Data-driven emergence of convolutional structure in neural networks

Exploiting data invariances is crucial for efficient learning in both artificial and biological neural circuits. Understanding how neural networks can discover appropriate representations capable of harnessing the underlying symmetries of their inputs is thus crucial in machine learning and neurosci...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 119; číslo 40; s. e2201854119
Hlavní autoři: Ingrosso, Alessandro, Goldt, Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 04.10.2022
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Exploiting data invariances is crucial for efficient learning in both artificial and biological neural circuits. Understanding how neural networks can discover appropriate representations capable of harnessing the underlying symmetries of their inputs is thus crucial in machine learning and neuroscience. Convolutional neural networks, for example, were designed to exploit translation symmetry, and their capabilities triggered the first wave of deep learning successes. However, learning convolutions directly from translation-invariant data with a fully connected network has so far proven elusive. Here we show how initially fully connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs, resulting in localized, space-tiling receptive fields. These receptive fields match the filters of a convolutional network trained on the same task. By carefully designing data models for the visual scene, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs, which has long been recognized as the hallmark of natural images. We provide an analytical and numerical characterization of the pattern formation mechanism responsible for this phenomenon in a simple model and find an unexpected link between receptive field formation and tensor decomposition of higher-order input correlations. These results provide a perspective on the development of low-level feature detectors in various sensory modalities and pave the way for studying the impact of higher-order statistics on learning in neural networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.2201854119