Combining satellite imagery and machine learning to predict poverty

Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science (American Association for the Advancement of Science) Ročník 353; číslo 6301; s. 790
Hlavní autoři: Jean, Neal, Burke, Marshall, Xie, Michael, Alampay Davis, W Matthew, Lobell, David B, Ermon, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 19.08.2016
Témata:
ISSN:1095-9203, 1095-9203
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.
AbstractList Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.
Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.
Author Alampay Davis, W Matthew
Jean, Neal
Lobell, David B
Ermon, Stefano
Burke, Marshall
Xie, Michael
Author_xml – sequence: 1
  givenname: Neal
  surname: Jean
  fullname: Jean, Neal
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA. Department of Electrical Engineering, Stanford University, Stanford, CA, USA
– sequence: 2
  givenname: Marshall
  surname: Burke
  fullname: Burke, Marshall
  email: mburke@stanford.edu
  organization: Department of Earth System Science, Stanford University, Stanford, CA, USA. Center on Food Security and the Environment, Stanford University, Stanford, CA, USA. National Bureau of Economic Research, Boston, MA, USA. mburke@stanford.edu
– sequence: 3
  givenname: Michael
  surname: Xie
  fullname: Xie, Michael
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA
– sequence: 4
  givenname: W Matthew
  surname: Alampay Davis
  fullname: Alampay Davis, W Matthew
  organization: Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
– sequence: 5
  givenname: David B
  surname: Lobell
  fullname: Lobell, David B
  organization: Department of Earth System Science, Stanford University, Stanford, CA, USA. Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
– sequence: 6
  givenname: Stefano
  surname: Ermon
  fullname: Ermon, Stefano
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27540167$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuB969iY5eumapEmTHKW4Kix40XNJs2_WSJvWJCvsv7foCp5mBh6GmSWahSEAQteUrCll1V2yHoKFtTFOKs3P0IISLQrNSDn75-domdIHIVPW5QWaMyk4oZVcoLoe-tYHH_Y4mQxd5zNg35s9xCM2YYd7Y999ANyBiT9YHvAYYedtxuPwBTEfL9G5M12Cq5Ou0Nvm4bV-KrYvj8_1_bawXOpcOOeAWuAEDDXUidIoXWnDQdiWMakdkSAVmxYSS3hpuSCipaqVWlCiSsdW6Pa3d4zD5wFSbnqf7LTZBBgOqaGKMqVkRfiE3pzQQ9vDrhnj9Ckem7_j7BsBgl1P
CitedBy_id crossref_primary_10_1155_2022_2492952
crossref_primary_10_1016_j_apenergy_2020_116018
crossref_primary_10_1111_obes_12678
crossref_primary_10_1039_C8NR06734A
crossref_primary_10_1073_pnas_2016238117
crossref_primary_10_3390_rs12182950
crossref_primary_10_3390_su13168717
crossref_primary_10_1016_j_fss_2025_109511
crossref_primary_10_1162_rest_a_01117
crossref_primary_10_1371_journal_pone_0214635
crossref_primary_10_1016_j_rse_2019_111386
crossref_primary_10_1038_s41597_024_03223_1
crossref_primary_10_3390_rs14061469
crossref_primary_10_1016_j_resourpol_2023_104013
crossref_primary_10_1038_s41545_023_00272_8
crossref_primary_10_1080_13658816_2024_2305636
crossref_primary_10_3390_rs13173533
crossref_primary_10_1073_pnas_2115730119
crossref_primary_10_1080_17538947_2024_2391031
crossref_primary_10_1016_j_dib_2021_106939
crossref_primary_10_1016_j_cola_2019_100908
crossref_primary_10_1002_aepp_13175
crossref_primary_10_1111_deve_12274
crossref_primary_10_1109_TCOMM_2021_3109947
crossref_primary_10_1038_s44284_025_00273_3
crossref_primary_10_1186_s12938_025_01341_4
crossref_primary_10_3390_su142114238
crossref_primary_10_1080_10106049_2020_1870166
crossref_primary_10_1007_s12571_020_01132_w
crossref_primary_10_3390_rs15184618
crossref_primary_10_1145_3710968
crossref_primary_10_3390_urbansci2010008
crossref_primary_10_1016_j_media_2019_101555
crossref_primary_10_1038_s41467_022_30688_8
crossref_primary_10_3233_SJI_230033
crossref_primary_10_1016_j_apgeog_2023_102899
crossref_primary_10_1007_s40572_017_0163_y
crossref_primary_10_1016_j_jue_2019_05_004
crossref_primary_10_1111_jors_12410
crossref_primary_10_1073_pnas_2416161122
crossref_primary_10_1007_s00521_021_06703_2
crossref_primary_10_1038_s41597_024_03366_1
crossref_primary_10_1007_s10676_019_09510_5
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1126_science_aah5217
crossref_primary_10_1016_j_geoforum_2017_01_001
crossref_primary_10_1007_s11554_021_01099_7
crossref_primary_10_1007_s11442_025_2366_8
crossref_primary_10_1080_10095020_2025_2543496
crossref_primary_10_3390_su14148773
crossref_primary_10_1016_j_rse_2017_01_005
crossref_primary_10_1007_s12652_021_03650_7
crossref_primary_10_1007_s12061_025_09646_6
crossref_primary_10_3390_rs13204022
crossref_primary_10_1038_s41598_019_55439_6
crossref_primary_10_1080_13658816_2024_2332908
crossref_primary_10_7717_peerj_cs_1931
crossref_primary_10_1080_14498596_2025_2539222
crossref_primary_10_1109_TGRS_2020_3028622
crossref_primary_10_3390_rs11172001
crossref_primary_10_1002_sd_2638
crossref_primary_10_3390_bdcc5030028
crossref_primary_10_1073_pnas_1700035114
crossref_primary_10_1080_20430795_2022_2153007
crossref_primary_10_1097_AIA_0000000000000294
crossref_primary_10_1108_AJEMS_02_2022_0042
crossref_primary_10_1016_j_worlddev_2021_105745
crossref_primary_10_1007_s10668_022_02252_3
crossref_primary_10_1093_jeea_jvac025
crossref_primary_10_1016_j_jag_2025_104828
crossref_primary_10_3389_fdata_2023_1124526
crossref_primary_10_1109_ACCESS_2020_2986317
crossref_primary_10_1177_00491241231168665
crossref_primary_10_3390_en12030456
crossref_primary_10_3390_rs11192194
crossref_primary_10_1016_j_habitatint_2019_04_008
crossref_primary_10_1038_s41598_023_49564_6
crossref_primary_10_1177_00491241221082603
crossref_primary_10_1109_ACCESS_2019_2928364
crossref_primary_10_1007_s43071_023_00044_z
crossref_primary_10_1155_2020_8018629
crossref_primary_10_3390_ijgi10010011
crossref_primary_10_1016_j_habitatint_2022_102572
crossref_primary_10_1145_3576902
crossref_primary_10_3390_rs11151799
crossref_primary_10_1016_j_habitatint_2023_102876
crossref_primary_10_1016_j_jenvman_2019_07_024
crossref_primary_10_1080_10095020_2023_2250388
crossref_primary_10_1371_journal_pmed_1003054
crossref_primary_10_1007_s10489_021_02264_y
crossref_primary_10_3390_atmos13050696
crossref_primary_10_3390_su11215888
crossref_primary_10_1145_3284751_3284761
crossref_primary_10_1109_JSTARS_2024_3359636
crossref_primary_10_11728_cjss2023_06_2023_0108
crossref_primary_10_1016_j_seps_2024_102139
crossref_primary_10_1017_eds_2023_42
crossref_primary_10_1155_2022_3632679
crossref_primary_10_1016_j_scitotenv_2024_169962
crossref_primary_10_3390_rs17061028
crossref_primary_10_1016_j_jue_2025_103797
crossref_primary_10_1109_JSTARS_2022_3200754
crossref_primary_10_3390_s23084101
crossref_primary_10_3390_su14052497
crossref_primary_10_1016_j_jdeveco_2022_103016
crossref_primary_10_1108_VJIKMS_05_2023_0104
crossref_primary_10_1016_j_jag_2022_102903
crossref_primary_10_1093_jamia_ocz111
crossref_primary_10_1016_j_indic_2025_100882
crossref_primary_10_1007_s41324_024_00584_y
crossref_primary_10_1088_1757_899X_873_1_012015
crossref_primary_10_1016_j_scs_2025_106799
crossref_primary_10_1038_s41586_022_05322_8
crossref_primary_10_1109_JSTARS_2022_3191544
crossref_primary_10_1080_24694452_2023_2166010
crossref_primary_10_1057_s41599_021_00953_0
crossref_primary_10_1088_1742_6596_1529_4_042082
crossref_primary_10_1609_aimag_v39i3_2815
crossref_primary_10_1016_j_rse_2018_04_042
crossref_primary_10_3390_rs16163013
crossref_primary_10_1029_2024EF004576
crossref_primary_10_3390_rs13112067
crossref_primary_10_1016_j_jag_2023_103395
crossref_primary_10_1016_j_isprsjprs_2024_12_017
crossref_primary_10_1109_ACCESS_2022_3198673
crossref_primary_10_1177_0282423X241284890
crossref_primary_10_1177_00080683241239211
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1038_s41477_020_00814_9
crossref_primary_10_1016_j_isprsjprs_2019_02_006
crossref_primary_10_1038_s43588_025_00846_1
crossref_primary_10_1080_00220388_2019_1687877
crossref_primary_10_1016_j_asr_2020_09_003
crossref_primary_10_1016_j_compenvurbsys_2025_102339
crossref_primary_10_1109_TEM_2020_2974761
crossref_primary_10_3390_ijgi11010050
crossref_primary_10_1016_j_jdeveco_2025_103477
crossref_primary_10_3390_cancers12123844
crossref_primary_10_1145_3579481
crossref_primary_10_1007_s44327_025_00109_8
crossref_primary_10_1007_s10707_025_00551_1
crossref_primary_10_1080_2150704X_2021_1987575
crossref_primary_10_1093_wber_lhz001
crossref_primary_10_1073_pnas_2410350122
crossref_primary_10_1002_jid_3751
crossref_primary_10_1371_journal_pone_0241907
crossref_primary_10_1080_07352166_2022_2078723
crossref_primary_10_1111_tgis_12953
crossref_primary_10_1109_LGRS_2020_3006019
crossref_primary_10_3390_su151713143
crossref_primary_10_1002_adfm_201903607
crossref_primary_10_1073_pnas_2316730121
crossref_primary_10_1016_j_cities_2022_103925
crossref_primary_10_3354_cr01547
crossref_primary_10_3389_fevo_2024_1310046
crossref_primary_10_1371_journal_pone_0176684
crossref_primary_10_1088_1748_9326_abe00a
crossref_primary_10_1016_j_comcom_2023_02_017
crossref_primary_10_1016_j_forpol_2021_102554
crossref_primary_10_1016_j_ject_2023_11_001
crossref_primary_10_1038_s41597_023_01989_4
crossref_primary_10_1155_2021_8997915
crossref_primary_10_1088_2632_072X_ac60b1
crossref_primary_10_1145_3409797
crossref_primary_10_3390_rs17020313
crossref_primary_10_1155_2021_9976306
crossref_primary_10_3390_su11226312
crossref_primary_10_1007_s13278_020_00690_3
crossref_primary_10_1038_s41598_019_52423_y
crossref_primary_10_1145_3380972
crossref_primary_10_1109_JSTARS_2021_3135488
crossref_primary_10_1007_s10037_025_00241_3
crossref_primary_10_3390_ijgi11040246
crossref_primary_10_1093_wber_lhae025
crossref_primary_10_1038_s41467_023_42122_8
crossref_primary_10_1002_aepp_13221
crossref_primary_10_3390_rs10122067
crossref_primary_10_1016_j_enpol_2023_113814
crossref_primary_10_1109_JSTARS_2018_2828340
crossref_primary_10_1038_s41467_021_24638_z
crossref_primary_10_3390_su151813493
crossref_primary_10_1007_s00354_023_00203_8
crossref_primary_10_1038_s41467_020_15871_z
crossref_primary_10_1086_714119
crossref_primary_10_1145_3589344
crossref_primary_10_1038_d41586_018_06215_5
crossref_primary_10_1016_j_isprsjprs_2022_03_015
crossref_primary_10_1007_s42001_020_00082_9
crossref_primary_10_1177_14780771221089885
crossref_primary_10_3389_fict_2018_00006
crossref_primary_10_1007_s11629_021_7460_0
crossref_primary_10_5406_21601267_13_2_05
crossref_primary_10_1145_3567430
crossref_primary_10_1016_j_resourpol_2023_103325
crossref_primary_10_3390_rs13183603
crossref_primary_10_1371_journal_pone_0243105
crossref_primary_10_3390_ijgi11050293
crossref_primary_10_1093_wber_lhae018
crossref_primary_10_1088_1757_899X_482_1_012044
crossref_primary_10_1002_aepp_13214
crossref_primary_10_1002_sta4_70037
crossref_primary_10_1016_j_enbuild_2019_03_036
crossref_primary_10_1016_j_tree_2017_03_003
crossref_primary_10_1057_s41287_019_00205_7
crossref_primary_10_1016_j_jdeveco_2025_103462
crossref_primary_10_1146_annurev_economics_080218_030333
crossref_primary_10_1029_2024EF004415
crossref_primary_10_1080_13658816_2018_1480783
crossref_primary_10_1038_s41562_022_01478_5
crossref_primary_10_1088_2976_601X_adb84f
crossref_primary_10_1088_2632_072X_ac718e
crossref_primary_10_1515_spp_2020_0013
crossref_primary_10_1007_s41685_024_00364_4
crossref_primary_10_1007_s10044_024_01263_2
crossref_primary_10_3389_frwa_2020_536743
crossref_primary_10_1109_JSTARS_2021_3094053
crossref_primary_10_1162_rest_a_01085
crossref_primary_10_1016_j_rse_2022_113076
crossref_primary_10_1007_s11042_017_4364_z
crossref_primary_10_1007_s10708_024_11106_6
crossref_primary_10_1080_23322039_2024_2444374
crossref_primary_10_14254_1795_6889_2024_20_1_1
crossref_primary_10_3390_rs11111282
crossref_primary_10_1093_wber_lhae044
crossref_primary_10_1016_j_jmst_2024_05_024
crossref_primary_10_1007_s12061_024_09585_8
crossref_primary_10_1016_j_ject_2025_05_002
crossref_primary_10_1111_ecpo_12267
crossref_primary_10_1007_s11229_020_03002_6
crossref_primary_10_1016_j_cities_2024_105019
crossref_primary_10_1016_j_jdeveco_2025_103555
crossref_primary_10_1061__ASCE_ME_1943_5479_0000841
crossref_primary_10_1109_MGRS_2024_3494673
crossref_primary_10_1007_s10462_018_09679_z
crossref_primary_10_1007_s10668_023_03935_1
crossref_primary_10_3390_a18080474
crossref_primary_10_3390_rs15112861
crossref_primary_10_1016_j_rse_2019_111443
crossref_primary_10_3390_rs12020207
crossref_primary_10_1016_j_landurbplan_2023_104863
crossref_primary_10_3390_ijgi10030137
crossref_primary_10_1177_00080683231198591
crossref_primary_10_3390_rs14225695
crossref_primary_10_1109_JSTARS_2024_3368018
crossref_primary_10_1073_pnas_2216656120
crossref_primary_10_3390_rs14030598
crossref_primary_10_1109_ACCESS_2020_3019239
crossref_primary_10_1016_j_compenvurbsys_2025_102306
crossref_primary_10_1057_s41599_021_00822_w
crossref_primary_10_1080_15481603_2025_2540537
crossref_primary_10_1093_cercor_bhab394
crossref_primary_10_1093_oxrep_grz015
crossref_primary_10_1007_s11205_019_02187_9
crossref_primary_10_1016_j_tele_2019_01_001
crossref_primary_10_1038_s41586_022_04484_9
crossref_primary_10_1016_j_jag_2025_104781
crossref_primary_10_1016_j_jdeveco_2024_103385
crossref_primary_10_1016_j_physa_2017_11_084
crossref_primary_10_2196_64362
crossref_primary_10_1016_j_rsase_2021_100608
crossref_primary_10_1080_01621459_2022_2097086
crossref_primary_10_1016_j_intman_2023_101055
crossref_primary_10_1038_s41558_025_02268_3
crossref_primary_10_1007_s00181_022_02199_4
crossref_primary_10_1007_s00521_023_08923_0
crossref_primary_10_1016_j_scs_2024_105670
crossref_primary_10_1007_s41885_023_00137_x
crossref_primary_10_1002_adsu_202300401
crossref_primary_10_1007_s12076_025_00397_z
crossref_primary_10_1016_j_worlddev_2024_106702
crossref_primary_10_1371_journal_pone_0283938
crossref_primary_10_1145_3648435
crossref_primary_10_1016_j_compenvurbsys_2022_101802
crossref_primary_10_1016_j_gloenvcha_2024_102891
crossref_primary_10_1109_TGRS_2018_2882420
crossref_primary_10_1007_s11943_023_00330_0
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1109_ACCESS_2019_2894857
crossref_primary_10_1109_MGRS_2023_3272825
crossref_primary_10_3390_rs17040688
crossref_primary_10_1016_j_physrep_2019_05_002
crossref_primary_10_1038_s41597_020_00792_9
crossref_primary_10_1109_JSTARS_2020_3018862
crossref_primary_10_1038_s42949_025_00256_2
crossref_primary_10_1057_s41599_021_00792_z
crossref_primary_10_1145_3615361
crossref_primary_10_2105_AJPH_2021_306640
crossref_primary_10_1016_j_jdeveco_2024_103377
crossref_primary_10_1371_journal_pone_0325696
crossref_primary_10_1038_s42003_023_04493_y
crossref_primary_10_1111_roiw_12552
crossref_primary_10_1073_pnas_2322083121
crossref_primary_10_3389_fsoc_2022_909458
crossref_primary_10_1371_journal_pone_0166950
crossref_primary_10_1057_s41599_022_01180_x
crossref_primary_10_3390_socsci12050296
crossref_primary_10_1007_s11205_022_02883_z
crossref_primary_10_1016_j_geosus_2021_10_002
crossref_primary_10_1111_roiw_12558
crossref_primary_10_1007_s13198_024_02466_w
crossref_primary_10_1109_TGRS_2024_3430981
crossref_primary_10_3167_ares_2017_080103
crossref_primary_10_1007_s10668_024_05230_z
crossref_primary_10_1371_journal_pone_0219058
crossref_primary_10_1111_ajae_12160
crossref_primary_10_1109_TGRS_2020_3047447
crossref_primary_10_3389_fonc_2021_632104
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1016_j_jag_2024_104269
crossref_primary_10_1016_j_jag_2021_102466
crossref_primary_10_1371_journal_pone_0306641
crossref_primary_10_3390_rs9080829
crossref_primary_10_1016_j_jdeveco_2020_102564
crossref_primary_10_1177_00368504231165679
crossref_primary_10_1108_JES_05_2020_0201
crossref_primary_10_1016_j_worlddev_2022_106124
crossref_primary_10_1007_s10712_020_09586_5
crossref_primary_10_1371_journal_pone_0253370
crossref_primary_10_1109_JSTARS_2020_2968468
crossref_primary_10_1016_j_jue_2020_103254
crossref_primary_10_1016_j_trb_2023_102869
crossref_primary_10_1039_C8CP03141J
crossref_primary_10_1145_3578552
crossref_primary_10_1016_j_scs_2020_102014
crossref_primary_10_1257_jel_20241646
crossref_primary_10_1007_s12524_018_0772_4
crossref_primary_10_1016_j_jdeveco_2024_103352
crossref_primary_10_3389_fsufs_2020_00051
crossref_primary_10_1016_j_joi_2023_101436
crossref_primary_10_1109_MGRS_2023_3343968
crossref_primary_10_1016_j_worlddev_2019_104776
crossref_primary_10_1257_jep_31_2_87
crossref_primary_10_1073_pnas_2120025119
crossref_primary_10_1038_s41467_024_45624_1
crossref_primary_10_3389_fdata_2023_1054156
crossref_primary_10_1016_j_jclepro_2019_04_135
crossref_primary_10_3390_su9071049
crossref_primary_10_1109_JSTARS_2019_2915646
crossref_primary_10_1002_aepp_13515
crossref_primary_10_1002_isd2_12063
crossref_primary_10_1017_dap_2024_49
crossref_primary_10_3390_rs12061034
crossref_primary_10_5194_hess_23_3933_2019
crossref_primary_10_1109_ACCESS_2020_2971264
crossref_primary_10_1155_2021_2770830
crossref_primary_10_1002_sd_1692
crossref_primary_10_1080_17538947_2024_2353160
crossref_primary_10_1109_TBDATA_2020_3032839
crossref_primary_10_1057_s41599_023_01891_9
crossref_primary_10_1016_j_rsase_2021_100647
crossref_primary_10_1111_jiec_13356
crossref_primary_10_1109_TVCG_2019_2934659
crossref_primary_10_1080_01431161_2017_1420936
crossref_primary_10_2139_ssrn_5350967
crossref_primary_10_1007_s12652_021_03623_w
crossref_primary_10_1145_3449257
crossref_primary_10_3390_rs15051209
crossref_primary_10_1016_j_envdev_2024_100966
crossref_primary_10_1016_j_worlddev_2019_06_008
crossref_primary_10_1038_s44284_025_00299_7
crossref_primary_10_1016_j_cities_2021_103346
crossref_primary_10_3390_su13031412
crossref_primary_10_1016_j_geosus_2020_03_006
crossref_primary_10_1080_10095020_2023_2165975
crossref_primary_10_1088_2632_2153_ad073b
crossref_primary_10_1109_JSTARS_2017_2737702
crossref_primary_10_1080_03610926_2022_2077963
crossref_primary_10_1016_j_rse_2017_11_026
crossref_primary_10_1016_j_jup_2022_101378
crossref_primary_10_1038_s41586_025_09465_2
crossref_primary_10_1287_isre_2019_0866
crossref_primary_10_3390_rs11040375
crossref_primary_10_1016_j_esd_2019_02_001
crossref_primary_10_1111_tgis_12661
crossref_primary_10_1155_2022_9975318
crossref_primary_10_1098_rsif_2016_0690
crossref_primary_10_1111_rssa_12802
crossref_primary_10_1038_s42256_020_00243_5
crossref_primary_10_1016_j_worlddev_2019_104647
crossref_primary_10_1016_j_worlddev_2022_106028
crossref_primary_10_3390_rs10030471
crossref_primary_10_1080_03066150_2019_1658079
crossref_primary_10_1371_journal_pone_0215286
crossref_primary_10_1007_s10109_022_00374_w
crossref_primary_10_1038_s41524_017_0038_7
crossref_primary_10_1007_s10584_020_02878_0
crossref_primary_10_1016_j_geosus_2022_01_001
crossref_primary_10_1111_asej_12349
crossref_primary_10_1002_bse_70031
crossref_primary_10_1371_journal_pone_0218671
crossref_primary_10_1080_10106049_2019_1568587
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1007_s13042_025_02718_6
crossref_primary_10_1080_01621459_2022_2096038
crossref_primary_10_1016_j_cmpb_2021_106297
crossref_primary_10_1080_03066150_2019_1658080
crossref_primary_10_1111_tgis_12330
crossref_primary_10_3390_rs11171971
crossref_primary_10_1016_j_seps_2025_102175
crossref_primary_10_1017_dap_2020_4
crossref_primary_10_1016_j_erss_2022_102677
crossref_primary_10_1080_02681102_2019_1650244
crossref_primary_10_1029_2022EA002379
crossref_primary_10_3390_w10101485
crossref_primary_10_1093_wber_lhab021
crossref_primary_10_1371_journal_pone_0237063
crossref_primary_10_1109_TKDE_2018_2861006
crossref_primary_10_1073_pnas_2402060121
crossref_primary_10_3390_su14095228
crossref_primary_10_1109_JSTARS_2024_3429244
crossref_primary_10_3390_rs13163160
crossref_primary_10_1371_journal_pone_0198502
crossref_primary_10_1007_s11111_019_00326_5
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1016_j_rse_2024_114448
crossref_primary_10_1371_journal_pone_0288647
crossref_primary_10_1016_j_compenvurbsys_2020_101549
crossref_primary_10_1016_j_rsase_2024_101388
crossref_primary_10_3389_fenvs_2022_907383
crossref_primary_10_1145_3608112
crossref_primary_10_1177_23998083221135608
crossref_primary_10_1016_j_foodpol_2022_102345
crossref_primary_10_1093_pnasnexus_pgaf040
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_1145_3210548
crossref_primary_10_1007_s40747_021_00521_8
crossref_primary_10_1016_j_jue_2024_103730
crossref_primary_10_1016_j_scs_2022_104033
crossref_primary_10_1002_cl2_1149
crossref_primary_10_1038_s42256_021_00414_y
crossref_primary_10_1371_journal_pone_0255519
crossref_primary_10_1016_j_shpsa_2023_10_004
crossref_primary_10_1111_rsp3_12478
crossref_primary_10_1001_jamanetworkopen_2018_1535
crossref_primary_10_3390_w12020483
crossref_primary_10_1007_s11633_020_1244_1
crossref_primary_10_1073_pnas_2113658119
crossref_primary_10_1080_2150704X_2024_2359097
crossref_primary_10_3390_su11143934
crossref_primary_10_1002_ecs2_3640
crossref_primary_10_1016_j_eswa_2023_122466
crossref_primary_10_1002_eap_1673
crossref_primary_10_1038_s41597_023_02576_3
crossref_primary_10_1088_1748_9326_adcb53
crossref_primary_10_1109_JSTARS_2022_3231960
crossref_primary_10_1016_j_rse_2025_114925
crossref_primary_10_1155_2019_6059673
crossref_primary_10_1007_s10708_022_10618_3
crossref_primary_10_1145_3372406
crossref_primary_10_1016_j_technovation_2021_102381
crossref_primary_10_1007_s11205_023_03112_x
crossref_primary_10_1109_TGRS_2019_2955538
crossref_primary_10_1111_rsp3_12106
crossref_primary_10_1142_S0116110524500021
crossref_primary_10_1016_j_omega_2022_102780
crossref_primary_10_1371_journal_pone_0174610
crossref_primary_10_1371_journal_pone_0252383
crossref_primary_10_2139_ssrn_5410642
crossref_primary_10_1088_2515_7620_abedd9
crossref_primary_10_3390_ijgi8110498
crossref_primary_10_3389_fenvs_2022_969758
crossref_primary_10_1016_j_jbusres_2020_09_068
crossref_primary_10_1038_d41586_024_03988_w
crossref_primary_10_1016_j_jrurstud_2019_02_007
crossref_primary_10_1016_j_rse_2021_112339
crossref_primary_10_1038_s41586_018_0071_9
crossref_primary_10_1016_j_apgeog_2025_103541
crossref_primary_10_3233_SJI_210902
crossref_primary_10_1016_j_jebo_2025_106910
crossref_primary_10_1162_rest_a_00901
crossref_primary_10_1080_23792949_2022_2030774
crossref_primary_10_3390_app9102110
crossref_primary_10_1016_j_jue_2024_103715
crossref_primary_10_1140_epjds_s13688_017_0125_5
crossref_primary_10_1016_j_foodpol_2021_102153
crossref_primary_10_3390_rs16183411
crossref_primary_10_1016_j_envint_2018_11_042
crossref_primary_10_1109_JSTARS_2020_2983331
crossref_primary_10_1136_bmjgh_2024_015507
crossref_primary_10_3390_rs14051190
crossref_primary_10_1016_j_worlddev_2018_02_034
crossref_primary_10_1111_tgis_13227
crossref_primary_10_3389_fdata_2022_1006352
crossref_primary_10_1111_roiw_12714
crossref_primary_10_3390_ijgi13100345
crossref_primary_10_1016_j_seps_2021_101043
crossref_primary_10_1016_j_rsase_2022_100889
crossref_primary_10_1007_s11625_021_00982_3
crossref_primary_10_1093_jrsssa_qnae023
crossref_primary_10_2105_AJPH_2022_306917
crossref_primary_10_1038_s41467_019_14108_y
crossref_primary_10_1017_dap_2021_2
crossref_primary_10_1007_s42379_024_00168_1
crossref_primary_10_1080_01431161_2020_1763496
crossref_primary_10_1016_j_jclepro_2020_120767
crossref_primary_10_1016_j_geomat_2025_100067
crossref_primary_10_3390_rs16183514
crossref_primary_10_1016_j_jhydrol_2018_09_064
crossref_primary_10_1109_JSTARS_2025_3548420
crossref_primary_10_1186_s12302_020_00397_4
crossref_primary_10_3390_rs14081941
crossref_primary_10_1007_s10479_023_05494_0
crossref_primary_10_1016_j_apenergy_2024_123301
crossref_primary_10_1080_17421772_2024_2333412
crossref_primary_10_1016_j_srs_2025_100200
crossref_primary_10_1016_j_compenvurbsys_2020_101587
crossref_primary_10_3390_en15197142
crossref_primary_10_1038_s43016_024_01018_6
crossref_primary_10_3389_feart_2025_1509489
crossref_primary_10_1109_JSTARS_2024_3353754
crossref_primary_10_1080_10618600_2021_1950004
crossref_primary_10_1038_s41598_024_69371_x
crossref_primary_10_1109_TPAMI_2022_3191996
crossref_primary_10_1016_j_ecoser_2018_04_004
crossref_primary_10_1016_j_jag_2022_102694
crossref_primary_10_1016_j_rse_2021_112557
crossref_primary_10_1177_23998083211056957
crossref_primary_10_1016_j_heliyon_2024_e39595
crossref_primary_10_1093_wber_lhab015
crossref_primary_10_1080_19439342_2018_1530279
crossref_primary_10_3389_frsus_2022_908822
crossref_primary_10_3390_bdcc3040050
crossref_primary_10_1016_j_envint_2020_106057
crossref_primary_10_1145_3724422
crossref_primary_10_1016_j_joule_2024_05_001
crossref_primary_10_1155_2019_2834894
crossref_primary_10_1007_s10668_020_01185_z
crossref_primary_10_1209_0295_5075_125_68002
crossref_primary_10_1109_TGRS_2024_3392605
crossref_primary_10_1155_2019_4053970
crossref_primary_10_1007_s10111_025_00822_9
crossref_primary_10_1038_s41597_019_0250_z
crossref_primary_10_1016_j_biosystemseng_2018_06_017
crossref_primary_10_1145_3287046
crossref_primary_10_5334_cstp_568
crossref_primary_10_1109_ACCESS_2025_3537807
crossref_primary_10_3390_rs12081289
crossref_primary_10_1016_j_joule_2018_11_021
crossref_primary_10_1080_02255189_2018_1517641
crossref_primary_10_3390_su10051688
crossref_primary_10_1038_s41578_019_0118_z
crossref_primary_10_3390_rs14215511
crossref_primary_10_1080_17538947_2024_2304073
crossref_primary_10_1111_roiw_12708
crossref_primary_10_3390_rs17081447
crossref_primary_10_1016_j_jmse_2024_01_003
crossref_primary_10_1029_2018WR023333
crossref_primary_10_1016_j_scitotenv_2019_02_150
crossref_primary_10_1016_j_worlddev_2018_07_011
crossref_primary_10_4000_poldev_2468
crossref_primary_10_1007_s11749_023_00868_9
crossref_primary_10_3390_s21227469
crossref_primary_10_1016_j_worlddev_2018_07_017
crossref_primary_10_1016_j_worlddev_2019_04_010
crossref_primary_10_1016_S0140_6736_17_32092_5
crossref_primary_10_1007_s00436_024_08331_w
crossref_primary_10_1111_tgis_13236
crossref_primary_10_1038_s43016_022_00587_8
crossref_primary_10_3390_ijerph21111534
crossref_primary_10_3390_rs9121336
crossref_primary_10_1016_j_softx_2024_101785
crossref_primary_10_1186_s40677_021_00204_z
crossref_primary_10_1016_j_scs_2020_102526
crossref_primary_10_1111_agec_70013
crossref_primary_10_1109_TNNLS_2018_2850703
crossref_primary_10_1016_j_jdeveco_2022_102880
crossref_primary_10_1177_20539517211025545
crossref_primary_10_14358_PERS_23_00038R2
crossref_primary_10_1080_19498276_2023_2251982
crossref_primary_10_1016_j_landusepol_2017_04_037
crossref_primary_10_1016_j_asr_2022_05_039
crossref_primary_10_1038_s41467_020_16185_w
crossref_primary_10_1038_s41598_024_83125_9
crossref_primary_10_1007_s00146_019_00934_7
crossref_primary_10_1080_1369118X_2019_1594334
crossref_primary_10_3389_fpos_2025_1583772
crossref_primary_10_1177_0738894217741618
crossref_primary_10_1016_j_worlddev_2022_105864
crossref_primary_10_1147_JRD_2019_2954404
crossref_primary_10_1016_j_ecolind_2023_111312
crossref_primary_10_1016_j_worlddev_2020_105287
crossref_primary_10_1093_erae_jbz033
crossref_primary_10_1007_s42001_025_00404_9
crossref_primary_10_1080_13658816_2020_1737701
crossref_primary_10_1057_s41599_025_05400_y
crossref_primary_10_1016_j_apgeog_2018_03_001
crossref_primary_10_1142_S2196888819500246
crossref_primary_10_1016_j_tele_2021_101622
crossref_primary_10_1145_3424670
crossref_primary_10_1016_j_jrurstud_2025_103814
crossref_primary_10_3390_rs11212530
crossref_primary_10_1088_1748_9326_aafa8f
crossref_primary_10_1016_j_rsase_2024_101304
crossref_primary_10_1109_JSTARS_2024_3476191
crossref_primary_10_1108_CAER_03_2022_0051
crossref_primary_10_1139_er_2018_0034
crossref_primary_10_1007_s10037_021_00159_6
crossref_primary_10_1016_S0140_6736_18_31437_5
crossref_primary_10_3390_rs16060962
crossref_primary_10_1017_sus_2018_16
crossref_primary_10_1007_s10661_018_6597_3
crossref_primary_10_1016_j_jacc_2024_08_053
crossref_primary_10_1007_s11707_022_0985_2
crossref_primary_10_1016_j_heliyon_2020_e05617
crossref_primary_10_1051_e3sconf_202340307026
crossref_primary_10_1146_annurev_soc_030420_014126
crossref_primary_10_1073_pnas_1903064116
crossref_primary_10_1016_j_healthplace_2021_102733
crossref_primary_10_1051_matecconf_201824603032
crossref_primary_10_1038_s41893_020_00625_y
crossref_primary_10_1007_s43762_022_00048_9
crossref_primary_10_1371_journal_pone_0202231
crossref_primary_10_3390_rs12152487
crossref_primary_10_1109_MIS_2025_3565829
crossref_primary_10_1016_j_jtrangeo_2025_104245
crossref_primary_10_1016_j_isprsjprs_2019_03_014
crossref_primary_10_1098_rsos_211841
crossref_primary_10_3233_IA_240027
crossref_primary_10_1007_s11442_021_1890_4
crossref_primary_10_1145_3624774
crossref_primary_10_3390_land14040751
crossref_primary_10_1073_pnas_1812100116
crossref_primary_10_1007_s42001_025_00405_8
crossref_primary_10_1257_pandp_20251118
crossref_primary_10_3233_JCM_230023
crossref_primary_10_1007_s10708_024_11122_6
crossref_primary_10_3390_ijgi12120481
crossref_primary_10_1016_j_kint_2017_03_052
crossref_primary_10_3390_su12104246
crossref_primary_10_1016_j_jag_2023_103495
crossref_primary_10_3390_ijerph18020830
crossref_primary_10_1016_j_compbiomed_2021_104606
crossref_primary_10_1016_j_jag_2023_103375
crossref_primary_10_1140_epjds_s13688_022_00371_5
crossref_primary_10_1016_j_jrurstud_2019_01_008
crossref_primary_10_1038_s43016_025_01192_1
crossref_primary_10_1080_17516234_2024_2425874
crossref_primary_10_1016_j_tranpol_2024_10_022
crossref_primary_10_1029_2020EF001532
crossref_primary_10_1016_j_rse_2020_111912
crossref_primary_10_1016_j_scs_2025_106267
crossref_primary_10_1016_j_jeem_2024_102931
crossref_primary_10_1007_s11442_020_1725_8
crossref_primary_10_1007_s11625_022_01120_3
crossref_primary_10_1002_tqem_70104
crossref_primary_10_3390_land9120526
crossref_primary_10_1073_pnas_2116169119
crossref_primary_10_1080_17538947_2024_2336059
crossref_primary_10_1016_j_jfineco_2021_06_002
crossref_primary_10_1038_s41467_022_30099_9
crossref_primary_10_1371_journal_pone_0318482
crossref_primary_10_3390_rs13071301
crossref_primary_10_1080_2150704X_2023_2234552
crossref_primary_10_1038_s41598_024_52752_7
crossref_primary_10_1109_TGRS_2021_3088686
crossref_primary_10_3390_ijerph19095281
crossref_primary_10_1016_j_cosust_2017_02_010
crossref_primary_10_1080_13600818_2021_1960960
crossref_primary_10_1016_j_apm_2020_11_013
crossref_primary_10_1016_j_techfore_2022_122016
crossref_primary_10_3390_app12083971
crossref_primary_10_1016_j_rtbm_2025_101310
crossref_primary_10_1007_s11442_018_1554_1
crossref_primary_10_1145_3339399
crossref_primary_10_1016_j_foodpol_2019_03_001
crossref_primary_10_3390_rs12040710
crossref_primary_10_1140_epjds_s13688_020_00222_1
crossref_primary_10_1371_journal_pone_0208714
crossref_primary_10_1016_j_tra_2020_07_017
crossref_primary_10_1088_1757_899X_322_7_072001
crossref_primary_10_3390_rs12121922
crossref_primary_10_1016_j_worlddev_2022_105941
crossref_primary_10_3390_ijgi7110448
crossref_primary_10_1016_j_jclepro_2020_120245
crossref_primary_10_1038_d41586_025_00565_7
crossref_primary_10_1109_TGRS_2025_3584039
crossref_primary_10_1016_j_compenvurbsys_2025_102299
crossref_primary_10_1186_s13012_025_01447_2
crossref_primary_10_1016_j_econlet_2019_108573
crossref_primary_10_1088_1748_9326_ab443e
crossref_primary_10_1007_s10660_020_09424_1
crossref_primary_10_1038_s41598_019_42036_w
crossref_primary_10_1007_s11356_022_23839_3
crossref_primary_10_1002_widm_1319
crossref_primary_10_3390_rs10121964
crossref_primary_10_46932_sfjdv6n4_049
crossref_primary_10_1016_j_heliyon_2024_e28744
crossref_primary_10_1057_s41599_023_01548_7
crossref_primary_10_1007_s13593_020_0610_2
crossref_primary_10_1016_j_scs_2025_106166
crossref_primary_10_1109_JSTARS_2019_2944952
crossref_primary_10_1155_2021_9923326
crossref_primary_10_1016_j_regsciurbeco_2023_103954
crossref_primary_10_1016_j_joule_2018_12_004
crossref_primary_10_1016_j_isprsjprs_2019_11_024
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_1146_annurev_biodatasci_020221_123602
crossref_primary_10_1073_pnas_1700319114
crossref_primary_10_1109_TGRS_2025_3560092
crossref_primary_10_1145_3447739
crossref_primary_10_1016_j_engappai_2023_106186
crossref_primary_10_1126_science_abe8628
crossref_primary_10_1140_epjds_s13688_020_00235_w
crossref_primary_10_1136_injuryprev_2019_043248
crossref_primary_10_3390_rs13081528
crossref_primary_10_1007_s11205_020_02267_1
crossref_primary_10_1080_10511482_2020_1739107
crossref_primary_10_1016_j_ejpoleco_2024_102523
crossref_primary_10_1016_j_gfs_2023_100671
crossref_primary_10_1016_j_optlaseng_2021_106717
crossref_primary_10_1016_j_rse_2019_03_013
crossref_primary_10_1073_pnas_1812969116
crossref_primary_10_1177_1069031X221149951
crossref_primary_10_1080_02681102_2020_1811945
crossref_primary_10_1016_j_isprsjprs_2018_02_012
crossref_primary_10_1080_01431161_2020_1809027
crossref_primary_10_1016_j_jhydrol_2022_128461
crossref_primary_10_1007_s11111_022_00411_2
crossref_primary_10_1016_j_eswa_2021_116189
crossref_primary_10_1061_NHREFO_NHENG_2137
crossref_primary_10_1140_epjds_s13688_023_00394_6
crossref_primary_10_3390_e23060780
crossref_primary_10_1007_s13194_022_00484_8
crossref_primary_10_3389_fpubh_2021_766707
crossref_primary_10_1177_0042098019869769
crossref_primary_10_1016_j_rse_2019_04_020
crossref_primary_10_1111_obes_12586
crossref_primary_10_1145_3675160
crossref_primary_10_1007_s42001_023_00211_0
crossref_primary_10_1109_TGRS_2023_3305457
crossref_primary_10_1073_pnas_2025400118
crossref_primary_10_1371_journal_pone_0241981
crossref_primary_10_1088_1748_9326_ac9cf6
crossref_primary_10_1007_s11205_020_02332_9
crossref_primary_10_1016_j_isprsjprs_2019_04_017
crossref_primary_10_1016_j_neucom_2021_06_002
crossref_primary_10_1016_j_spc_2021_12_025
crossref_primary_10_1016_j_isprsjprs_2019_04_014
crossref_primary_10_1080_2150704X_2017_1384586
crossref_primary_10_4018_IJSWIS_367719
crossref_primary_10_1080_17538947_2024_2336049
crossref_primary_10_1109_TWC_2024_3427377
crossref_primary_10_1103_PhysRevX_7_031041
crossref_primary_10_1016_S0140_6736_19_32540_1
crossref_primary_10_1145_3737449
crossref_primary_10_1016_j_gloenvcha_2020_102218
crossref_primary_10_1016_j_apgeog_2021_102552
crossref_primary_10_1109_JSTARS_2020_3001980
crossref_primary_10_1007_s11625_023_01299_z
crossref_primary_10_1007_s10489_021_02268_8
crossref_primary_10_3390_machines9060119
crossref_primary_10_3390_ijgi9110685
ContentType Journal Article
Copyright Copyright © 2016, American Association for the Advancement of Science.
Copyright_xml – notice: Copyright © 2016, American Association for the Advancement of Science.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/science.aaf7894
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 27540167
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Uganda
Nigeria
Malawi
Rwanda
Tanzania
GeographicLocations_xml – name: Tanzania
– name: Malawi
– name: Rwanda
– name: Nigeria
– name: Uganda
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADULT
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CGR
CS3
CUY
CVF
DB2
DCCCD
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
2XV
7X8
ADQXQ
ADXHL
AFBNE
ID FETCH-LOGICAL-c479t-fffe1ce40ea1a1f53a8969a4e5cb2279f07e7825930c043c4505b18b7951083f2
IEDL.DBID 7X8
ISICitedReferencesCount 972
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381561400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-9203
IngestDate Thu Oct 02 06:44:28 EDT 2025
Sat Mar 08 01:25:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6301
Language English
License Copyright © 2016, American Association for the Advancement of Science.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-fffe1ce40ea1a1f53a8969a4e5cb2279f07e7825930c043c4505b18b7951083f2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 27540167
PQID 1812887604
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1812887604
pubmed_primary_27540167
PublicationCentury 2000
PublicationDate 2016-08-19
20160819
PublicationDateYYYYMMDD 2016-08-19
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
References 27540154 - Science. 2016 Aug 19;353(6301):753-4. doi: 10.1126/science.aah5217.
References_xml – reference: 27540154 - Science. 2016 Aug 19;353(6301):753-4. doi: 10.1126/science.aah5217.
SSID ssj0009593
Score 2.6883092
Snippet Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 790
SubjectTerms Developing Countries - economics
Humans
Income
Machine Learning
Malawi
Nigeria
Poverty - economics
Rwanda
Satellite Imagery - methods
Tanzania
Uganda
Title Combining satellite imagery and machine learning to predict poverty
URI https://www.ncbi.nlm.nih.gov/pubmed/27540167
https://www.proquest.com/docview/1812887604
Volume 353
WOSCitedRecordID wos000381561400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UVfCirs_1RQQPeqimadq0J5HFxYMue1DZW0nSRPawbd1WYf-9SZtFEQTBS26BMMzjY2byfQDnMRZhZoCwF6qEeFRSE3NEEk8pIjgOKMfND7mXBzYcxuNxMnINt8qtVS5yYpOos0LaHvm1rUQmICJMb8o3z6pG2emqk9BYhk5goIz1ajaOf5Lu-tjqERIcOGqfb59mrjjXLLaKxb_hy6bODDb_-8It2HAIE922LtGFJZVvw1qrOTnfhq6L5gpdOMrpyx3om7QgGqkIVPGGo7NWaDK1_BZzxPMMTZudS4WcyMQrqgtUzuyQp0al3QKt57vwPLh76t97Tl7Bk5Qltae1Vr5UFCvuc1-HAY-TKOFUhVJYXkGNmTL4wdgQS0wDSQ1YEn4smAVlcaDJHqzkRa4OAGWxltISnTJp6dxpoiORGaAhzC3JiejB2cJkqXFfO5PguSreq_TLaD3Yb-2eli3PRkqYgZN-xA7_cPsI1g2UiWy310-OoaNN8KoTWJUf9aSanTZ-Yc7h6PETS7LChQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+satellite+imagery+and+machine+learning+to+predict+poverty&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jean%2C+Neal&rft.au=Burke%2C+Marshall&rft.au=Xie%2C+Michael&rft.au=Alampay+Davis%2C+W+Matthew&rft.date=2016-08-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=353&rft.issue=6301&rft.spage=790&rft_id=info:doi/10.1126%2Fscience.aaf7894&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon