Combining satellite imagery and machine learning to predict poverty
Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolut...
Uloženo v:
| Vydáno v: | Science (American Association for the Advancement of Science) Ročník 353; číslo 6301; s. 790 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
19.08.2016
|
| Témata: | |
| ISSN: | 1095-9203, 1095-9203 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains. |
|---|---|
| AbstractList | Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains. Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains. |
| Author | Alampay Davis, W Matthew Jean, Neal Lobell, David B Ermon, Stefano Burke, Marshall Xie, Michael |
| Author_xml | – sequence: 1 givenname: Neal surname: Jean fullname: Jean, Neal organization: Department of Computer Science, Stanford University, Stanford, CA, USA. Department of Electrical Engineering, Stanford University, Stanford, CA, USA – sequence: 2 givenname: Marshall surname: Burke fullname: Burke, Marshall email: mburke@stanford.edu organization: Department of Earth System Science, Stanford University, Stanford, CA, USA. Center on Food Security and the Environment, Stanford University, Stanford, CA, USA. National Bureau of Economic Research, Boston, MA, USA. mburke@stanford.edu – sequence: 3 givenname: Michael surname: Xie fullname: Xie, Michael organization: Department of Computer Science, Stanford University, Stanford, CA, USA – sequence: 4 givenname: W Matthew surname: Alampay Davis fullname: Alampay Davis, W Matthew organization: Center on Food Security and the Environment, Stanford University, Stanford, CA, USA – sequence: 5 givenname: David B surname: Lobell fullname: Lobell, David B organization: Department of Earth System Science, Stanford University, Stanford, CA, USA. Center on Food Security and the Environment, Stanford University, Stanford, CA, USA – sequence: 6 givenname: Stefano surname: Ermon fullname: Ermon, Stefano organization: Department of Computer Science, Stanford University, Stanford, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27540167$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LxDAYhIOsuB969iY5eumapEmTHKW4Kix40XNJs2_WSJvWJCvsv7foCp5mBh6GmSWahSEAQteUrCll1V2yHoKFtTFOKs3P0IISLQrNSDn75-domdIHIVPW5QWaMyk4oZVcoLoe-tYHH_Y4mQxd5zNg35s9xCM2YYd7Y999ANyBiT9YHvAYYedtxuPwBTEfL9G5M12Cq5Ou0Nvm4bV-KrYvj8_1_bawXOpcOOeAWuAEDDXUidIoXWnDQdiWMakdkSAVmxYSS3hpuSCipaqVWlCiSsdW6Pa3d4zD5wFSbnqf7LTZBBgOqaGKMqVkRfiE3pzQQ9vDrhnj9Ckem7_j7BsBgl1P |
| CitedBy_id | crossref_primary_10_1155_2022_2492952 crossref_primary_10_1016_j_apenergy_2020_116018 crossref_primary_10_1111_obes_12678 crossref_primary_10_1039_C8NR06734A crossref_primary_10_1073_pnas_2016238117 crossref_primary_10_3390_rs12182950 crossref_primary_10_3390_su13168717 crossref_primary_10_1016_j_fss_2025_109511 crossref_primary_10_1162_rest_a_01117 crossref_primary_10_1371_journal_pone_0214635 crossref_primary_10_1016_j_rse_2019_111386 crossref_primary_10_1038_s41597_024_03223_1 crossref_primary_10_3390_rs14061469 crossref_primary_10_1016_j_resourpol_2023_104013 crossref_primary_10_1038_s41545_023_00272_8 crossref_primary_10_1080_13658816_2024_2305636 crossref_primary_10_3390_rs13173533 crossref_primary_10_1073_pnas_2115730119 crossref_primary_10_1080_17538947_2024_2391031 crossref_primary_10_1016_j_dib_2021_106939 crossref_primary_10_1016_j_cola_2019_100908 crossref_primary_10_1002_aepp_13175 crossref_primary_10_1111_deve_12274 crossref_primary_10_1109_TCOMM_2021_3109947 crossref_primary_10_1038_s44284_025_00273_3 crossref_primary_10_1186_s12938_025_01341_4 crossref_primary_10_3390_su142114238 crossref_primary_10_1080_10106049_2020_1870166 crossref_primary_10_1007_s12571_020_01132_w crossref_primary_10_3390_rs15184618 crossref_primary_10_1145_3710968 crossref_primary_10_3390_urbansci2010008 crossref_primary_10_1016_j_media_2019_101555 crossref_primary_10_1038_s41467_022_30688_8 crossref_primary_10_3233_SJI_230033 crossref_primary_10_1016_j_apgeog_2023_102899 crossref_primary_10_1007_s40572_017_0163_y crossref_primary_10_1016_j_jue_2019_05_004 crossref_primary_10_1111_jors_12410 crossref_primary_10_1073_pnas_2416161122 crossref_primary_10_1007_s00521_021_06703_2 crossref_primary_10_1038_s41597_024_03366_1 crossref_primary_10_1007_s10676_019_09510_5 crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_1126_science_aah5217 crossref_primary_10_1016_j_geoforum_2017_01_001 crossref_primary_10_1007_s11554_021_01099_7 crossref_primary_10_1007_s11442_025_2366_8 crossref_primary_10_1080_10095020_2025_2543496 crossref_primary_10_3390_su14148773 crossref_primary_10_1016_j_rse_2017_01_005 crossref_primary_10_1007_s12652_021_03650_7 crossref_primary_10_1007_s12061_025_09646_6 crossref_primary_10_3390_rs13204022 crossref_primary_10_1038_s41598_019_55439_6 crossref_primary_10_1080_13658816_2024_2332908 crossref_primary_10_7717_peerj_cs_1931 crossref_primary_10_1080_14498596_2025_2539222 crossref_primary_10_1109_TGRS_2020_3028622 crossref_primary_10_3390_rs11172001 crossref_primary_10_1002_sd_2638 crossref_primary_10_3390_bdcc5030028 crossref_primary_10_1073_pnas_1700035114 crossref_primary_10_1080_20430795_2022_2153007 crossref_primary_10_1097_AIA_0000000000000294 crossref_primary_10_1108_AJEMS_02_2022_0042 crossref_primary_10_1016_j_worlddev_2021_105745 crossref_primary_10_1007_s10668_022_02252_3 crossref_primary_10_1093_jeea_jvac025 crossref_primary_10_1016_j_jag_2025_104828 crossref_primary_10_3389_fdata_2023_1124526 crossref_primary_10_1109_ACCESS_2020_2986317 crossref_primary_10_1177_00491241231168665 crossref_primary_10_3390_en12030456 crossref_primary_10_3390_rs11192194 crossref_primary_10_1016_j_habitatint_2019_04_008 crossref_primary_10_1038_s41598_023_49564_6 crossref_primary_10_1177_00491241221082603 crossref_primary_10_1109_ACCESS_2019_2928364 crossref_primary_10_1007_s43071_023_00044_z crossref_primary_10_1155_2020_8018629 crossref_primary_10_3390_ijgi10010011 crossref_primary_10_1016_j_habitatint_2022_102572 crossref_primary_10_1145_3576902 crossref_primary_10_3390_rs11151799 crossref_primary_10_1016_j_habitatint_2023_102876 crossref_primary_10_1016_j_jenvman_2019_07_024 crossref_primary_10_1080_10095020_2023_2250388 crossref_primary_10_1371_journal_pmed_1003054 crossref_primary_10_1007_s10489_021_02264_y crossref_primary_10_3390_atmos13050696 crossref_primary_10_3390_su11215888 crossref_primary_10_1145_3284751_3284761 crossref_primary_10_1109_JSTARS_2024_3359636 crossref_primary_10_11728_cjss2023_06_2023_0108 crossref_primary_10_1016_j_seps_2024_102139 crossref_primary_10_1017_eds_2023_42 crossref_primary_10_1155_2022_3632679 crossref_primary_10_1016_j_scitotenv_2024_169962 crossref_primary_10_3390_rs17061028 crossref_primary_10_1016_j_jue_2025_103797 crossref_primary_10_1109_JSTARS_2022_3200754 crossref_primary_10_3390_s23084101 crossref_primary_10_3390_su14052497 crossref_primary_10_1016_j_jdeveco_2022_103016 crossref_primary_10_1108_VJIKMS_05_2023_0104 crossref_primary_10_1016_j_jag_2022_102903 crossref_primary_10_1093_jamia_ocz111 crossref_primary_10_1016_j_indic_2025_100882 crossref_primary_10_1007_s41324_024_00584_y crossref_primary_10_1088_1757_899X_873_1_012015 crossref_primary_10_1016_j_scs_2025_106799 crossref_primary_10_1038_s41586_022_05322_8 crossref_primary_10_1109_JSTARS_2022_3191544 crossref_primary_10_1080_24694452_2023_2166010 crossref_primary_10_1057_s41599_021_00953_0 crossref_primary_10_1088_1742_6596_1529_4_042082 crossref_primary_10_1609_aimag_v39i3_2815 crossref_primary_10_1016_j_rse_2018_04_042 crossref_primary_10_3390_rs16163013 crossref_primary_10_1029_2024EF004576 crossref_primary_10_3390_rs13112067 crossref_primary_10_1016_j_jag_2023_103395 crossref_primary_10_1016_j_isprsjprs_2024_12_017 crossref_primary_10_1109_ACCESS_2022_3198673 crossref_primary_10_1177_0282423X241284890 crossref_primary_10_1177_00080683241239211 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_1038_s41477_020_00814_9 crossref_primary_10_1016_j_isprsjprs_2019_02_006 crossref_primary_10_1038_s43588_025_00846_1 crossref_primary_10_1080_00220388_2019_1687877 crossref_primary_10_1016_j_asr_2020_09_003 crossref_primary_10_1016_j_compenvurbsys_2025_102339 crossref_primary_10_1109_TEM_2020_2974761 crossref_primary_10_3390_ijgi11010050 crossref_primary_10_1016_j_jdeveco_2025_103477 crossref_primary_10_3390_cancers12123844 crossref_primary_10_1145_3579481 crossref_primary_10_1007_s44327_025_00109_8 crossref_primary_10_1007_s10707_025_00551_1 crossref_primary_10_1080_2150704X_2021_1987575 crossref_primary_10_1093_wber_lhz001 crossref_primary_10_1073_pnas_2410350122 crossref_primary_10_1002_jid_3751 crossref_primary_10_1371_journal_pone_0241907 crossref_primary_10_1080_07352166_2022_2078723 crossref_primary_10_1111_tgis_12953 crossref_primary_10_1109_LGRS_2020_3006019 crossref_primary_10_3390_su151713143 crossref_primary_10_1002_adfm_201903607 crossref_primary_10_1073_pnas_2316730121 crossref_primary_10_1016_j_cities_2022_103925 crossref_primary_10_3354_cr01547 crossref_primary_10_3389_fevo_2024_1310046 crossref_primary_10_1371_journal_pone_0176684 crossref_primary_10_1088_1748_9326_abe00a crossref_primary_10_1016_j_comcom_2023_02_017 crossref_primary_10_1016_j_forpol_2021_102554 crossref_primary_10_1016_j_ject_2023_11_001 crossref_primary_10_1038_s41597_023_01989_4 crossref_primary_10_1155_2021_8997915 crossref_primary_10_1088_2632_072X_ac60b1 crossref_primary_10_1145_3409797 crossref_primary_10_3390_rs17020313 crossref_primary_10_1155_2021_9976306 crossref_primary_10_3390_su11226312 crossref_primary_10_1007_s13278_020_00690_3 crossref_primary_10_1038_s41598_019_52423_y crossref_primary_10_1145_3380972 crossref_primary_10_1109_JSTARS_2021_3135488 crossref_primary_10_1007_s10037_025_00241_3 crossref_primary_10_3390_ijgi11040246 crossref_primary_10_1093_wber_lhae025 crossref_primary_10_1038_s41467_023_42122_8 crossref_primary_10_1002_aepp_13221 crossref_primary_10_3390_rs10122067 crossref_primary_10_1016_j_enpol_2023_113814 crossref_primary_10_1109_JSTARS_2018_2828340 crossref_primary_10_1038_s41467_021_24638_z crossref_primary_10_3390_su151813493 crossref_primary_10_1007_s00354_023_00203_8 crossref_primary_10_1038_s41467_020_15871_z crossref_primary_10_1086_714119 crossref_primary_10_1145_3589344 crossref_primary_10_1038_d41586_018_06215_5 crossref_primary_10_1016_j_isprsjprs_2022_03_015 crossref_primary_10_1007_s42001_020_00082_9 crossref_primary_10_1177_14780771221089885 crossref_primary_10_3389_fict_2018_00006 crossref_primary_10_1007_s11629_021_7460_0 crossref_primary_10_5406_21601267_13_2_05 crossref_primary_10_1145_3567430 crossref_primary_10_1016_j_resourpol_2023_103325 crossref_primary_10_3390_rs13183603 crossref_primary_10_1371_journal_pone_0243105 crossref_primary_10_3390_ijgi11050293 crossref_primary_10_1093_wber_lhae018 crossref_primary_10_1088_1757_899X_482_1_012044 crossref_primary_10_1002_aepp_13214 crossref_primary_10_1002_sta4_70037 crossref_primary_10_1016_j_enbuild_2019_03_036 crossref_primary_10_1016_j_tree_2017_03_003 crossref_primary_10_1057_s41287_019_00205_7 crossref_primary_10_1016_j_jdeveco_2025_103462 crossref_primary_10_1146_annurev_economics_080218_030333 crossref_primary_10_1029_2024EF004415 crossref_primary_10_1080_13658816_2018_1480783 crossref_primary_10_1038_s41562_022_01478_5 crossref_primary_10_1088_2976_601X_adb84f crossref_primary_10_1088_2632_072X_ac718e crossref_primary_10_1515_spp_2020_0013 crossref_primary_10_1007_s41685_024_00364_4 crossref_primary_10_1007_s10044_024_01263_2 crossref_primary_10_3389_frwa_2020_536743 crossref_primary_10_1109_JSTARS_2021_3094053 crossref_primary_10_1162_rest_a_01085 crossref_primary_10_1016_j_rse_2022_113076 crossref_primary_10_1007_s11042_017_4364_z crossref_primary_10_1007_s10708_024_11106_6 crossref_primary_10_1080_23322039_2024_2444374 crossref_primary_10_14254_1795_6889_2024_20_1_1 crossref_primary_10_3390_rs11111282 crossref_primary_10_1093_wber_lhae044 crossref_primary_10_1016_j_jmst_2024_05_024 crossref_primary_10_1007_s12061_024_09585_8 crossref_primary_10_1016_j_ject_2025_05_002 crossref_primary_10_1111_ecpo_12267 crossref_primary_10_1007_s11229_020_03002_6 crossref_primary_10_1016_j_cities_2024_105019 crossref_primary_10_1016_j_jdeveco_2025_103555 crossref_primary_10_1061__ASCE_ME_1943_5479_0000841 crossref_primary_10_1109_MGRS_2024_3494673 crossref_primary_10_1007_s10462_018_09679_z crossref_primary_10_1007_s10668_023_03935_1 crossref_primary_10_3390_a18080474 crossref_primary_10_3390_rs15112861 crossref_primary_10_1016_j_rse_2019_111443 crossref_primary_10_3390_rs12020207 crossref_primary_10_1016_j_landurbplan_2023_104863 crossref_primary_10_3390_ijgi10030137 crossref_primary_10_1177_00080683231198591 crossref_primary_10_3390_rs14225695 crossref_primary_10_1109_JSTARS_2024_3368018 crossref_primary_10_1073_pnas_2216656120 crossref_primary_10_3390_rs14030598 crossref_primary_10_1109_ACCESS_2020_3019239 crossref_primary_10_1016_j_compenvurbsys_2025_102306 crossref_primary_10_1057_s41599_021_00822_w crossref_primary_10_1080_15481603_2025_2540537 crossref_primary_10_1093_cercor_bhab394 crossref_primary_10_1093_oxrep_grz015 crossref_primary_10_1007_s11205_019_02187_9 crossref_primary_10_1016_j_tele_2019_01_001 crossref_primary_10_1038_s41586_022_04484_9 crossref_primary_10_1016_j_jag_2025_104781 crossref_primary_10_1016_j_jdeveco_2024_103385 crossref_primary_10_1016_j_physa_2017_11_084 crossref_primary_10_2196_64362 crossref_primary_10_1016_j_rsase_2021_100608 crossref_primary_10_1080_01621459_2022_2097086 crossref_primary_10_1016_j_intman_2023_101055 crossref_primary_10_1038_s41558_025_02268_3 crossref_primary_10_1007_s00181_022_02199_4 crossref_primary_10_1007_s00521_023_08923_0 crossref_primary_10_1016_j_scs_2024_105670 crossref_primary_10_1007_s41885_023_00137_x crossref_primary_10_1002_adsu_202300401 crossref_primary_10_1007_s12076_025_00397_z crossref_primary_10_1016_j_worlddev_2024_106702 crossref_primary_10_1371_journal_pone_0283938 crossref_primary_10_1145_3648435 crossref_primary_10_1016_j_compenvurbsys_2022_101802 crossref_primary_10_1016_j_gloenvcha_2024_102891 crossref_primary_10_1109_TGRS_2018_2882420 crossref_primary_10_1007_s11943_023_00330_0 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1109_ACCESS_2019_2894857 crossref_primary_10_1109_MGRS_2023_3272825 crossref_primary_10_3390_rs17040688 crossref_primary_10_1016_j_physrep_2019_05_002 crossref_primary_10_1038_s41597_020_00792_9 crossref_primary_10_1109_JSTARS_2020_3018862 crossref_primary_10_1038_s42949_025_00256_2 crossref_primary_10_1057_s41599_021_00792_z crossref_primary_10_1145_3615361 crossref_primary_10_2105_AJPH_2021_306640 crossref_primary_10_1016_j_jdeveco_2024_103377 crossref_primary_10_1371_journal_pone_0325696 crossref_primary_10_1038_s42003_023_04493_y crossref_primary_10_1111_roiw_12552 crossref_primary_10_1073_pnas_2322083121 crossref_primary_10_3389_fsoc_2022_909458 crossref_primary_10_1371_journal_pone_0166950 crossref_primary_10_1057_s41599_022_01180_x crossref_primary_10_3390_socsci12050296 crossref_primary_10_1007_s11205_022_02883_z crossref_primary_10_1016_j_geosus_2021_10_002 crossref_primary_10_1111_roiw_12558 crossref_primary_10_1007_s13198_024_02466_w crossref_primary_10_1109_TGRS_2024_3430981 crossref_primary_10_3167_ares_2017_080103 crossref_primary_10_1007_s10668_024_05230_z crossref_primary_10_1371_journal_pone_0219058 crossref_primary_10_1111_ajae_12160 crossref_primary_10_1109_TGRS_2020_3047447 crossref_primary_10_3389_fonc_2021_632104 crossref_primary_10_1016_j_ijheatfluidflow_2021_108816 crossref_primary_10_1016_j_jag_2024_104269 crossref_primary_10_1016_j_jag_2021_102466 crossref_primary_10_1371_journal_pone_0306641 crossref_primary_10_3390_rs9080829 crossref_primary_10_1016_j_jdeveco_2020_102564 crossref_primary_10_1177_00368504231165679 crossref_primary_10_1108_JES_05_2020_0201 crossref_primary_10_1016_j_worlddev_2022_106124 crossref_primary_10_1007_s10712_020_09586_5 crossref_primary_10_1371_journal_pone_0253370 crossref_primary_10_1109_JSTARS_2020_2968468 crossref_primary_10_1016_j_jue_2020_103254 crossref_primary_10_1016_j_trb_2023_102869 crossref_primary_10_1039_C8CP03141J crossref_primary_10_1145_3578552 crossref_primary_10_1016_j_scs_2020_102014 crossref_primary_10_1257_jel_20241646 crossref_primary_10_1007_s12524_018_0772_4 crossref_primary_10_1016_j_jdeveco_2024_103352 crossref_primary_10_3389_fsufs_2020_00051 crossref_primary_10_1016_j_joi_2023_101436 crossref_primary_10_1109_MGRS_2023_3343968 crossref_primary_10_1016_j_worlddev_2019_104776 crossref_primary_10_1257_jep_31_2_87 crossref_primary_10_1073_pnas_2120025119 crossref_primary_10_1038_s41467_024_45624_1 crossref_primary_10_3389_fdata_2023_1054156 crossref_primary_10_1016_j_jclepro_2019_04_135 crossref_primary_10_3390_su9071049 crossref_primary_10_1109_JSTARS_2019_2915646 crossref_primary_10_1002_aepp_13515 crossref_primary_10_1002_isd2_12063 crossref_primary_10_1017_dap_2024_49 crossref_primary_10_3390_rs12061034 crossref_primary_10_5194_hess_23_3933_2019 crossref_primary_10_1109_ACCESS_2020_2971264 crossref_primary_10_1155_2021_2770830 crossref_primary_10_1002_sd_1692 crossref_primary_10_1080_17538947_2024_2353160 crossref_primary_10_1109_TBDATA_2020_3032839 crossref_primary_10_1057_s41599_023_01891_9 crossref_primary_10_1016_j_rsase_2021_100647 crossref_primary_10_1111_jiec_13356 crossref_primary_10_1109_TVCG_2019_2934659 crossref_primary_10_1080_01431161_2017_1420936 crossref_primary_10_2139_ssrn_5350967 crossref_primary_10_1007_s12652_021_03623_w crossref_primary_10_1145_3449257 crossref_primary_10_3390_rs15051209 crossref_primary_10_1016_j_envdev_2024_100966 crossref_primary_10_1016_j_worlddev_2019_06_008 crossref_primary_10_1038_s44284_025_00299_7 crossref_primary_10_1016_j_cities_2021_103346 crossref_primary_10_3390_su13031412 crossref_primary_10_1016_j_geosus_2020_03_006 crossref_primary_10_1080_10095020_2023_2165975 crossref_primary_10_1088_2632_2153_ad073b crossref_primary_10_1109_JSTARS_2017_2737702 crossref_primary_10_1080_03610926_2022_2077963 crossref_primary_10_1016_j_rse_2017_11_026 crossref_primary_10_1016_j_jup_2022_101378 crossref_primary_10_1038_s41586_025_09465_2 crossref_primary_10_1287_isre_2019_0866 crossref_primary_10_3390_rs11040375 crossref_primary_10_1016_j_esd_2019_02_001 crossref_primary_10_1111_tgis_12661 crossref_primary_10_1155_2022_9975318 crossref_primary_10_1098_rsif_2016_0690 crossref_primary_10_1111_rssa_12802 crossref_primary_10_1038_s42256_020_00243_5 crossref_primary_10_1016_j_worlddev_2019_104647 crossref_primary_10_1016_j_worlddev_2022_106028 crossref_primary_10_3390_rs10030471 crossref_primary_10_1080_03066150_2019_1658079 crossref_primary_10_1371_journal_pone_0215286 crossref_primary_10_1007_s10109_022_00374_w crossref_primary_10_1038_s41524_017_0038_7 crossref_primary_10_1007_s10584_020_02878_0 crossref_primary_10_1016_j_geosus_2022_01_001 crossref_primary_10_1111_asej_12349 crossref_primary_10_1002_bse_70031 crossref_primary_10_1371_journal_pone_0218671 crossref_primary_10_1080_10106049_2019_1568587 crossref_primary_10_1017_jfm_2021_812 crossref_primary_10_1007_s13042_025_02718_6 crossref_primary_10_1080_01621459_2022_2096038 crossref_primary_10_1016_j_cmpb_2021_106297 crossref_primary_10_1080_03066150_2019_1658080 crossref_primary_10_1111_tgis_12330 crossref_primary_10_3390_rs11171971 crossref_primary_10_1016_j_seps_2025_102175 crossref_primary_10_1017_dap_2020_4 crossref_primary_10_1016_j_erss_2022_102677 crossref_primary_10_1080_02681102_2019_1650244 crossref_primary_10_1029_2022EA002379 crossref_primary_10_3390_w10101485 crossref_primary_10_1093_wber_lhab021 crossref_primary_10_1371_journal_pone_0237063 crossref_primary_10_1109_TKDE_2018_2861006 crossref_primary_10_1073_pnas_2402060121 crossref_primary_10_3390_su14095228 crossref_primary_10_1109_JSTARS_2024_3429244 crossref_primary_10_3390_rs13163160 crossref_primary_10_1371_journal_pone_0198502 crossref_primary_10_1007_s11111_019_00326_5 crossref_primary_10_1109_TNNLS_2022_3183326 crossref_primary_10_1016_j_rse_2024_114448 crossref_primary_10_1371_journal_pone_0288647 crossref_primary_10_1016_j_compenvurbsys_2020_101549 crossref_primary_10_1016_j_rsase_2024_101388 crossref_primary_10_3389_fenvs_2022_907383 crossref_primary_10_1145_3608112 crossref_primary_10_1177_23998083221135608 crossref_primary_10_1016_j_foodpol_2022_102345 crossref_primary_10_1093_pnasnexus_pgaf040 crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_1145_3210548 crossref_primary_10_1007_s40747_021_00521_8 crossref_primary_10_1016_j_jue_2024_103730 crossref_primary_10_1016_j_scs_2022_104033 crossref_primary_10_1002_cl2_1149 crossref_primary_10_1038_s42256_021_00414_y crossref_primary_10_1371_journal_pone_0255519 crossref_primary_10_1016_j_shpsa_2023_10_004 crossref_primary_10_1111_rsp3_12478 crossref_primary_10_1001_jamanetworkopen_2018_1535 crossref_primary_10_3390_w12020483 crossref_primary_10_1007_s11633_020_1244_1 crossref_primary_10_1073_pnas_2113658119 crossref_primary_10_1080_2150704X_2024_2359097 crossref_primary_10_3390_su11143934 crossref_primary_10_1002_ecs2_3640 crossref_primary_10_1016_j_eswa_2023_122466 crossref_primary_10_1002_eap_1673 crossref_primary_10_1038_s41597_023_02576_3 crossref_primary_10_1088_1748_9326_adcb53 crossref_primary_10_1109_JSTARS_2022_3231960 crossref_primary_10_1016_j_rse_2025_114925 crossref_primary_10_1155_2019_6059673 crossref_primary_10_1007_s10708_022_10618_3 crossref_primary_10_1145_3372406 crossref_primary_10_1016_j_technovation_2021_102381 crossref_primary_10_1007_s11205_023_03112_x crossref_primary_10_1109_TGRS_2019_2955538 crossref_primary_10_1111_rsp3_12106 crossref_primary_10_1142_S0116110524500021 crossref_primary_10_1016_j_omega_2022_102780 crossref_primary_10_1371_journal_pone_0174610 crossref_primary_10_1371_journal_pone_0252383 crossref_primary_10_2139_ssrn_5410642 crossref_primary_10_1088_2515_7620_abedd9 crossref_primary_10_3390_ijgi8110498 crossref_primary_10_3389_fenvs_2022_969758 crossref_primary_10_1016_j_jbusres_2020_09_068 crossref_primary_10_1038_d41586_024_03988_w crossref_primary_10_1016_j_jrurstud_2019_02_007 crossref_primary_10_1016_j_rse_2021_112339 crossref_primary_10_1038_s41586_018_0071_9 crossref_primary_10_1016_j_apgeog_2025_103541 crossref_primary_10_3233_SJI_210902 crossref_primary_10_1016_j_jebo_2025_106910 crossref_primary_10_1162_rest_a_00901 crossref_primary_10_1080_23792949_2022_2030774 crossref_primary_10_3390_app9102110 crossref_primary_10_1016_j_jue_2024_103715 crossref_primary_10_1140_epjds_s13688_017_0125_5 crossref_primary_10_1016_j_foodpol_2021_102153 crossref_primary_10_3390_rs16183411 crossref_primary_10_1016_j_envint_2018_11_042 crossref_primary_10_1109_JSTARS_2020_2983331 crossref_primary_10_1136_bmjgh_2024_015507 crossref_primary_10_3390_rs14051190 crossref_primary_10_1016_j_worlddev_2018_02_034 crossref_primary_10_1111_tgis_13227 crossref_primary_10_3389_fdata_2022_1006352 crossref_primary_10_1111_roiw_12714 crossref_primary_10_3390_ijgi13100345 crossref_primary_10_1016_j_seps_2021_101043 crossref_primary_10_1016_j_rsase_2022_100889 crossref_primary_10_1007_s11625_021_00982_3 crossref_primary_10_1093_jrsssa_qnae023 crossref_primary_10_2105_AJPH_2022_306917 crossref_primary_10_1038_s41467_019_14108_y crossref_primary_10_1017_dap_2021_2 crossref_primary_10_1007_s42379_024_00168_1 crossref_primary_10_1080_01431161_2020_1763496 crossref_primary_10_1016_j_jclepro_2020_120767 crossref_primary_10_1016_j_geomat_2025_100067 crossref_primary_10_3390_rs16183514 crossref_primary_10_1016_j_jhydrol_2018_09_064 crossref_primary_10_1109_JSTARS_2025_3548420 crossref_primary_10_1186_s12302_020_00397_4 crossref_primary_10_3390_rs14081941 crossref_primary_10_1007_s10479_023_05494_0 crossref_primary_10_1016_j_apenergy_2024_123301 crossref_primary_10_1080_17421772_2024_2333412 crossref_primary_10_1016_j_srs_2025_100200 crossref_primary_10_1016_j_compenvurbsys_2020_101587 crossref_primary_10_3390_en15197142 crossref_primary_10_1038_s43016_024_01018_6 crossref_primary_10_3389_feart_2025_1509489 crossref_primary_10_1109_JSTARS_2024_3353754 crossref_primary_10_1080_10618600_2021_1950004 crossref_primary_10_1038_s41598_024_69371_x crossref_primary_10_1109_TPAMI_2022_3191996 crossref_primary_10_1016_j_ecoser_2018_04_004 crossref_primary_10_1016_j_jag_2022_102694 crossref_primary_10_1016_j_rse_2021_112557 crossref_primary_10_1177_23998083211056957 crossref_primary_10_1016_j_heliyon_2024_e39595 crossref_primary_10_1093_wber_lhab015 crossref_primary_10_1080_19439342_2018_1530279 crossref_primary_10_3389_frsus_2022_908822 crossref_primary_10_3390_bdcc3040050 crossref_primary_10_1016_j_envint_2020_106057 crossref_primary_10_1145_3724422 crossref_primary_10_1016_j_joule_2024_05_001 crossref_primary_10_1155_2019_2834894 crossref_primary_10_1007_s10668_020_01185_z crossref_primary_10_1209_0295_5075_125_68002 crossref_primary_10_1109_TGRS_2024_3392605 crossref_primary_10_1155_2019_4053970 crossref_primary_10_1007_s10111_025_00822_9 crossref_primary_10_1038_s41597_019_0250_z crossref_primary_10_1016_j_biosystemseng_2018_06_017 crossref_primary_10_1145_3287046 crossref_primary_10_5334_cstp_568 crossref_primary_10_1109_ACCESS_2025_3537807 crossref_primary_10_3390_rs12081289 crossref_primary_10_1016_j_joule_2018_11_021 crossref_primary_10_1080_02255189_2018_1517641 crossref_primary_10_3390_su10051688 crossref_primary_10_1038_s41578_019_0118_z crossref_primary_10_3390_rs14215511 crossref_primary_10_1080_17538947_2024_2304073 crossref_primary_10_1111_roiw_12708 crossref_primary_10_3390_rs17081447 crossref_primary_10_1016_j_jmse_2024_01_003 crossref_primary_10_1029_2018WR023333 crossref_primary_10_1016_j_scitotenv_2019_02_150 crossref_primary_10_1016_j_worlddev_2018_07_011 crossref_primary_10_4000_poldev_2468 crossref_primary_10_1007_s11749_023_00868_9 crossref_primary_10_3390_s21227469 crossref_primary_10_1016_j_worlddev_2018_07_017 crossref_primary_10_1016_j_worlddev_2019_04_010 crossref_primary_10_1016_S0140_6736_17_32092_5 crossref_primary_10_1007_s00436_024_08331_w crossref_primary_10_1111_tgis_13236 crossref_primary_10_1038_s43016_022_00587_8 crossref_primary_10_3390_ijerph21111534 crossref_primary_10_3390_rs9121336 crossref_primary_10_1016_j_softx_2024_101785 crossref_primary_10_1186_s40677_021_00204_z crossref_primary_10_1016_j_scs_2020_102526 crossref_primary_10_1111_agec_70013 crossref_primary_10_1109_TNNLS_2018_2850703 crossref_primary_10_1016_j_jdeveco_2022_102880 crossref_primary_10_1177_20539517211025545 crossref_primary_10_14358_PERS_23_00038R2 crossref_primary_10_1080_19498276_2023_2251982 crossref_primary_10_1016_j_landusepol_2017_04_037 crossref_primary_10_1016_j_asr_2022_05_039 crossref_primary_10_1038_s41467_020_16185_w crossref_primary_10_1038_s41598_024_83125_9 crossref_primary_10_1007_s00146_019_00934_7 crossref_primary_10_1080_1369118X_2019_1594334 crossref_primary_10_3389_fpos_2025_1583772 crossref_primary_10_1177_0738894217741618 crossref_primary_10_1016_j_worlddev_2022_105864 crossref_primary_10_1147_JRD_2019_2954404 crossref_primary_10_1016_j_ecolind_2023_111312 crossref_primary_10_1016_j_worlddev_2020_105287 crossref_primary_10_1093_erae_jbz033 crossref_primary_10_1007_s42001_025_00404_9 crossref_primary_10_1080_13658816_2020_1737701 crossref_primary_10_1057_s41599_025_05400_y crossref_primary_10_1016_j_apgeog_2018_03_001 crossref_primary_10_1142_S2196888819500246 crossref_primary_10_1016_j_tele_2021_101622 crossref_primary_10_1145_3424670 crossref_primary_10_1016_j_jrurstud_2025_103814 crossref_primary_10_3390_rs11212530 crossref_primary_10_1088_1748_9326_aafa8f crossref_primary_10_1016_j_rsase_2024_101304 crossref_primary_10_1109_JSTARS_2024_3476191 crossref_primary_10_1108_CAER_03_2022_0051 crossref_primary_10_1139_er_2018_0034 crossref_primary_10_1007_s10037_021_00159_6 crossref_primary_10_1016_S0140_6736_18_31437_5 crossref_primary_10_3390_rs16060962 crossref_primary_10_1017_sus_2018_16 crossref_primary_10_1007_s10661_018_6597_3 crossref_primary_10_1016_j_jacc_2024_08_053 crossref_primary_10_1007_s11707_022_0985_2 crossref_primary_10_1016_j_heliyon_2020_e05617 crossref_primary_10_1051_e3sconf_202340307026 crossref_primary_10_1146_annurev_soc_030420_014126 crossref_primary_10_1073_pnas_1903064116 crossref_primary_10_1016_j_healthplace_2021_102733 crossref_primary_10_1051_matecconf_201824603032 crossref_primary_10_1038_s41893_020_00625_y crossref_primary_10_1007_s43762_022_00048_9 crossref_primary_10_1371_journal_pone_0202231 crossref_primary_10_3390_rs12152487 crossref_primary_10_1109_MIS_2025_3565829 crossref_primary_10_1016_j_jtrangeo_2025_104245 crossref_primary_10_1016_j_isprsjprs_2019_03_014 crossref_primary_10_1098_rsos_211841 crossref_primary_10_3233_IA_240027 crossref_primary_10_1007_s11442_021_1890_4 crossref_primary_10_1145_3624774 crossref_primary_10_3390_land14040751 crossref_primary_10_1073_pnas_1812100116 crossref_primary_10_1007_s42001_025_00405_8 crossref_primary_10_1257_pandp_20251118 crossref_primary_10_3233_JCM_230023 crossref_primary_10_1007_s10708_024_11122_6 crossref_primary_10_3390_ijgi12120481 crossref_primary_10_1016_j_kint_2017_03_052 crossref_primary_10_3390_su12104246 crossref_primary_10_1016_j_jag_2023_103495 crossref_primary_10_3390_ijerph18020830 crossref_primary_10_1016_j_compbiomed_2021_104606 crossref_primary_10_1016_j_jag_2023_103375 crossref_primary_10_1140_epjds_s13688_022_00371_5 crossref_primary_10_1016_j_jrurstud_2019_01_008 crossref_primary_10_1038_s43016_025_01192_1 crossref_primary_10_1080_17516234_2024_2425874 crossref_primary_10_1016_j_tranpol_2024_10_022 crossref_primary_10_1029_2020EF001532 crossref_primary_10_1016_j_rse_2020_111912 crossref_primary_10_1016_j_scs_2025_106267 crossref_primary_10_1016_j_jeem_2024_102931 crossref_primary_10_1007_s11442_020_1725_8 crossref_primary_10_1007_s11625_022_01120_3 crossref_primary_10_1002_tqem_70104 crossref_primary_10_3390_land9120526 crossref_primary_10_1073_pnas_2116169119 crossref_primary_10_1080_17538947_2024_2336059 crossref_primary_10_1016_j_jfineco_2021_06_002 crossref_primary_10_1038_s41467_022_30099_9 crossref_primary_10_1371_journal_pone_0318482 crossref_primary_10_3390_rs13071301 crossref_primary_10_1080_2150704X_2023_2234552 crossref_primary_10_1038_s41598_024_52752_7 crossref_primary_10_1109_TGRS_2021_3088686 crossref_primary_10_3390_ijerph19095281 crossref_primary_10_1016_j_cosust_2017_02_010 crossref_primary_10_1080_13600818_2021_1960960 crossref_primary_10_1016_j_apm_2020_11_013 crossref_primary_10_1016_j_techfore_2022_122016 crossref_primary_10_3390_app12083971 crossref_primary_10_1016_j_rtbm_2025_101310 crossref_primary_10_1007_s11442_018_1554_1 crossref_primary_10_1145_3339399 crossref_primary_10_1016_j_foodpol_2019_03_001 crossref_primary_10_3390_rs12040710 crossref_primary_10_1140_epjds_s13688_020_00222_1 crossref_primary_10_1371_journal_pone_0208714 crossref_primary_10_1016_j_tra_2020_07_017 crossref_primary_10_1088_1757_899X_322_7_072001 crossref_primary_10_3390_rs12121922 crossref_primary_10_1016_j_worlddev_2022_105941 crossref_primary_10_3390_ijgi7110448 crossref_primary_10_1016_j_jclepro_2020_120245 crossref_primary_10_1038_d41586_025_00565_7 crossref_primary_10_1109_TGRS_2025_3584039 crossref_primary_10_1016_j_compenvurbsys_2025_102299 crossref_primary_10_1186_s13012_025_01447_2 crossref_primary_10_1016_j_econlet_2019_108573 crossref_primary_10_1088_1748_9326_ab443e crossref_primary_10_1007_s10660_020_09424_1 crossref_primary_10_1038_s41598_019_42036_w crossref_primary_10_1007_s11356_022_23839_3 crossref_primary_10_1002_widm_1319 crossref_primary_10_3390_rs10121964 crossref_primary_10_46932_sfjdv6n4_049 crossref_primary_10_1016_j_heliyon_2024_e28744 crossref_primary_10_1057_s41599_023_01548_7 crossref_primary_10_1007_s13593_020_0610_2 crossref_primary_10_1016_j_scs_2025_106166 crossref_primary_10_1109_JSTARS_2019_2944952 crossref_primary_10_1155_2021_9923326 crossref_primary_10_1016_j_regsciurbeco_2023_103954 crossref_primary_10_1016_j_joule_2018_12_004 crossref_primary_10_1016_j_isprsjprs_2019_11_024 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_1146_annurev_biodatasci_020221_123602 crossref_primary_10_1073_pnas_1700319114 crossref_primary_10_1109_TGRS_2025_3560092 crossref_primary_10_1145_3447739 crossref_primary_10_1016_j_engappai_2023_106186 crossref_primary_10_1126_science_abe8628 crossref_primary_10_1140_epjds_s13688_020_00235_w crossref_primary_10_1136_injuryprev_2019_043248 crossref_primary_10_3390_rs13081528 crossref_primary_10_1007_s11205_020_02267_1 crossref_primary_10_1080_10511482_2020_1739107 crossref_primary_10_1016_j_ejpoleco_2024_102523 crossref_primary_10_1016_j_gfs_2023_100671 crossref_primary_10_1016_j_optlaseng_2021_106717 crossref_primary_10_1016_j_rse_2019_03_013 crossref_primary_10_1073_pnas_1812969116 crossref_primary_10_1177_1069031X221149951 crossref_primary_10_1080_02681102_2020_1811945 crossref_primary_10_1016_j_isprsjprs_2018_02_012 crossref_primary_10_1080_01431161_2020_1809027 crossref_primary_10_1016_j_jhydrol_2022_128461 crossref_primary_10_1007_s11111_022_00411_2 crossref_primary_10_1016_j_eswa_2021_116189 crossref_primary_10_1061_NHREFO_NHENG_2137 crossref_primary_10_1140_epjds_s13688_023_00394_6 crossref_primary_10_3390_e23060780 crossref_primary_10_1007_s13194_022_00484_8 crossref_primary_10_3389_fpubh_2021_766707 crossref_primary_10_1177_0042098019869769 crossref_primary_10_1016_j_rse_2019_04_020 crossref_primary_10_1111_obes_12586 crossref_primary_10_1145_3675160 crossref_primary_10_1007_s42001_023_00211_0 crossref_primary_10_1109_TGRS_2023_3305457 crossref_primary_10_1073_pnas_2025400118 crossref_primary_10_1371_journal_pone_0241981 crossref_primary_10_1088_1748_9326_ac9cf6 crossref_primary_10_1007_s11205_020_02332_9 crossref_primary_10_1016_j_isprsjprs_2019_04_017 crossref_primary_10_1016_j_neucom_2021_06_002 crossref_primary_10_1016_j_spc_2021_12_025 crossref_primary_10_1016_j_isprsjprs_2019_04_014 crossref_primary_10_1080_2150704X_2017_1384586 crossref_primary_10_4018_IJSWIS_367719 crossref_primary_10_1080_17538947_2024_2336049 crossref_primary_10_1109_TWC_2024_3427377 crossref_primary_10_1103_PhysRevX_7_031041 crossref_primary_10_1016_S0140_6736_19_32540_1 crossref_primary_10_1145_3737449 crossref_primary_10_1016_j_gloenvcha_2020_102218 crossref_primary_10_1016_j_apgeog_2021_102552 crossref_primary_10_1109_JSTARS_2020_3001980 crossref_primary_10_1007_s11625_023_01299_z crossref_primary_10_1007_s10489_021_02268_8 crossref_primary_10_3390_machines9060119 crossref_primary_10_3390_ijgi9110685 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016, American Association for the Advancement of Science. |
| Copyright_xml | – notice: Copyright © 2016, American Association for the Advancement of Science. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1126/science.aaf7894 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1095-9203 |
| ExternalDocumentID | 27540167 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
| GeographicLocations | Uganda Nigeria Malawi Rwanda Tanzania |
| GeographicLocations_xml | – name: Tanzania – name: Malawi – name: Rwanda – name: Nigeria – name: Uganda |
| GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADULT AEGBM AENEX AETEA AEUPB AEXZC AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF BKF BLC C45 C51 CGR CS3 CUY CVF DB2 DCCCD DU5 EBS ECM EIF EJD EMOBN F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 2XV 7X8 ADQXQ ADXHL AFBNE |
| ID | FETCH-LOGICAL-c479t-fffe1ce40ea1a1f53a8969a4e5cb2279f07e7825930c043c4505b18b7951083f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 972 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381561400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1095-9203 |
| IngestDate | Thu Oct 02 06:44:28 EDT 2025 Sat Mar 08 01:25:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6301 |
| Language | English |
| License | Copyright © 2016, American Association for the Advancement of Science. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c479t-fffe1ce40ea1a1f53a8969a4e5cb2279f07e7825930c043c4505b18b7951083f2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 27540167 |
| PQID | 1812887604 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1812887604 pubmed_primary_27540167 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-19 20160819 |
| PublicationDateYYYYMMDD | 2016-08-19 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Science (American Association for the Advancement of Science) |
| PublicationTitleAlternate | Science |
| PublicationYear | 2016 |
| References | 27540154 - Science. 2016 Aug 19;353(6301):753-4. doi: 10.1126/science.aah5217. |
| References_xml | – reference: 27540154 - Science. 2016 Aug 19;353(6301):753-4. doi: 10.1126/science.aah5217. |
| SSID | ssj0009593 |
| Score | 2.6883092 |
| Snippet | Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 790 |
| SubjectTerms | Developing Countries - economics Humans Income Machine Learning Malawi Nigeria Poverty - economics Rwanda Satellite Imagery - methods Tanzania Uganda |
| Title | Combining satellite imagery and machine learning to predict poverty |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27540167 https://www.proquest.com/docview/1812887604 |
| Volume | 353 |
| WOSCitedRecordID | wos000381561400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UVfCirs_1RQQPeqimadq0J5HFxYMue1DZW0nSRPawbd1WYf-9SZtFEQTBS26BMMzjY2byfQDnMRZhZoCwF6qEeFRSE3NEEk8pIjgOKMfND7mXBzYcxuNxMnINt8qtVS5yYpOos0LaHvm1rUQmICJMb8o3z6pG2emqk9BYhk5goIz1ajaOf5Lu-tjqERIcOGqfb59mrjjXLLaKxb_hy6bODDb_-8It2HAIE922LtGFJZVvw1qrOTnfhq6L5gpdOMrpyx3om7QgGqkIVPGGo7NWaDK1_BZzxPMMTZudS4WcyMQrqgtUzuyQp0al3QKt57vwPLh76t97Tl7Bk5Qltae1Vr5UFCvuc1-HAY-TKOFUhVJYXkGNmTL4wdgQS0wDSQ1YEn4smAVlcaDJHqzkRa4OAGWxltISnTJp6dxpoiORGaAhzC3JiejB2cJkqXFfO5PguSreq_TLaD3Yb-2eli3PRkqYgZN-xA7_cPsI1g2UiWy310-OoaNN8KoTWJUf9aSanTZ-Yc7h6PETS7LChQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+satellite+imagery+and+machine+learning+to+predict+poverty&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jean%2C+Neal&rft.au=Burke%2C+Marshall&rft.au=Xie%2C+Michael&rft.au=Alampay+Davis%2C+W+Matthew&rft.date=2016-08-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=353&rft.issue=6301&rft.spage=790&rft_id=info:doi/10.1126%2Fscience.aaf7894&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon |