Asymptotic theory of rerandomization in treatment-control experiments
Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance cr...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 115; číslo 37; s. 9157 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
11.09.2018
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. We develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and truncated Gaussian random variables. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We demonstrate that, compared with complete randomization, rerandomization reduces the asymptotic quantile ranges of the difference-in-means estimator. Moreover, our work constructs accurate large-sample confidence intervals for the average causal effect. |
|---|---|
| AbstractList | Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. We develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and truncated Gaussian random variables. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We demonstrate that, compared with complete randomization, rerandomization reduces the asymptotic quantile ranges of the difference-in-means estimator. Moreover, our work constructs accurate large-sample confidence intervals for the average causal effect.Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. We develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and truncated Gaussian random variables. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We demonstrate that, compared with complete randomization, rerandomization reduces the asymptotic quantile ranges of the difference-in-means estimator. Moreover, our work constructs accurate large-sample confidence intervals for the average causal effect. Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. We develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and truncated Gaussian random variables. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We demonstrate that, compared with complete randomization, rerandomization reduces the asymptotic quantile ranges of the difference-in-means estimator. Moreover, our work constructs accurate large-sample confidence intervals for the average causal effect. |
| Author | Ding, Peng Rubin, Donald B Li, Xinran |
| Author_xml | – sequence: 1 givenname: Xinran surname: Li fullname: Li, Xinran organization: Department of Statistics, Harvard University, Cambridge, MA 02138 – sequence: 2 givenname: Peng surname: Ding fullname: Ding, Peng organization: Department of Statistics, University of California, Berkeley, CA 94720 – sequence: 3 givenname: Donald B surname: Rubin fullname: Rubin, Donald B email: dbrubin@mac.com organization: Department of Statistics, Harvard University, Cambridge, MA 02138; dbrubin@mac.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30150408$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LxDAUxIOsuB969iY9eun63ibZJsdlWT9gwYueSzb7ipU2qUkK1r_eiit4mmH4MczM2cR5R4xdIywRCn7XOROXqEChRkR5xmYIGvO10DD556dsHuM7AGip4IJNOaAEAWrGdps4tF3yqbZZeiMfhsxXWaBg3NG39ZdJtXdZ7bIUyKSWXMqtdyn4JqPPjkL9E8VLdl6ZJtLVSRfs9X73sn3M988PT9vNPrei0CnXAgvkSpGQlRIVqEJCtQYuwBy1AQQiIVBJroyyRlXSWiJ5IIO80MLy1YLd_vZ2wX_0FFPZ1tFS0xhHvo_lajwoOQCqEb05of2hpWPZjVNNGMq_66tv6YddkA |
| CitedBy_id | crossref_primary_10_1093_biomet_asz026 crossref_primary_10_1002_sim_9508 crossref_primary_10_1111_biom_13712 crossref_primary_10_1093_jrsssb_qkad080 crossref_primary_10_1080_00031305_2020_1717619 crossref_primary_10_1080_01621459_2025_2507432 crossref_primary_10_1126_science_adr7394 crossref_primary_10_1016_j_jeconom_2025_106049 crossref_primary_10_1016_j_jspi_2021_09_002 crossref_primary_10_1111_insr_12498 crossref_primary_10_1002_cjs_11765 crossref_primary_10_1214_22_AOS2235 crossref_primary_10_1002_cjs_11685 crossref_primary_10_1080_07350015_2024_2403381 crossref_primary_10_1515_scid_2024_0001 crossref_primary_10_1111_rssb_12417 crossref_primary_10_1093_ectj_utab009 crossref_primary_10_3390_e26121023 crossref_primary_10_1016_j_jspi_2021_11_005 crossref_primary_10_1093_biomet_asaa103 crossref_primary_10_1080_01621459_2022_2102985 crossref_primary_10_1093_biomet_asac045 crossref_primary_10_1093_jrsssb_qkaf002 crossref_primary_10_1016_j_jspi_2024_106241 crossref_primary_10_1111_rssc_12513 crossref_primary_10_1080_01621459_2022_2049278 crossref_primary_10_1080_10618600_2020_1753531 crossref_primary_10_3102_10769986211027240 crossref_primary_10_1093_biomet_asad027 crossref_primary_10_1002_cjs_11783 crossref_primary_10_1093_jrsssb_qkad017 crossref_primary_10_1093_biomtc_ujaf036 crossref_primary_10_1111_rssb_12439 crossref_primary_10_1080_01621459_2024_2412363 crossref_primary_10_1002_sta4_70058 crossref_primary_10_1186_s12874_023_01977_7 crossref_primary_10_1016_j_jspi_2020_07_002 crossref_primary_10_1214_18_AOS1790 crossref_primary_10_1080_01621459_2020_1863221 crossref_primary_10_1080_01621459_2021_1984926 crossref_primary_10_1214_25_AOS2513 crossref_primary_10_1080_01621459_2023_2285474 crossref_primary_10_1016_j_jeconom_2024_105724 crossref_primary_10_1080_01621459_2024_2366043 crossref_primary_10_1093_ectj_utz020 crossref_primary_10_1111_rssb_12353 crossref_primary_10_1080_07350015_2024_2429464 crossref_primary_10_1016_j_csda_2022_107642 crossref_primary_10_1080_01621459_2021_1990767 crossref_primary_10_1080_19466315_2023_2267774 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1808191115 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 30150408 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI102710 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c479t-94171388e45f84f08750f60340ad9a010ee4418538a8ca8f5ccee5bea13794c32 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444257200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 06:26:34 EDT 2025 Thu Apr 03 07:05:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Keywords | quantile range causal inference geometry of rerandomization Mahalanobis distance covariate balance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c479t-94171388e45f84f08750f60340ad9a010ee4418538a8ca8f5ccee5bea13794c32 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:42615132 |
| PMID | 30150408 |
| PQID | 2095530018 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2095530018 pubmed_primary_30150408 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-11 |
| PublicationDateYYYYMMDD | 2018-09-11 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2018 |
| SSID | ssj0009580 |
| Score | 2.5973768 |
| Snippet | Although complete randomization ensures covariate balance on average, the chance of observing significant differences between treatment and control covariate... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 9157 |
| SubjectTerms | Models, Theoretical Random Allocation |
| Title | Asymptotic theory of rerandomization in treatment-control experiments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30150408 https://www.proquest.com/docview/2095530018 |
| Volume | 115 |
| WOSCitedRecordID | wos000444257200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yUgMMBjs2o7tCVWoFQtVB5C6RY7jSB2ahCYg9d9jJy5lQUJiyeJEis539rvz-T0AbvqEWgd0CUotMYgJY5A2BiPrudKjiPEM60ZsQozHcjpVk1Bwq0Jb5WpNbBbqtDC-Ru6SdOUVbjCRj-U78qpR_nQ1SGhsgg51UMYHppjKH6S7smUjUARFTOEVtY-gD2Wuq3viZSd8tPPf8WWzz4z2_vuH-2A3IEw4aF2iCzZsfgC6IYYreBuIpu8OwXBQLedlXbgXYXOhcQmLDC7caJ4W83BBE85y-N2NjkJnO1wLA1RH4G00fH16RkFWARkmVI0UIy4zldK6iZAs85T2OIswZVinSrv8zFrmKW2o1NJomXHjNlKeWE2oC15D-8dgKy9yewpgpAjXPGGJIIbZ1KhMKJww7WAal8LwHrhemSp2buvPInRui48qXhurB05ae8dly68RU1-FYVie_eHrc7DjIEzTwUHIBehkLmjtJdg2n_WsWlw1_uCe48nLF0l9v6M |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+theory+of+rerandomization+in+treatment-control+experiments&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Xinran&rft.au=Ding%2C+Peng&rft.au=Rubin%2C+Donald+B&rft.date=2018-09-11&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=37&rft.spage=9157&rft_id=info:doi/10.1073%2Fpnas.1808191115&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |