Review of fractional epidemic models

The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mathematical Modelling Ročník 97; s. 281
Hlavní autori: Chen, Yuli, Liu, Fawang, Yu, Qiang, Li, Tianzeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier BV 01.09.2021
Predmet:
ISSN:0307-904X, 1088-8691, 0307-904X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.
AbstractList The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.
The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.
Author Liu, Fawang
Li, Tianzeng
Yu, Qiang
Chen, Yuli
Author_xml – sequence: 1
  givenname: Yuli
  surname: Chen
  fullname: Chen, Yuli
  organization: Fuzhou University Zhicheng College, Fujian 350001, China
– sequence: 2
  givenname: Fawang
  surname: Liu
  fullname: Liu, Fawang
  organization: College of Mathematics and Computer Science, Fuzhou University, Fujian 350116, China
– sequence: 3
  givenname: Qiang
  surname: Yu
  fullname: Yu, Qiang
  organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
– sequence: 4
  givenname: Tianzeng
  surname: Li
  fullname: Li, Tianzeng
  organization: School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33897091$$D View this record in MEDLINE/PubMed
BookMark eNpdz0tLxDAQB_AgK-5DP4AXKejBS-vk1TRHWXzBgiAK3kqaTqClbWrTKn57K64gHoaZgR9_ZtZk0fkOCTmlkFCg6VWdmL5NGDCaAE9AiAOyAg4q1iBeF3_mJVmHUAOAnLcjsuQ80wo0XZGLJ3yv8CPyLnKDsWPlO9NE2FcltpWNWl9iE47JoTNNwJN935CX25vn7X28e7x72F7vYiuUHmNrrMhMgXOypUpLo6jEAg1a6STolIuCl5ngRoBic2lwDCFTwoEVnKV8Qy5_cvvBv00YxrytgsWmMR36KeRM0kxxCVLO9Pwfrf00zLd_K8llKrViszrbq6loscz7oWrN8Jn__s-_AFQgXGM
CitedBy_id crossref_primary_10_3390_axioms13030206
crossref_primary_10_1155_2022_1797258
crossref_primary_10_1016_j_chaos_2022_111997
crossref_primary_10_1016_j_apm_2025_116222
crossref_primary_10_3390_math12132033
crossref_primary_10_1515_jnet_2023_0020
crossref_primary_10_1155_2024_7694770
crossref_primary_10_3934_math_2025724
crossref_primary_10_1007_s40995_024_01695_9
crossref_primary_10_1016_j_cam_2022_115015
crossref_primary_10_1016_j_plrev_2025_02_005
crossref_primary_10_1007_s41478_024_00836_y
crossref_primary_10_1007_s00009_024_02658_5
crossref_primary_10_1002_mma_10955
crossref_primary_10_3390_s21175920
crossref_primary_10_1007_s40590_023_00592_2
crossref_primary_10_1016_j_padiff_2025_101150
crossref_primary_10_3390_app12188992
crossref_primary_10_1002_adts_202301285
crossref_primary_10_1038_s41598_025_86739_9
crossref_primary_10_1016_j_tranpol_2024_07_021
crossref_primary_10_1007_s12190_025_02565_2
crossref_primary_10_1016_j_neunet_2023_01_031
crossref_primary_10_1002_qub2_70001
crossref_primary_10_1016_j_amc_2022_127188
crossref_primary_10_1002_slct_202103960
crossref_primary_10_3390_quantum5020029
crossref_primary_10_1007_s12190_025_02490_4
crossref_primary_10_1007_s40998_022_00554_w
crossref_primary_10_1016_j_aej_2024_12_055
crossref_primary_10_12677_AAM_2023_1212510
crossref_primary_10_1007_s00033_025_02476_z
crossref_primary_10_1016_j_apm_2023_02_019
crossref_primary_10_1088_1751_8121_ac9655
crossref_primary_10_3390_fractalfract9060379
crossref_primary_10_35378_gujs_1456440
crossref_primary_10_1002_mma_9613
crossref_primary_10_1016_j_oneear_2024_08_017
crossref_primary_10_1186_s13661_023_01730_5
crossref_primary_10_1016_j_physd_2024_134281
crossref_primary_10_3390_e24101496
crossref_primary_10_1371_journal_pone_0296145
crossref_primary_10_1016_j_rico_2025_100552
crossref_primary_10_1016_j_parepi_2024_e00357
crossref_primary_10_1145_3680280
crossref_primary_10_3390_axioms10040238
crossref_primary_10_3390_math9121372
crossref_primary_10_1155_2024_6934895
crossref_primary_10_1007_s40324_025_00404_9
crossref_primary_10_1109_JIOT_2023_3317422
crossref_primary_10_3390_math12060871
crossref_primary_10_1016_j_chaos_2025_116149
crossref_primary_10_1155_2022_6502598
crossref_primary_10_1063_5_0189939
crossref_primary_10_3390_electronics12204245
crossref_primary_10_1016_j_apm_2023_12_006
crossref_primary_10_1016_j_microb_2025_100506
crossref_primary_10_1007_s00030_022_00832_w
crossref_primary_10_1088_1402_4896_ada3f6
crossref_primary_10_1007_s12043_022_02335_w
crossref_primary_10_1007_s40314_024_02680_z
crossref_primary_10_3390_fractalfract8050299
crossref_primary_10_1007_s00285_025_02201_4
crossref_primary_10_1007_s12190_024_02284_0
crossref_primary_10_1088_1402_4896_ad588c
crossref_primary_10_1088_1751_8121_ace4a8
crossref_primary_10_3390_math12193081
crossref_primary_10_1186_s12889_021_11889_0
crossref_primary_10_1007_s42979_025_03829_1
crossref_primary_10_1016_j_apm_2022_04_009
crossref_primary_10_1038_s41598_025_01400_9
crossref_primary_10_1016_j_chaos_2023_113163
crossref_primary_10_12677_aam_2024_134174
crossref_primary_10_1002_mma_11019
crossref_primary_10_3390_fractalfract8010022
crossref_primary_10_1088_1402_4896_acbfef
crossref_primary_10_1371_journal_pone_0287932
crossref_primary_10_1002_mma_10966
crossref_primary_10_1016_j_ifacol_2024_08_179
crossref_primary_10_3390_fractalfract6100590
crossref_primary_10_1103_PhysRevResearch_7_013017
crossref_primary_10_3390_computation9080089
crossref_primary_10_3390_fractalfract8020101
crossref_primary_10_1007_s11571_021_09701_1
crossref_primary_10_1016_j_matcom_2024_10_042
crossref_primary_10_31083_j_fbl2706182
ContentType Journal Article
Copyright 2021 Elsevier Inc. All rights reserved.
Copyright Elsevier BV Sep 2021
Copyright_xml – notice: 2021 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier BV Sep 2021
DBID NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1016/j.apm.2021.03.044
DatabaseName PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Public Health
Psychology
EISSN 0307-904X
ExternalDocumentID 33897091
Genre Journal Article
Review
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NPM
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
7X8
AAYWO
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c479t-cac48abe709c1795a715ebeaec5f509634b3d843a407240790f2e0874f0c43263
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675236600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
1088-8691
IngestDate Thu Oct 02 13:23:52 EDT 2025
Sun Jul 27 14:44:51 EDT 2025
Thu Apr 03 07:06:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parameter estimation
Fractional order differential equations
Implicit numerical method
97M60
Epidemic models
Multi-term epidemic models
37M05
Hybrid simplex search and particle swarm optimisation
26A33
37N30
Language English
License 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-cac48abe709c1795a715ebeaec5f509634b3d843a407240790f2e0874f0c43263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8056944
PMID 33897091
PQID 2553565972
PQPubID 2045280
ParticipantIDs proquest_miscellaneous_2518735055
proquest_journals_2553565972
pubmed_primary_33897091
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Applied Mathematical Modelling
PublicationTitleAlternate Appl Math Model
PublicationYear 2021
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0005904
ssj0012860
Score 2.6134825
SecondaryResourceType review_article
Snippet The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 281
SubjectTerms Coronaviruses
COVID-19
Differential equations
Epidemics
Infectious diseases
Parameter estimation
Parameter modification
Particle swarm optimization
Predictive control
Public health
Viruses
Title Review of fractional epidemic models
URI https://www.ncbi.nlm.nih.gov/pubmed/33897091
https://www.proquest.com/docview/2553565972
https://www.proquest.com/docview/2518735055
Volume 97
WOSCitedRecordID wos000675236600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6lhUMRQhAeDZTKSBW3rbz2Ors-ItSIQxoKciE9WevNWjKKnDSPUv49sx4_AggEBw5ZRZPVyvE3Hn-zOw-AEy5neoa-NLPIHZhQecYyMQtZJHlgUAeksXnVbEJOJmo6jS96vXGTC3Mzl2Wpbm_j5X-FGmUItkud_Qe420VRgN8RdBwRdhz_CviPbTJKvqKsBUTBUiNYQ51v1ruUtOGh520BV5eu66bNm9dadfxP9ulqOy_aIJ5iW3Ff_VV3E68q2YdiRzQuSCuQhtpaWu8zBLwNpKo3v9oEmE875hJtFFND6rd1aus8LF-y2Ke4y8bGUgxuYySpScsvxpv2Eb6c6qUrERDwqvosVYf8sVD25H06uhyP0-RsmrxeXjPXQ8ydtdcNVfbgTiCj2Nm4ZPS5C_iJnedZHzAFihLImz_QHHhXoX8_XcDvnY-KhCQP4UHtPXhvCPVH0LNlH-51yK37cNC-0r714T7tynqUbPYYTkg5vEXudcrhNcrhkXI8gcvRWfL2Hav7ZDAjZLxhRhuhdGalHxu0r5GWPMJnU1sT5a66TyiycKZEqF0xPPzEfh5YX0mR-0YgfQ-fwn65KO0heBGuJFWkjBFc4BLZ0A4lPsaBtZojUx_AUXMr0lrn1yl6pSH6BbEMBvCq_RnNlDt70qVdbN0crmSIdDsawDO6hemS6qmkIZJmvHb-_M-Lv4CDTi-PYH-z2tqXcNfcbIr16hj25FThOLk4P65w_w49VGJk
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+fractional+epidemic+models&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Chen%2C+Yuli&rft.au=Liu%2C+Fawang&rft.au=Yu%2C+Qiang&rft.au=Li%2C+Tianzeng&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=97&rft.spage=281&rft_id=info:doi/10.1016%2Fj.apm.2021.03.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon