref_primary_10_1051_matecconf_202235503024
crossref_primary_10_3390_s23208439
crossref_primary_10_1109_TITS_2021_3087158
crossref_primary_10_1007_s00521_025_11257_8
crossref_primary_10_1142_S021951942440058X
crossref_primary_10_1007_s11042_022_13153_y
crossref_primary_10_1017_S0263574724001991
crossref_primary_10_1007_s10489_021_02628_4
crossref_primary_10_3390_technologies12090164
crossref_primary_10_1088_1742_6596_2560_1_012006
crossref_primary_10_1007_s00371_021_02375_0
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3233_JCM_247308
crossref_primary_10_1088_1742_6596_2424_1_012028
crossref_primary_10_1109_ACCESS_2021_3092938
crossref_primary_10_1049_ipr2_12674
crossref_primary_10_1049_itr2_70086
crossref_primary_10_1109_TIM_2024_3476570
crossref_primary_10_1016_j_measurement_2022_112025
crossref_primary_10_1051_shsconf_202419401004
crossref_primary_10_32604_cmc_2023_040086
crossref_primary_10_1007_s12555_024_0899_8
crossref_primary_10_3390_s22030921
crossref_primary_10_1007_s10032_025_00529_7
crossref_primary_10_1088_1742_6596_2504_1_012039
crossref_primary_10_1007_s00530_023_01119_5
crossref_primary_10_5753_jbcs_2025_5159
crossref_primary_10_1007_s11760_024_03514_5
crossref_primary_10_1016_j_patcog_2025_111918
crossref_primary_10_1016_j_robot_2023_104608
crossref_primary_10_1109_ACCESS_2021_3097964
crossref_primary_10_1109_TCSVT_2024_3421559
crossref_primary_10_1155_2021_8592216
crossref_primary_10_1016_j_cag_2023_05_005
crossref_primary_10_1007_s13177_025_00481_0
crossref_primary_10_1109_JSEN_2024_3453498
crossref_primary_10_1109_TITS_2025_3554986
crossref_primary_10_1016_j_jvcir_2022_103541
crossref_primary_10_1016_j_asej_2025_103483
crossref_primary_10_1109_ACCESS_2021_3077415
Cites_doi 10.1016/j.jvcir.2020.102773
10.1049/iet-its.2017.0224
10.1109/IVMSPW.2016.7528222
10.1007/978-3-030-01258-8_36
10.1007/978-3-030-01219-9_19
10.1109/CVPRW.2017.60
10.1016/j.imavis.2018.02.002
10.1109/TITS.2015.2496545
10.1117/1.JEI.26.3.033017
10.1007/s00500-017-2503-0
10.1109/TITS.2016.2586520
10.1109/TITS.2008.922938
10.1109/TITS.2016.2639020
10.1109/TIP.2016.2535375
10.1109/SIBGRAPI.2018.00021
10.1007/s11263-009-0275-4
10.1109/TMM.2017.2751966
10.1049/iet-its.2019.0481
10.1016/j.eswa.2017.09.036
10.1117/1.JEI.25.5.053034
10.1109/ICIP.2017.8296912
10.1109/TVT.2019.2927353
10.1109/ISCAS.2017.8050867
10.1109/ITSC.2016.7795970
10.1109/ICMEW.2015.7169772
10.1117/1.JEI.26.5.053027
10.1007/978-3-030-01261-8_16
10.1109/VETEC.1991.140605
10.1109/SIBGRAPI.2014.52
10.1109/TIP.2016.2631901
10.1109/IJCNN.2018.8489629
10.1038/nature14539
10.1109/CVPR.2019.01083
10.1109/TITS.2018.2847291
10.1109/CVPR.2016.91
10.1016/j.eswa.2019.06.036
10.1109/TCSVT.2012.2203741
10.1109/CVPR.2019.00412
10.1109/ICCV.2017.324
10.1109/TIP.2012.2199506
10.1109/AVSS.2017.8078493
10.1109/AVSS.2017.8078501
10.5244/C.31.175
10.1109/ICNC.2015.7378092
10.1016/j.compeleceng.2015.02.014
10.1117/1.JEI.28.1.013023
10.1007/978-3-030-33904-3_23
10.1049/iet-its.2017.0136
10.1109/TITS.2017.2784093
10.1109/CVPR.2017.690
10.1007/978-3-319-10602-1_48
10.1109/ICIP.2016.7533077
10.1109/SIBGRAPI.2017.14
10.1007/978-3-319-46448-0_2
10.1007/s11263-019-01247-4
10.1016/j.ijleo.2018.10.098
10.1109/CVPRW.2017.56
10.1109/TVT.2019.2908425
10.1109/TVT.2012.2226218
10.1016/j.cviu.2019.03.001
10.1117/1.JEI.27.4.043056
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/itr2.12030
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 503
ExternalDocumentID oai_doaj_org_article_93c7822c890044a8a339ba733693a522
10_1049_itr2_12030
ITR212030
Genre article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: DeepEyes Project; Social Demand Program
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 428333/2016‐8; 311053/2016‐5; 313423/2017‐2; 438629/2018‐3
– fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais
  funderid: PPM‐00540‐17; APQ‐00567‐14
GroupedDBID .DC
0R~
1OC
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
L6V
LAI
M43
M7S
MCNEO
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RIG
RNS
ROL
RUI
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4800-42a1cc4cf716e41e267a0d0e8f69648b57043c70156a22766b93dab49b4e4dea3
IEDL.DBID DOA
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620191900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-956X
IngestDate Fri Oct 03 12:53:38 EDT 2025
Wed Oct 29 21:06:00 EDT 2025
Tue Nov 18 20:42:55 EST 2025
Wed Jan 22 16:58:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4800-42a1cc4cf716e41e267a0d0e8f69648b57043c70156a22766b93dab49b4e4dea3
ORCID 0000-0003-1449-8834
0000-0003-2545-0588
0000-0001-9133-0221
0000-0001-6045-1274
0000-0003-1943-2711
0000-0003-2430-2030
OpenAccessLink https://doaj.org/article/93c7822c890044a8a339ba733693a522
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_93c7822c890044a8a339ba733693a522
crossref_primary_10_1049_itr2_12030
crossref_citationtrail_10_1049_itr2_12030
wiley_primary_10_1049_itr2_12030_ITR212030
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle IET intelligent transport systems
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 26
2015; 521
2013; 23
2013; 62
2008; 9
2020; 14
2019; 128
1991
2016; 17
2018; 22
2019; 182
2018; 20
2018; 27
2015; 46
2010; 88
2018; 19
1990
2019; 20
2020
2019; 68
2020; 71
2018; 92
2019; 28
2019
2018
2017
2019; 136
2016
2017; 18
2015
2018; 72
2014
2018; 12
2012; 21
2016; 25
2019; 178
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– start-page: 251
  year: 2019
  end-page: 261
  article-title: Multi‐task learning for low‐resolution license plate recognition
– volume: 26
  start-page: 1102
  issue: 3
  year: 2017
  end-page: 1114
  article-title: A robust and efficient approach to license plate detection
  publication-title: IEEE Trans. Image Process
– volume: 71
  year: 2020
  article-title: Real‐time license plate detection and recognition using deep convolutional neural networks
  publication-title: J. Visual Commun. Image Represent.
– start-page: 110
  year: 2018
  end-page: 117
  article-title: Real‐time automatic license plate recognition through deep multi‐task networks
– volume: 178
  start-page: 1185
  year: 2019
  end-page: 1194
  article-title: Lightweight fully convolutional network for license plate detection
  publication-title: Optik
– start-page: 798
  year: 1991
  end-page: 804
  article-title: Development of vehicle‐license number recognition system using real‐time image processing and its application to travel‐time measurement
– start-page: 1
  year: 2016
  end-page: 5
  article-title: A comparison study on real‐time tracking motorcycle license plates
– year: 2018
– volume: 23
  start-page: 311
  issue: 2
  year: 2013
  end-page: 325
  article-title: Automatic license plate recognition (ALPR): A state‐of‐the‐art review
  publication-title: IEEE Trans. Circuits Syst. Video Technol
– start-page: 10,573
  year: 2019
  end-page: 10,582
  article-title: Privacy protection in street‐view panoramas using depth and multi‐view imagery
– start-page: 1
  year: 2015
  end-page: 6
  article-title: A comparison study on motorcycle license plate detection
– volume: 12
  start-page: 542
  issue: 6
  year: 2018
  end-page: 549
  article-title: Improved license plate localisation algorithm based on morphological operations
  publication-title: IET Intel. Transport Syst.
– volume: 12
  start-page: 213
  issue: 3
  year: 2018
  end-page: 219
  article-title: Chinese vehicle license plate recognition using kernel‐based extreme learning machine with deep convolutional features
  publication-title: IET Intel. Transport Syst.
– volume: 18
  start-page: 2351
  issue: 9
  year: 2017
  end-page: 2363
  article-title: Segmentation‐ and annotation‐free license plate recognition with deep localization and failure identification
  publication-title: IEEE Trans. Intell. Transp. Syst
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Holistic recognition of low quality license plates by CNN using track annotated data
– volume: 20
  start-page: 1126
  issue: 3
  year: 2019
  end-page: 1136
  article-title: Toward end‐to‐end car license plate detection and recognition with deep neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 261
  year: 2018
  end-page: 277
  article-title: Towards end‐to‐end license plate detection and recognition: A large dataset and baseline
– start-page: 791
  year: 2015
  end-page: 796
  article-title: Robust chinese traffic sign detection and recognition with deep convolutional neural network
– start-page: 21
  year: 2016
  end-page: 37
  article-title: SSD: Single shot multibox detector
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Robust license plate detection in the wild
– start-page: 593
  year: 2018
  end-page: 609
  article-title: License plate detection and recognition in unconstrained scenarios
– volume: 72
  start-page: 14
  year: 2018
  end-page: 23
  article-title: Reading car license plates using deep neural networks
  publication-title: Image Vision Comput.
– start-page: 1
  year: 1990
  end-page: 6
  article-title: Automatic number‐plate recognition
– volume: 14
  start-page: 119
  issue: 2
  year: 2020
  end-page: 126
  article-title: License plate segmentation and recognition system using deep learning and OpenVINO
  publication-title: IET Intel. Transport Syst.
– start-page: 3395
  year: 2017
  end-page: 3399
  article-title: Convolutional neural networks for license plate detection in images
– start-page: 6517
  year: 2017
  end-page: 6525
  article-title: YOLO9000: Better, faster, stronger
– start-page: 2577
  year: 2016
  end-page: 2582
  article-title: License plate recognition based on temporal redundancy
– volume: 17
  start-page: 1096
  issue: 4
  year: 2016
  end-page: 1107
  article-title: Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines
  publication-title: IEEE Trans. Intell. Transp. Syst
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vision
– start-page: 3832
  year: 2016
  end-page: 3836
  article-title: CNN for license plate motion deblurring
– start-page: 298
  year: 2014
  end-page: 303
  article-title: Vehicle license plate recognition with random convolutional networks
– volume: 28
  issue: 1
  year: 2019
  article-title: Convolutional neural networks for automatic meter reading
  publication-title: J. Electron. Imaging
– volume: 21
  start-page: 4269
  issue: 9
  year: 2012
  end-page: 4279
  article-title: Principal visual word discovery for automatic license plate detection
  publication-title: IEEE Trans. Image Process
– volume: 27
  issue: 4
  year: 2018
  article-title: Vehicle license plate detection and recognition using deep neural networks and generative adversarial networks
  publication-title: J. Electron. Imaging
– volume: 26
  issue: 3
  year: 2017
  article-title: License plate detection in an open environment by density‐based boundary clustering
  publication-title: J. Electron. Imaging
– start-page: 446
  year: 2017
  end-page: 454
  article-title: SqueezeDet: Unified, small, low power fully convolutional neural networks for real‐time object detection for autonomous driving
– volume: 22
  start-page: 2403
  issue: 7
  year: 2018
  end-page: 2419
  article-title: Convolutional neural networks‐based intelligent recognition of Chinese license plates
  publication-title: Soft Comput
– start-page: 3992
  year: 2019
  end-page: 4000
  article-title: Part‐regularized near‐duplicate vehicle re‐identification
– volume: 128
  start-page: 261
  year: 2019
  end-page: 318
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vision
– volume: 25
  start-page: 2311
  issue: 5
  year: 2016
  end-page: 2323
  article-title: Robust blur kernel estimation for license plate images from fast moving vehicles
  publication-title: IEEE Trans. Image Process
– volume: 18
  start-page: 767
  issue: 4
  year: 2017
  end-page: 779
  article-title: Accurate detection and recognition of dirty vehicle plate numbers for high‐speed applications
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 68
  start-page: 8512
  issue: 9
  year: 2019
  end-page: 8522
  article-title: Deep quadruplet appearance learning for vehicle re‐identification
  publication-title: IEEE Trans. Veh. Technol
– start-page: 314
  year: 2018
  end-page: 329
  article-title: Towards human‐level license plate recognition
– start-page: 1
  year: 2019
  end-page: 11
– volume: 46
  start-page: 539
  year: 2015
  end-page: 553
  article-title: A two‐stage character segmentation method for chinese license plate
  publication-title: Comput. Electr. Eng.
– volume: 26
  issue: 5
  year: 2017
  article-title: License plate detection based on fully convolutional networks
  publication-title: J. Electron. Imaging
– start-page: 740
  year: 2014
  end-page: 755
  article-title: Microsoft COCO: Common objects in context
– volume: 62
  start-page: 552
  issue: 2
  year: 2013
  end-page: 561
  article-title: Application‐oriented license plate recognition
  publication-title: IEEE Trans. Veh. Technol.
– volume: 68
  start-page: 5379
  issue: 6
  year: 2019
  end-page: 5390
  article-title: Driver activity recognition for intelligent vehicles: A deep learning approach
  publication-title: IEEE Trans. Veh. Technol
– start-page: 1
  year: 2017
  end-page: 4
  article-title: Spatially supervised recurrent convolutional neural networks for visual object tracking
– start-page: 55
  year: 2017
  end-page: 62
  article-title: Real‐time Brazilian license plate detection and recognition using deep convolutional neural networks
– start-page: 1
  year: 2017
  end-page: 12
  article-title: A CNN‐based approach for automatic license plate recognition in the wild
– volume: 25
  issue: 5
  year: 2016
  article-title: Benchmark for license plate character segmentation
  publication-title: J. Electron. Imaging
– volume: 92
  start-page: 216
  year: 2018
  end-page: 235
  article-title: Ensemble of adaboost cascades of 3L‐LBPs classifiers for license plates detection with low quality images
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 507
  issue: 2
  year: 2018
  end-page: 517
  article-title: A new CNN‐based method for multi‐directional car license plate detection
  publication-title: IEEE Trans. Intell. Transp. Syst
– volume: 136
  start-page: 159
  year: 2019
  end-page: 170
  article-title: A two‐stage deep neural network for multi‐norm license plate detection and recognition
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 645
  issue: 3
  year: 2018
  end-page: 658
  article-title: PROVID: Progressive and multimodal vehicle reidentification for large‐scale urban surveillance
  publication-title: IEEE Trans. Multimedia
– year: 2020
– start-page: 2999
  year: 2017
  end-page: 3007
  article-title: Focal loss for dense object detection
– start-page: 779
  year: 2016
  end-page: 788
  article-title: You only look once: Unified, real‐time object detection
– volume: 182
  start-page: 50
  year: 2019
  end-page: 63
  article-title: A survey of advances in vision‐based vehicle re‐identification
  publication-title: Comput. Vision Image Understanding
– start-page: 1
  year: 2018
  end-page: 10
  article-title: A robust real‐time automatic license plate recognition based on the YOLO detector
– year: 2017
– volume: 9
  start-page: 377
  issue: 3
  year: 2008
  end-page: 391
  article-title: License plate recognition from still images and video sequences: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst
– start-page: 411
  year: 2017
  end-page: 420
  article-title: LCDet: Low‐complexity fully‐convolutional neural networks for object detection in embedded systems
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jvcir.2020.102773
– ident: e_1_2_8_42_1
  doi: 10.1049/iet-its.2017.0224
– ident: e_1_2_8_45_1
  doi: 10.1109/IVMSPW.2016.7528222
– ident: e_1_2_8_54_1
– ident: e_1_2_8_59_1
– ident: e_1_2_8_8_1
  doi: 10.1007/978-3-030-01258-8_36
– ident: e_1_2_8_39_1
  doi: 10.1007/978-3-030-01219-9_19
– ident: e_1_2_8_56_1
  doi: 10.1109/CVPRW.2017.60
– ident: e_1_2_8_13_1
  doi: 10.1016/j.imavis.2018.02.002
– ident: e_1_2_8_21_1
  doi: 10.1109/TITS.2015.2496545
– ident: e_1_2_8_72_1
  doi: 10.1117/1.JEI.26.3.033017
– ident: e_1_2_8_64_1
  doi: 10.1007/s00500-017-2503-0
– ident: e_1_2_8_58_1
  doi: 10.1109/TITS.2016.2586520
– ident: e_1_2_8_4_1
  doi: 10.1109/TITS.2008.922938
– ident: e_1_2_8_10_1
  doi: 10.1109/TITS.2016.2639020
– ident: e_1_2_8_40_1
  doi: 10.1109/TIP.2016.2535375
– ident: e_1_2_8_66_1
– ident: e_1_2_8_9_1
  doi: 10.1109/SIBGRAPI.2018.00021
– ident: e_1_2_8_30_1
  doi: 10.1007/s11263-009-0275-4
– ident: e_1_2_8_24_1
  doi: 10.1109/TMM.2017.2751966
– ident: e_1_2_8_75_1
– ident: e_1_2_8_46_1
  doi: 10.1049/iet-its.2019.0481
– ident: e_1_2_8_61_1
– ident: e_1_2_8_50_1
  doi: 10.1016/j.eswa.2017.09.036
– ident: e_1_2_8_34_1
  doi: 10.1117/1.JEI.25.5.053034
– ident: e_1_2_8_36_1
  doi: 10.1109/ICIP.2017.8296912
– ident: e_1_2_8_53_1
– ident: e_1_2_8_27_1
  doi: 10.1109/TVT.2019.2927353
– ident: e_1_2_8_29_1
– ident: e_1_2_8_55_1
  doi: 10.1109/ISCAS.2017.8050867
– ident: e_1_2_8_6_1
  doi: 10.1109/ITSC.2016.7795970
– ident: e_1_2_8_74_1
  doi: 10.1109/ICMEW.2015.7169772
– ident: e_1_2_8_68_1
  doi: 10.1117/1.JEI.26.5.053027
– ident: e_1_2_8_67_1
  doi: 10.1007/978-3-030-01261-8_16
– ident: e_1_2_8_3_1
  doi: 10.1109/VETEC.1991.140605
– ident: e_1_2_8_43_1
  doi: 10.1109/SIBGRAPI.2014.52
– ident: e_1_2_8_73_1
– ident: e_1_2_8_22_1
  doi: 10.1109/TIP.2016.2631901
– ident: e_1_2_8_18_1
  doi: 10.1109/IJCNN.2018.8489629
– ident: e_1_2_8_65_1
– ident: e_1_2_8_14_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_76_1
  doi: 10.1109/CVPR.2019.01083
– ident: e_1_2_8_16_1
  doi: 10.1109/TITS.2018.2847291
– ident: e_1_2_8_17_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_8_19_1
  doi: 10.1016/j.eswa.2019.06.036
– ident: e_1_2_8_25_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_5_1
  doi: 10.1109/TCSVT.2012.2203741
– ident: e_1_2_8_26_1
  doi: 10.1109/CVPR.2019.00412
– ident: e_1_2_8_48_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_8_32_1
  doi: 10.1109/TIP.2012.2199506
– ident: e_1_2_8_35_1
  doi: 10.1109/AVSS.2017.8078493
– ident: e_1_2_8_11_1
  doi: 10.1109/AVSS.2017.8078501
– ident: e_1_2_8_2_1
– ident: e_1_2_8_15_1
  doi: 10.5244/C.31.175
– ident: e_1_2_8_71_1
  doi: 10.1109/ICNC.2015.7378092
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compeleceng.2015.02.014
– ident: e_1_2_8_60_1
– ident: e_1_2_8_63_1
  doi: 10.1117/1.JEI.28.1.013023
– ident: e_1_2_8_52_1
– ident: e_1_2_8_12_1
  doi: 10.1007/978-3-030-33904-3_23
– ident: e_1_2_8_44_1
  doi: 10.1049/iet-its.2017.0136
– ident: e_1_2_8_37_1
  doi: 10.1109/TITS.2017.2784093
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPR.2017.690
– ident: e_1_2_8_31_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_8_41_1
  doi: 10.1109/ICIP.2016.7533077
– ident: e_1_2_8_7_1
  doi: 10.1109/SIBGRAPI.2017.14
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_8_51_1
  doi: 10.1007/s11263-019-01247-4
– ident: e_1_2_8_69_1
  doi: 10.1016/j.ijleo.2018.10.098
– ident: e_1_2_8_57_1
  doi: 10.1109/CVPRW.2017.56
– ident: e_1_2_8_49_1
  doi: 10.1109/TVT.2019.2908425
– ident: e_1_2_8_62_1
  doi: 10.1109/TVT.2012.2226218
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cviu.2019.03.001
– ident: e_1_2_8_70_1
  doi: 10.1117/1.JEI.27.4.043056
SSID ssj0056221
Score 2.478998
Snippet This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once...
Abstract This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 483
SubjectTerms Computer vision and image processing techniques
Image recognition
Neural nets
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD7Urg_ug-6uinV1CawvK4w2l85MwJcqll0obZEK9WnI5CLFMlPa6cK-7U_wN_pL9iTTjhZEWHybyxkmJCf5viQn3wF4Y33mYpnLyFCFExSpbZRqZSMjEIucSxFBg4jrMBmN0tlMTlrwYXcWptaHaBbcfM8I47Xv4Cqvs5AgqcVGnFcr9o4ydNIHcEApT7xPMzHZjcMI7PWpq8Qnku_Fs504qZDvf3-7B0dBtX-fpQaYGTz5vwIeweMtvST92h-OoWWLEzj8Q3TwKfzoF8QG4QjEG6IKQxbqptxUv25_zpucuPhiU5VBzpUscCwp1pYsF8hLSRNxVBakloEmHgkNwXskk-TbeDgmxlZhN-AZfB18nn66jLYpFyItkDpGgimqtdAOp1FWUMviRHVN16YulrFI817SFVwn_vy1YiyJ41xyo3Ihc2GFsYo_h3ZRFvYFEOG4ZtQ5bXIjtDLSsTTWoieplZRb14GLXc1neqtH7tNiLLKwLy5k5iswCxXYgfPGdlmrcPzV6qNvwMbCK2eHB-Xqe7btiJnE4iMp0qn0e9kqVZzLXHlRSMkVktEOvA2N-o__ZFfTLyxcvbyP8Sk8Yj4gJoT9vIJ2tdrY1_BQX1fz9eos-O4d-nDyCA
  priority: 102
  providerName: Wiley-Blackwell
Title An efficient and layout‐independent automatic license plate recognition system based on the YOLO detector
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12030
https://doaj.org/article/93c7822c890044a8a339ba733693a522
Volume 15
WOSCitedRecordID wos000620191900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60eNCD-MT6KAt6UYhNNtskc6xisVDaIhXrKWz2AcWQljYVvPkT_I3-Enc3baggevES8hjYMDvMN7M7-w1CF9J0LoYEHOExnaAAl07EmXQE1VikVKQR1JK4dsJuNxoOob_S6svUhBX0wIXi6uBzA2I8ArP3yCLm-5AwQ-IHPtPBg_G-bgjLZKrwwRrUixNXoWki3wiGS2JSCvVRPiXXHrF1zytQZBn7v0eoFmJaO2h7ERviZvFPu2hNZntoa4UxcB-9NDMsLeuDBgvMMoFT9jae55_vH6Oyoa3-MM_HlosVp9oRZDOJJ6kOKnFZLjTOcMHhjA2MCayfdSSIn3udHhYyt0v5B-ixdTe4vXcW_RIcTnXc51DCPM4pVzoHktSTJAiZK1wZqQACGiWN0KVam-bwNCMkDIIEfMESCgmVVEjmH6JKNs7kEcJU-Zx4SnGRCMqZAEWigNMGeBI8X6oqulyqLuYLMnHT0yKN7aY2hdioObZqrqLzUnZSUGj8KHVjZqCUMLTX9oU2hnhhDPFfxlBFV3b-fhknbg8eiL07_o8RT9AmMVUutpbnFFXy6VyeoQ3-mo9m0xpaJ7Rfs6apr0_t7hcqReXw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVrA-aL3R9daB-qIQ3UzOJpnHKpYWt9siK6xPYTIXWVySss0KvvkT_I3-Es-ZZKMFKUjfcjkhw9y-78yc-Q7AC8eZi1WpIhtrclCUcVFutIssEhZ5nxOCBhHXcTaZ5LOZOutic_gsTKsP0S-48cgI8zUPcF6Qbh1OZJHMebOUr2NJvfQGbCHBDCcwkHi2nogJ2dtjVxlnkh-ls7U6Kao3f769hEdBtv8yTQ04c3j3miXcgTsdwRQHbY-4Bxuuug-3_5IdfABfDyrhgnQEIY7QlRUL_b1eNb9-_Jz3WXHpxaqpg6CrWNBsUl04cb4gZir6mKO6Eq0QtGAstILuiU6Kz6fjU2FdE_YDHsKnw_fTd0dRl3QhMkjkMUKpY2PQeHKkHMZOppke2qHLfapSzMtRNsTEZHwCW0uZpWmpEqtLVCU6tE4nj2Czqiu3CwJ9YmTsvbGlRaOt8jJPDY5U7FScOD-Al-uqL0ynSM6JMRZF2BlHVXAFFqECB7Df2563Ohz_tHrLLdhbsHZ2eFAvvxTdUCwUFZ9okckV72brXCeJKjXLQqpEEx0dwKvQqlf8pziefpTh6vH_GO_BraPpybgYH08-PIFtyeExIQjoKWw2y5V7BjfNt2Z-sXweOvJvVMv16g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oKrI-rNfFcb0E9EWh6zQ90zaP62VwcZgdZIXxqaTJyTLs0A6zHcE3f4K_0V_iSdqpLoggvvVySkMu5_uSnHwH4Dn5zMWqVJGNNU9QlKEoN5oii4xFzuWMoEHEdZJNp_l8rmZdbI4_C9PqQ_QLbn5kBH_tBzitrGsnnOhFMhfNWh7GknvpVbiGI3ayXtgZZ1tHzMjeHrvKfCb5UTrfqpOievXr20t4FGT7L9PUgDPjW_9Zwtuw1xFMcdT2iDtwhaq7cPM32cF7cH5UCQrSEYw4QldWLPXXetP8-PZ90WfF5Rebpg6CrmLJ3qS6ILFaMjMVfcxRXYlWCFp4LLSC75lOis8nkxNhqQn7Affh0_jd6Zv3UZd0ITLI5DFCqWNj0DieSBHGJNNMD-2QcpeqFPNylA0xMZk_ga2lzNK0VInVJaoSCS3pZB92qrqiByDQJUbGzhlbWjTaKifz1OBIxaTihNwAXmyrvjCdIrlPjLEsws44qsJXYBEqcADPettVq8PxR6vXvgV7C6-dHR7U67OiG4qF4uIzLTK58rvZOtdJokrtZSFVopmODuBlaNW__Kc4Pv0ow9XDfzF-Cjdmb8fF5Hj64QB2pY-OCTFAj2CnWW_oMVw3X5rFxfpJ6Mc_AQeG9W4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+layout%E2%80%90independent+automatic+license+plate+recognition+system+based+on+the+YOLO+detector&rft.jtitle=IET+intelligent+transport+systems&rft.au=Rayson+Laroca&rft.au=Luiz+A.+Zanlorensi&rft.au=Gabriel+R.+Gon%C3%A7alves&rft.au=Eduardo+Todt&rft.date=2021-04-01&rft.pub=Wiley&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=4&rft.spage=483&rft.epage=503&rft_id=info:doi/10.1049%2Fitr2.12030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93c7822c890044a8a339ba733693a522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon