Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources

Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-po...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 26; p. 6632
Main Authors: Ding, He, Lu, Lihui, Shi, Zhao, Wang, Dan, Li, Lizhu, Li, Xichen, Ren, Yuqi, Liu, Changbo, Cheng, Dali, Kim, Hoyeon, Giebink, Noel C, Wang, Xiaohui, Yin, Lan, Zhao, Lingyun, Luo, Minmin, Sheng, Xing
Format: Journal Article
Language:English
Published: United States 26.06.2018
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
AbstractList Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Author Yin, Lan
Li, Lizhu
Wang, Dan
Zhao, Lingyun
Luo, Minmin
Sheng, Xing
Lu, Lihui
Li, Xichen
Cheng, Dali
Wang, Xiaohui
Ren, Yuqi
Liu, Changbo
Kim, Hoyeon
Giebink, Noel C
Ding, He
Shi, Zhao
Author_xml – sequence: 1
  givenname: He
  surname: Ding
  fullname: Ding, He
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China
– sequence: 2
  givenname: Lihui
  surname: Lu
  fullname: Lu, Lihui
  organization: School of Life Sciences, Tsinghua University, 100084 Beijing, China
– sequence: 3
  givenname: Zhao
  surname: Shi
  fullname: Shi, Zhao
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China
– sequence: 4
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
– sequence: 5
  givenname: Lizhu
  surname: Li
  fullname: Li, Lizhu
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China
– sequence: 6
  givenname: Xichen
  surname: Li
  fullname: Li, Xichen
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712
– sequence: 7
  givenname: Yuqi
  surname: Ren
  fullname: Ren, Yuqi
  organization: National Institute of Biological Sciences, 102206 Beijing, China
– sequence: 8
  givenname: Changbo
  surname: Liu
  fullname: Liu, Changbo
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China
– sequence: 9
  givenname: Dali
  surname: Cheng
  fullname: Cheng, Dali
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China
– sequence: 10
  givenname: Hoyeon
  surname: Kim
  fullname: Kim, Hoyeon
  organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
– sequence: 11
  givenname: Noel C
  surname: Giebink
  fullname: Giebink, Noel C
  organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
– sequence: 12
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
  organization: Tianjin Zhonghuan Neolight Technology Co., Ltd., 120111 Tianjin, China
– sequence: 13
  givenname: Lan
  surname: Yin
  fullname: Yin, Lan
  organization: School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
– sequence: 14
  givenname: Lingyun
  surname: Zhao
  fullname: Zhao, Lingyun
  organization: School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
– sequence: 15
  givenname: Minmin
  surname: Luo
  fullname: Luo, Minmin
  organization: School of Life Sciences, Tsinghua University, 100084 Beijing, China
– sequence: 16
  givenname: Xing
  orcidid: 0000-0002-8744-1700
  surname: Sheng
  fullname: Sheng, Xing
  email: xingsheng@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084 Beijing, China; xingsheng@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29891705$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URD9gZkMeWVJsx07iEVUUkIpYYI6cN2-pq9QOtlOJf08QRWK60-m5G25OJs47JOSasyVnZX7XOxOXvGKCFZJzdUZmnGmeFVKzyT8_JfMY94wxrSp2QaZCV5qXTM1I92Ih-AimQ-r75LFDSME7C9S6bTAB2yz57GijbUZk6MG7I4ZovaMtHi1gpMa1NO3QBjpEpCaOzf24Yn4Knf3YJRr9EEbykpxvTRfx6qQL8r5-eFs9ZZvXx-fV_SYDWeqUYQUaZMUL3kiRQ16iVIhbKU3BW4OoTcNFo6pyVGBizKSBEkQrUOXYgFiQ29_dPvjPAWOqDzYCdp1x6IdYC6akloVi-YjenNChOWBb98EeTPiq_x4S32lWbZg
CitedBy_id crossref_primary_10_1038_s41467_021_25993_7
crossref_primary_10_1073_pnas_2023436118
crossref_primary_10_3390_mi13071069
crossref_primary_10_1002_adma_202201129
crossref_primary_10_1016_j_enrev_2022_100006
crossref_primary_10_1038_s41467_022_28539_7
crossref_primary_10_1002_admt_202100006
crossref_primary_10_3389_fnins_2024_1378473
crossref_primary_10_1063_1_5124735
crossref_primary_10_1002_smll_202302241
crossref_primary_10_3390_coatings12040456
crossref_primary_10_1038_s41378_020_0176_9
crossref_primary_10_1038_s41377_025_01990_z
crossref_primary_10_2217_bem_2018_0005
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1002_admt_202400797
crossref_primary_10_1038_s41551_021_00683_3
crossref_primary_10_1002_adom_202001470
crossref_primary_10_1002_adfm_202211177
crossref_primary_10_1002_adom_201800936
crossref_primary_10_3389_fnbeh_2021_820017
crossref_primary_10_3390_cells13060468
crossref_primary_10_1002_adfm_202301280
crossref_primary_10_1016_j_bioactmat_2025_02_006
crossref_primary_10_1016_j_nanoen_2020_105317
crossref_primary_10_1038_s41928_020_0390_3
crossref_primary_10_1038_s41566_023_01335_5
crossref_primary_10_1088_1361_6463_ad75a0
crossref_primary_10_1002_aelm_202300438
crossref_primary_10_1038_s41467_023_38554_x
crossref_primary_10_1002_aisy_202000091
crossref_primary_10_1109_JSTQE_2022_3217070
crossref_primary_10_1016_j_optmat_2020_110122
crossref_primary_10_1038_s41377_022_00825_5
crossref_primary_10_1002_EXP_20220106
crossref_primary_10_1002_admi_202000015
crossref_primary_10_1016_j_jneumeth_2019_108355
crossref_primary_10_1038_s41377_025_02001_x
crossref_primary_10_1002_adfm_202100565
crossref_primary_10_1002_adom_202300689
crossref_primary_10_1016_j_cell_2020_02_054
crossref_primary_10_1002_cnma_201900621
crossref_primary_10_1063_5_0138070
crossref_primary_10_1016_j_ceramint_2024_10_032
crossref_primary_10_1088_1741_2552_abe805
crossref_primary_10_1038_s41578_018_0062_3
crossref_primary_10_1002_adma_201803474
crossref_primary_10_1098_rsta_2021_0020
crossref_primary_10_1631_jzus_B2300400
crossref_primary_10_1002_adfm_202105989
crossref_primary_10_1088_1361_6439_ac1c92
crossref_primary_10_1039_D5TC02420J
crossref_primary_10_1109_ACCESS_2020_2987043
crossref_primary_10_1007_s12274_023_6136_6
crossref_primary_10_1002_adfm_202417053
crossref_primary_10_1016_j_addr_2022_114399
crossref_primary_10_1063_5_0174520
crossref_primary_10_1364_PRJ_7_001161
crossref_primary_10_1002_adma_202210018
crossref_primary_10_3390_ma11081283
crossref_primary_10_1002_adhm_202200304
crossref_primary_10_1038_s41467_020_17533_6
crossref_primary_10_1002_adom_202302021
crossref_primary_10_1002_adma_201807900
crossref_primary_10_1109_TED_2018_2882397
crossref_primary_10_1007_s12274_020_3254_2
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1802064115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 29891705
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c479t-e8c9c48161b423c37e45eef44a61daee9ab12b587ab1c021da4ac7c2d2e53ebc2
IEDL.DBID 7X8
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436245000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 09:49:08 EDT 2025
Wed Feb 19 02:34:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords upconversion
optoelectronics
optogenetics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-e8c9c48161b423c37e45eef44a61daee9ab12b587ab1c021da4ac7c2d2e53ebc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-8744-1700
OpenAccessLink https://www.pnas.org/content/pnas/115/26/6632.full.pdf
PMID 29891705
PQID 2054946503
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2054946503
pubmed_primary_29891705
PublicationCentury 2000
PublicationDate 2018-06-26
PublicationDateYYYYMMDD 2018-06-26
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
SSID ssj0009580
Score 2.550698
Snippet Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6632
SubjectTerms Animals
Arsenicals
Behavior, Animal
Biocompatible Materials
Brain Mapping - instrumentation
Equipment Design
Gallium
Infrared Rays
Mice
Mice, Nude
Miniaturization
Optogenetics - instrumentation
Optogenetics - methods
Photons
Prostheses and Implants
Rats
Semiconductors
Somatosensory Cortex - physiology
Subcutaneous Tissue
Title Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources
URI https://www.ncbi.nlm.nih.gov/pubmed/29891705
https://www.proquest.com/docview/2054946503
Volume 115
WOSCitedRecordID wos000436245000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDIYmduJkQghRMdCqA0jdIj8uEhJKQp3y-zknqcqChMSSLLEV2ee77x7-jpArFWurzZAztK7ooOSBYAoCw0SE1gaUlCpvupa8yMkkmc3SaRdwc11Z5VInNoralsbHyNFJR09GIJ7g99Un812jfHa1a6GxTnocoYwv6ZKz5AfpbtKyEaQBi0U6XFL7SH5XFcrdevYzNMlBEP2OLxs7M9r57x_uku0OYdKHViT6ZA2KPdLvzrCj1x3R9M0--Rj7ajyHuwS0rOpy1RKHotzNfWk6q0vmr59r_GRRNSXqTXyNWmhUDFWFpU2ygS4cUOVwpI_s-AtZ9MM7_rRND7gD8jZ6en18Zl33BWaETGsGiUmNSBARaoRchksQEUAuhIoDqwBSpYNQR4nEt0GkYJVQRprQhhBx0CY8JBtFWcAxoQZRXR4JbiJucRKttJBxjo45D60ZpmZALpcrmqF0-5SFKqBcuGy1pgNy1G5LVrU0HJnnjvdkQCd_GH1KtlD2El_jFcZnpJfj2YZzsmm-6nc3v2jEBp-T6fgbaY_QBQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscale+optoelectronic+infrared-to-visible+upconversion+devices+and+their+use+as+injectable+light+sources&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ding%2C+He&rft.au=Lu%2C+Lihui&rft.au=Shi%2C+Zhao&rft.au=Wang%2C+Dan&rft.date=2018-06-26&rft.eissn=1091-6490&rft.volume=115&rft.issue=26&rft.spage=6632&rft_id=info:doi/10.1073%2Fpnas.1802064115&rft_id=info%3Apmid%2F29891705&rft_id=info%3Apmid%2F29891705&rft.externalDocID=29891705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon