Hierarchical structures of amorphous solids characterized by persistent homology

This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is e...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 26; p. 7035
Main Authors: Hiraoka, Yasuaki, Nakamura, Takenobu, Hirata, Akihiko, Escolar, Emerson G, Matsue, Kaname, Nishiura, Yasumasa
Format: Journal Article
Language:English
Published: United States 28.06.2016
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.
AbstractList This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.
This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.
Author Hiraoka, Yasuaki
Escolar, Emerson G
Nishiura, Yasumasa
Nakamura, Takenobu
Hirata, Akihiko
Matsue, Kaname
Author_xml – sequence: 1
  givenname: Yasuaki
  surname: Hiraoka
  fullname: Hiraoka, Yasuaki
  email: hiraoka@wpi-aimr.tohoku.ac.jp
  organization: World Premier International Research Center Initiative-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan; hiraoka@wpi-aimr.tohoku.ac.jp
– sequence: 2
  givenname: Takenobu
  surname: Nakamura
  fullname: Nakamura, Takenobu
  organization: World Premier International Research Center Initiative-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
– sequence: 3
  givenname: Akihiko
  surname: Hirata
  fullname: Hirata, Akihiko
  organization: World Premier International Research Center Initiative-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
– sequence: 4
  givenname: Emerson G
  surname: Escolar
  fullname: Escolar, Emerson G
  organization: World Premier International Research Center Initiative-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
– sequence: 5
  givenname: Kaname
  surname: Matsue
  fullname: Matsue, Kaname
  organization: The Institute of Statistical Mathematics, Tachikawa, Tokyo 190-8562, Japan
– sequence: 6
  givenname: Yasumasa
  surname: Nishiura
  fullname: Nishiura, Yasumasa
  organization: World Premier International Research Center Initiative-Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27298351$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA9du5Ms3XTMo22apQzqCAO60HVJb25spW1q0i7qr3fAEVyds_j4OJw1WfS-R0KuOdtypuTd0Ju45ZlghVKcyzOy4kzzJE81W_zrS7KO8ZMxprOCXZClUEIXMuMr8rpvMJgAdQOmpXEME4xTwEi9o6bzYaj9FGn0bWMjhdoEAyOG5hstrWY6YIhNHLEfae073_qP-ZKcO9NGvDrlhrw_Przt9snh5el5d39IIFV6TGwquNHKGIeOpzK1gFBBCrIqnEAnQQlwTALmDiuubFUYXViTsyq3II0WG3L76x2C_5owjmXXRMC2NT0eJ5e8YEwxkavsiN6c0Knq0JZDaDoT5vLvBfEDAgpkZA
CitedBy_id crossref_primary_10_1007_s41468_024_00165_w
crossref_primary_10_1021_jacs_5c04828
crossref_primary_10_1186_s13321_018_0308_5
crossref_primary_10_1038_s41598_021_90070_4
crossref_primary_10_1002_cphc_201900257
crossref_primary_10_35848_1347_4065_adc8af
crossref_primary_10_1016_j_mtphys_2023_101254
crossref_primary_10_1038_s41598_021_84486_1
crossref_primary_10_1038_s41598_021_97222_6
crossref_primary_10_1002_adts_201900177
crossref_primary_10_3390_math9151723
crossref_primary_10_5940_jcrsj_67_23
crossref_primary_10_1029_2017WR021864
crossref_primary_10_1038_s41467_025_57824_4
crossref_primary_10_1007_s00454_023_00544_7
crossref_primary_10_1021_acsmaterialslett_5c00848
crossref_primary_10_1016_j_cjsc_2025_100596
crossref_primary_10_3390_polym13162683
crossref_primary_10_1007_s11081_021_09608_0
crossref_primary_10_1080_23746149_2023_2202331
crossref_primary_10_1103_PhysRevE_111_045413
crossref_primary_10_1002_adts_201900227
crossref_primary_10_1103_PhysRevResearch_2_033529
crossref_primary_10_1007_s13160_024_00681_3
crossref_primary_10_1007_s41468_018_0013_5
crossref_primary_10_1093_jrsssc_qlad024
crossref_primary_10_1021_acsaelm_5c01142
crossref_primary_10_1073_pnas_1706885114
crossref_primary_10_1007_s10472_021_09761_3
crossref_primary_10_1016_j_jnoncrysol_2023_122801
crossref_primary_10_1063_5_0281156
crossref_primary_10_1109_TMI_2024_3376683
crossref_primary_10_1186_s13321_019_0369_0
crossref_primary_10_1016_j_cis_2020_102252
crossref_primary_10_1109_TMAG_2024_3406717
crossref_primary_10_1016_j_commatsci_2022_111207
crossref_primary_10_1063_5_0035395
crossref_primary_10_1103_PhysRevE_111_045306
crossref_primary_10_1016_j_jnoncrysol_2025_123699
crossref_primary_10_7566_JPSJ_88_074801
crossref_primary_10_1016_j_jnoncrysol_2023_122762
crossref_primary_10_1021_acs_jcim_5c00934
crossref_primary_10_1007_s41468_024_00164_x
crossref_primary_10_2477_jccj_2021_0009
crossref_primary_10_1088_1361_648X_ac0193
crossref_primary_10_1140_epjds_s13688_017_0109_5
crossref_primary_10_1007_s41060_022_00332_1
crossref_primary_10_1090_tran_9514
crossref_primary_10_1007_s11634_023_00578_y
crossref_primary_10_1038_s43246_021_00223_1
crossref_primary_10_3389_frai_2021_668302
crossref_primary_10_1016_j_jmps_2023_105307
crossref_primary_10_1063_5_0088606
crossref_primary_10_1007_s41468_023_00119_8
crossref_primary_10_1002_aidi_202500010
crossref_primary_10_1587_nolta_14_79
crossref_primary_10_1038_s41427_020_00262_z
crossref_primary_10_1016_j_ceramint_2023_07_240
crossref_primary_10_1109_TKDE_2018_2790386
crossref_primary_10_1116_6_0001744
crossref_primary_10_1038_s41563_023_01583_4
crossref_primary_10_3390_app12010050
crossref_primary_10_1137_21M1414024
crossref_primary_10_1038_ncomms15082
crossref_primary_10_1016_j_cmpb_2018_05_012
crossref_primary_10_1016_j_ceramint_2025_03_442
crossref_primary_10_1016_j_chaos_2023_113642
crossref_primary_10_1063_5_0159349
crossref_primary_10_1016_j_jnoncrysol_2023_122504
crossref_primary_10_1073_pnas_2413480122
crossref_primary_10_20965_ijat_2024_p0632
crossref_primary_10_1145_3666085
crossref_primary_10_1016_j_commatsci_2020_109941
crossref_primary_10_1016_j_csbj_2022_11_038
crossref_primary_10_1088_1361_648X_ab3820
crossref_primary_10_3390_sym13071273
crossref_primary_10_1093_jmicro_dfac008
crossref_primary_10_1007_s41468_025_00213_z
crossref_primary_10_1016_j_cnsns_2019_105163
crossref_primary_10_1063_5_0200729
crossref_primary_10_5940_jcrsj_67_8
crossref_primary_10_1038_s43246_024_00545_w
crossref_primary_10_1103_PhysRevE_107_044216
crossref_primary_10_3390_app12147248
crossref_primary_10_1038_s41598_023_44732_0
crossref_primary_10_1038_s41598_025_06551_3
crossref_primary_10_1214_17_AAP1371
crossref_primary_10_1063_5_0033439
crossref_primary_10_1021_acs_jcim_5c00476
crossref_primary_10_1038_s41427_019_0180_4
crossref_primary_10_1038_s41598_019_55660_3
crossref_primary_10_1371_journal_pone_0292049
crossref_primary_10_1038_s41598_018_21867_z
crossref_primary_10_1080_10485252_2023_2280022
crossref_primary_10_1007_s41468_024_00200_w
crossref_primary_10_1016_j_apt_2022_103874
crossref_primary_10_1093_pnasnexus_pgae530
crossref_primary_10_1038_s41524_022_00883_8
crossref_primary_10_1088_1361_6420_ab4ac0
crossref_primary_10_1088_1402_4896_ab2946
crossref_primary_10_1103_PhysRevResearch_5_043006
crossref_primary_10_2116_analsci_19SAR02
crossref_primary_10_1016_j_mtcomm_2022_103649
crossref_primary_10_1109_JSEN_2021_3130570
crossref_primary_10_1038_s41427_020_0220_0
crossref_primary_10_1016_j_jnoncrysol_2022_121868
crossref_primary_10_1016_j_nexres_2025_100713
crossref_primary_10_1016_j_jnoncrysol_2020_120536
crossref_primary_10_1063_5_0277279
crossref_primary_10_1007_s41468_020_00061_z
crossref_primary_10_1016_j_respol_2023_104821
crossref_primary_10_1214_22_AAP1800
crossref_primary_10_1007_s13160_019_00374_2
crossref_primary_10_1038_s43246_020_00100_3
crossref_primary_10_1038_s41598_025_90592_1
crossref_primary_10_1039_D5TA02687C
crossref_primary_10_3934_fods_2025008
crossref_primary_10_1016_j_jtbi_2021_110903
crossref_primary_10_1109_ACCESS_2024_3376249
crossref_primary_10_1016_j_physa_2024_129785
crossref_primary_10_1016_j_bpj_2020_04_032
crossref_primary_10_1016_j_engstruct_2024_119088
crossref_primary_10_1007_s10107_023_01931_x
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125012
crossref_primary_10_3390_sym14091783
crossref_primary_10_1038_s41598_021_94847_5
crossref_primary_10_3390_e23091211
crossref_primary_10_1038_s41598_020_66710_6
crossref_primary_10_1038_s41598_024_76796_x
crossref_primary_10_1016_j_chaos_2020_109839
crossref_primary_10_1093_gigascience_giad094
crossref_primary_10_1109_ACCESS_2025_3543071
crossref_primary_10_1016_j_jnoncrysol_2022_122028
crossref_primary_10_1016_j_jpowsour_2022_232302
crossref_primary_10_1016_j_comgeo_2025_102190
crossref_primary_10_1029_2024JF007949
crossref_primary_10_1002_ppap_201900039
crossref_primary_10_1016_j_commatsci_2023_112190
crossref_primary_10_5194_se_15_353_2024
crossref_primary_10_1088_1742_6596_1315_1_012075
crossref_primary_10_1016_j_mimet_2021_106215
crossref_primary_10_1038_s41540_020_00160_8
crossref_primary_10_1088_1475_7516_2019_09_052
crossref_primary_10_1016_j_actamat_2024_120683
crossref_primary_10_1038_s41598_017_14392_y
crossref_primary_10_1140_epjds_s13688_017_0104_x
crossref_primary_10_1093_bib_bbae465
crossref_primary_10_1007_s41468_018_0020_6
crossref_primary_10_1080_08927022_2021_1967345
crossref_primary_10_1038_s41427_024_00581_5
crossref_primary_10_3390_nano14171413
crossref_primary_10_1063_5_0240087
crossref_primary_10_1039_D4DD00353E
crossref_primary_10_1088_1361_6463_ac3a48
crossref_primary_10_3389_frai_2021_681117
crossref_primary_10_1016_j_mtcomm_2022_104958
crossref_primary_10_1142_S0219498824500543
crossref_primary_10_1016_j_jechem_2025_02_022
crossref_primary_10_1152_japplphysiol_00150_2021
crossref_primary_10_1063_5_0040393
crossref_primary_10_1002_andp_202200123
crossref_primary_10_1016_j_physd_2020_132470
crossref_primary_10_1080_27660400_2025_2475735
crossref_primary_10_1016_j_jmat_2025_101096
crossref_primary_10_7566_JPSJ_91_091013
crossref_primary_10_1007_s10462_022_10146_z
crossref_primary_10_1016_j_ijgfs_2024_101088
crossref_primary_10_1270_jsbbs_21078
crossref_primary_10_3934_fods_2022002
crossref_primary_10_1016_j_micron_2024_103664
crossref_primary_10_1103_PhysRevMaterials_7_065602
crossref_primary_10_1063_PT_3_5157
crossref_primary_10_1016_j_cmpb_2020_105614
crossref_primary_10_1016_j_cjsc_2023_100120
crossref_primary_10_1016_j_polymer_2022_125041
crossref_primary_10_1038_s41598_019_45283_z
crossref_primary_10_1039_D4DD00376D
crossref_primary_10_1111_jace_19924
crossref_primary_10_1051_bioconf_202412910043
crossref_primary_10_1007_s41468_025_00210_2
crossref_primary_10_1039_C8CP01552J
crossref_primary_10_1016_j_cageo_2020_104550
crossref_primary_10_1038_s42004_024_01197_0
crossref_primary_10_1063_5_0093441
crossref_primary_10_1093_mnras_stab2326
crossref_primary_10_1007_s41468_024_00180_x
crossref_primary_10_2109_jcersj2_25038
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1520877113
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 27298351
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c479t-d421a97aafef1434dcecbc4c3b8f2ef3c72cf03ce6feb17db8a98da60b6dc3a92
IEDL.DBID 7X8
ISICitedReferencesCount 267
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 12:01:09 EST 2025
Wed Feb 19 02:00:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords persistence diagram
amorphous solid
hierarchical structure
persistent homology
topological data analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-d421a97aafef1434dcecbc4c3b8f2ef3c72cf03ce6feb17db8a98da60b6dc3a92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/doi/10.1073/pnas.1520877113
PMID 27298351
PQID 1800702675
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1800702675
pubmed_primary_27298351
PublicationCentury 2000
PublicationDate 2016-06-28
PublicationDateYYYYMMDD 2016-06-28
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
References 10044969 - Phys Rev Lett. 1991 Aug 5;67(6):711-714
25990900 - Nat Mater. 2015 Jun;14(6):547-52
9985651 - Phys Rev B Condens Matter. 1996 Dec 1;54(22):15808-15827
21838366 - Phys Rev Lett. 2011 Jul 15;107(3):034503
26150288 - Nanotechnology. 2015 Jul 31;26(30):304001
10041537 - Phys Rev Lett. 1990 Apr 16;64(16):1955-1958
21482760 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7265-70
19805115 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16907-12
23845945 - Science. 2013 Jul 26;341(6144):376-9
9996322 - Phys Rev B Condens Matter. 1991 Jan 1;43(1):1194-1197
References_xml – reference: 25990900 - Nat Mater. 2015 Jun;14(6):547-52
– reference: 10044969 - Phys Rev Lett. 1991 Aug 5;67(6):711-714
– reference: 10041537 - Phys Rev Lett. 1990 Apr 16;64(16):1955-1958
– reference: 9985651 - Phys Rev B Condens Matter. 1996 Dec 1;54(22):15808-15827
– reference: 9996322 - Phys Rev B Condens Matter. 1991 Jan 1;43(1):1194-1197
– reference: 21482760 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7265-70
– reference: 23845945 - Science. 2013 Jul 26;341(6144):376-9
– reference: 26150288 - Nanotechnology. 2015 Jul 31;26(30):304001
– reference: 21838366 - Phys Rev Lett. 2011 Jul 15;107(3):034503
– reference: 19805115 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16907-12
SSID ssj0009580
Score 2.6467845
Snippet This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7035
Title Hierarchical structures of amorphous solids characterized by persistent homology
URI https://www.ncbi.nlm.nih.gov/pubmed/27298351
https://www.proquest.com/docview/1800702675
Volume 113
WOSCitedRecordID wos000379033400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yUgMMFjUjontCSFE1QGqDoC6Vf4UlWhSSIsEv55zkgILEhJLNkvx5fn8cj6_h9CJFyq1wOtJMLpNuKKcKMMZSaX3CbOpuSgbZB9vRa8nBwPVrwtuRd1WOc-JZaJ2uY018nMqozINA357OXkh0TUqnq7WFhqLqJEAlYmoFgP5Q3RXVmoEipKUq_Zc2kck55NMF9H7J-rh0eht8Bu_LPeZztp_33AdrdYME19VkGiiBZ9toGa9hgt8WgtNn22ifncUrx-XbijPuFKSncHvN84D1uMcvkA-KzCAc-QKbL-UnT-8w-YdT2KlDTCSTfFTPi6r81vooXNzf90ltcMCsVyoKXGcUa2E1sEHIE7cWW-N5TYxMjAfEiuYDe3E-jRAThfOSK2k02nbpM4mWrFttJTlmd9FmAsYY2hU56fcCwu7nJPCu3gVSBhqWuh4HrUhIDgeS-jMwzSG33FroZ0q9MNJJbUxZMD9gSPSvT-M3kcrwGbS2MfF5AFqBFi__hAt27fpqHg9KqEBz17_7hOJ3sYV
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+structures+of+amorphous+solids+characterized+by+persistent+homology&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hiraoka%2C+Yasuaki&rft.au=Nakamura%2C+Takenobu&rft.au=Hirata%2C+Akihiko&rft.au=Escolar%2C+Emerson+G&rft.date=2016-06-28&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=26&rft.spage=7035&rft_id=info:doi/10.1073%2Fpnas.1520877113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon