Review of fractional epidemic models
The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fr...
Uložené v:
| Vydané v: | Applied Mathematical Modelling Ročník 97; s. 281 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier BV
01.09.2021
|
| Predmet: | |
| ISSN: | 0307-904X, 1088-8691, 0307-904X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks. |
|---|---|
| AbstractList | The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks. The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks. |
| Author | Liu, Fawang Li, Tianzeng Yu, Qiang Chen, Yuli |
| Author_xml | – sequence: 1 givenname: Yuli surname: Chen fullname: Chen, Yuli organization: Fuzhou University Zhicheng College, Fujian 350001, China – sequence: 2 givenname: Fawang surname: Liu fullname: Liu, Fawang organization: College of Mathematics and Computer Science, Fuzhou University, Fujian 350116, China – sequence: 3 givenname: Qiang surname: Yu fullname: Yu, Qiang organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia – sequence: 4 givenname: Tianzeng surname: Li fullname: Li, Tianzeng organization: School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33897091$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdz0tLxDAQB_AgK-5DP4AXKejBS-vk1TRHWXzBgiAK3kqaTqClbWrTKn57K64gHoaZgR9_ZtZk0fkOCTmlkFCg6VWdmL5NGDCaAE9AiAOyAg4q1iBeF3_mJVmHUAOAnLcjsuQ80wo0XZGLJ3yv8CPyLnKDsWPlO9NE2FcltpWNWl9iE47JoTNNwJN935CX25vn7X28e7x72F7vYiuUHmNrrMhMgXOypUpLo6jEAg1a6STolIuCl5ngRoBic2lwDCFTwoEVnKV8Qy5_cvvBv00YxrytgsWmMR36KeRM0kxxCVLO9Pwfrf00zLd_K8llKrViszrbq6loscz7oWrN8Jn__s-_AFQgXGM |
| CitedBy_id | crossref_primary_10_3390_axioms13030206 crossref_primary_10_1155_2022_1797258 crossref_primary_10_1016_j_chaos_2022_111997 crossref_primary_10_1016_j_apm_2025_116222 crossref_primary_10_3390_math12132033 crossref_primary_10_1515_jnet_2023_0020 crossref_primary_10_1155_2024_7694770 crossref_primary_10_3934_math_2025724 crossref_primary_10_1007_s40995_024_01695_9 crossref_primary_10_1016_j_cam_2022_115015 crossref_primary_10_1016_j_plrev_2025_02_005 crossref_primary_10_1007_s41478_024_00836_y crossref_primary_10_1007_s00009_024_02658_5 crossref_primary_10_1002_mma_10955 crossref_primary_10_3390_s21175920 crossref_primary_10_1007_s40590_023_00592_2 crossref_primary_10_1016_j_padiff_2025_101150 crossref_primary_10_3390_app12188992 crossref_primary_10_1002_adts_202301285 crossref_primary_10_1038_s41598_025_86739_9 crossref_primary_10_1016_j_tranpol_2024_07_021 crossref_primary_10_1007_s12190_025_02565_2 crossref_primary_10_1016_j_neunet_2023_01_031 crossref_primary_10_1002_qub2_70001 crossref_primary_10_1016_j_amc_2022_127188 crossref_primary_10_1002_slct_202103960 crossref_primary_10_3390_quantum5020029 crossref_primary_10_1007_s12190_025_02490_4 crossref_primary_10_1007_s40998_022_00554_w crossref_primary_10_1016_j_aej_2024_12_055 crossref_primary_10_12677_AAM_2023_1212510 crossref_primary_10_1007_s00033_025_02476_z crossref_primary_10_1016_j_apm_2023_02_019 crossref_primary_10_1088_1751_8121_ac9655 crossref_primary_10_3390_fractalfract9060379 crossref_primary_10_35378_gujs_1456440 crossref_primary_10_1002_mma_9613 crossref_primary_10_1016_j_oneear_2024_08_017 crossref_primary_10_1186_s13661_023_01730_5 crossref_primary_10_1016_j_physd_2024_134281 crossref_primary_10_3390_e24101496 crossref_primary_10_1371_journal_pone_0296145 crossref_primary_10_1016_j_rico_2025_100552 crossref_primary_10_1016_j_parepi_2024_e00357 crossref_primary_10_1145_3680280 crossref_primary_10_3390_axioms10040238 crossref_primary_10_3390_math9121372 crossref_primary_10_1155_2024_6934895 crossref_primary_10_1007_s40324_025_00404_9 crossref_primary_10_1109_JIOT_2023_3317422 crossref_primary_10_3390_math12060871 crossref_primary_10_1016_j_chaos_2025_116149 crossref_primary_10_1155_2022_6502598 crossref_primary_10_1063_5_0189939 crossref_primary_10_3390_electronics12204245 crossref_primary_10_1016_j_apm_2023_12_006 crossref_primary_10_1016_j_microb_2025_100506 crossref_primary_10_1007_s00030_022_00832_w crossref_primary_10_1088_1402_4896_ada3f6 crossref_primary_10_1007_s12043_022_02335_w crossref_primary_10_1007_s40314_024_02680_z crossref_primary_10_3390_fractalfract8050299 crossref_primary_10_1007_s00285_025_02201_4 crossref_primary_10_1007_s12190_024_02284_0 crossref_primary_10_1088_1402_4896_ad588c crossref_primary_10_1088_1751_8121_ace4a8 crossref_primary_10_3390_math12193081 crossref_primary_10_1186_s12889_021_11889_0 crossref_primary_10_1007_s42979_025_03829_1 crossref_primary_10_1016_j_apm_2022_04_009 crossref_primary_10_1038_s41598_025_01400_9 crossref_primary_10_1016_j_chaos_2023_113163 crossref_primary_10_12677_aam_2024_134174 crossref_primary_10_1002_mma_11019 crossref_primary_10_3390_fractalfract8010022 crossref_primary_10_1088_1402_4896_acbfef crossref_primary_10_1371_journal_pone_0287932 crossref_primary_10_1002_mma_10966 crossref_primary_10_1016_j_ifacol_2024_08_179 crossref_primary_10_3390_fractalfract6100590 crossref_primary_10_1103_PhysRevResearch_7_013017 crossref_primary_10_3390_computation9080089 crossref_primary_10_3390_fractalfract8020101 crossref_primary_10_1007_s11571_021_09701_1 crossref_primary_10_1016_j_matcom_2024_10_042 crossref_primary_10_31083_j_fbl2706182 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. All rights reserved. Copyright Elsevier BV Sep 2021 |
| Copyright_xml | – notice: 2021 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier BV Sep 2021 |
| DBID | NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1016/j.apm.2021.03.044 |
| DatabaseName | PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Public Health Psychology |
| EISSN | 0307-904X |
| ExternalDocumentID | 33897091 |
| Genre | Journal Article Review |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEXQZ AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NPM O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ 7X8 AAYWO ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c479t-cac48abe709c1795a715ebeaec5f509634b3d843a407240790f2e0874f0c43263 |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675236600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X 1088-8691 |
| IngestDate | Thu Oct 02 13:23:52 EDT 2025 Sun Jul 27 14:44:51 EDT 2025 Thu Apr 03 07:06:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parameter estimation Fractional order differential equations Implicit numerical method 97M60 Epidemic models Multi-term epidemic models 37M05 Hybrid simplex search and particle swarm optimisation 26A33 37N30 |
| Language | English |
| License | 2021 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c479t-cac48abe709c1795a715ebeaec5f509634b3d843a407240790f2e0874f0c43263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8056944 |
| PMID | 33897091 |
| PQID | 2553565972 |
| PQPubID | 2045280 |
| ParticipantIDs | proquest_miscellaneous_2518735055 proquest_journals_2553565972 pubmed_primary_33897091 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationTitleAlternate | Appl Math Model |
| PublicationYear | 2021 |
| Publisher | Elsevier BV |
| Publisher_xml | – name: Elsevier BV |
| SSID | ssj0005904 ssj0012860 |
| Score | 2.6134825 |
| SecondaryResourceType | review_article |
| Snippet | The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 281 |
| SubjectTerms | Coronaviruses COVID-19 Differential equations Epidemics Infectious diseases Parameter estimation Parameter modification Particle swarm optimization Predictive control Public health Viruses |
| Title | Review of fractional epidemic models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33897091 https://www.proquest.com/docview/2553565972 https://www.proquest.com/docview/2518735055 |
| Volume | 97 |
| WOSCitedRecordID | wos000675236600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: TFW dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6lhUMRQhAeDZTKSBW3rbz2Ors-ItSIQxoKciE9WevNWjKKnDSPUv49sx4_AggEBw5ZRZPVyvE3Hn-zOw-AEy5neoa-NLPIHZhQecYyMQtZJHlgUAeksXnVbEJOJmo6jS96vXGTC3Mzl2Wpbm_j5X-FGmUItkud_Qe420VRgN8RdBwRdhz_CviPbTJKvqKsBUTBUiNYQ51v1ruUtOGh520BV5eu66bNm9dadfxP9ulqOy_aIJ5iW3Ff_VV3E68q2YdiRzQuSCuQhtpaWu8zBLwNpKo3v9oEmE875hJtFFND6rd1aus8LF-y2Ke4y8bGUgxuYySpScsvxpv2Eb6c6qUrERDwqvosVYf8sVD25H06uhyP0-RsmrxeXjPXQ8ydtdcNVfbgTiCj2Nm4ZPS5C_iJnedZHzAFihLImz_QHHhXoX8_XcDvnY-KhCQP4UHtPXhvCPVH0LNlH-51yK37cNC-0r714T7tynqUbPYYTkg5vEXudcrhNcrhkXI8gcvRWfL2Hav7ZDAjZLxhRhuhdGalHxu0r5GWPMJnU1sT5a66TyiycKZEqF0xPPzEfh5YX0mR-0YgfQ-fwn65KO0heBGuJFWkjBFc4BLZ0A4lPsaBtZojUx_AUXMr0lrn1yl6pSH6BbEMBvCq_RnNlDt70qVdbN0crmSIdDsawDO6hemS6qmkIZJmvHb-_M-Lv4CDTi-PYH-z2tqXcNfcbIr16hj25FThOLk4P65w_w49VGJk |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+fractional+epidemic+models&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Chen%2C+Yuli&rft.au=Liu%2C+Fawang&rft.au=Yu%2C+Qiang&rft.au=Li%2C+Tianzeng&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=97&rft.spage=281&rft_id=info:doi/10.1016%2Fj.apm.2021.03.044&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |