Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules

Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of general physiology Ročník 134; číslo 5; s. 397
Hlavní autoři: Waldeck, Clemens, Vocke, Kerstin, Ungerer, Nicole, Frings, Stephan, Möhrlen, Frank
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.11.2009
Témata:
ISSN:1540-7748, 1540-7748
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca(2+)-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca(2+)-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.
AbstractList Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca(2+)-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca(2+)-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.
Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca(2+)-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca(2+)-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca(2+)-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca(2+)-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.
Author Vocke, Kerstin
Frings, Stephan
Waldeck, Clemens
Ungerer, Nicole
Möhrlen, Frank
Author_xml – sequence: 1
  givenname: Clemens
  surname: Waldeck
  fullname: Waldeck, Clemens
  organization: Department of Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
– sequence: 2
  givenname: Kerstin
  surname: Vocke
  fullname: Vocke, Kerstin
– sequence: 3
  givenname: Nicole
  surname: Ungerer
  fullname: Ungerer, Nicole
– sequence: 4
  givenname: Stephan
  surname: Frings
  fullname: Frings, Stephan
– sequence: 5
  givenname: Frank
  surname: Möhrlen
  fullname: Möhrlen, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19822638$$D View this record in MEDLINE/PubMed
BookMark eNpNkLtOAzEQRS0URB5Q0iJ3VBtsr_dFF0W8pCAooF557XHiaNcOaxspfD0hCYhpZnTv0SlmjAbWWUDokpIpJWV2s15upoyQihJW5SdoRDNOkqLg5eDfPURj79dkNxkjZ2hIq5KxPC1HKM5kMJ8iGGexsAor8GC9CebrkDmNwwqwa7WQwfVbLGfPr8lSBFA49MJ6FeUelCthLbS32CiwwWgj_wQ62j0jWtw5FVvw5-hUi9bDxXFP0Pv93dv8MVm8PDzNZ4tE8qIKSZHnLMsop1IzIRsBvCCSATQ5F0IAoynnwEupJc-VaopUcy1LTrhWu6KhbIKuD95N7z4i-FB3xktoW2HBRV8XaVrxrKI_5NWRjE0Hqt70phP9tv79FPsGDc1vsQ
CitedBy_id crossref_primary_10_1016_j_aaf_2023_05_011
crossref_primary_10_1073_pnas_2100469118
crossref_primary_10_1007_s00441_020_03391_7
crossref_primary_10_1371_journal_pcbi_1010376
crossref_primary_10_1523_JNEUROSCI_4735_10_2011
crossref_primary_10_1093_chemse_bjt064
crossref_primary_10_1371_journal_pone_0105531
crossref_primary_10_1186_1471_2202_13_140
crossref_primary_10_1038_srep29378
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1085/jgp.200910296
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1540-7748
ExternalDocumentID 19822638
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
1CY
29K
2WC
36B
39C
3O-
4.4
53G
5RE
5VS
79B
85S
9M8
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFNX
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
EMOBN
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
MVM
NEJ
NPM
O5R
O5S
OHT
OK1
P2P
PQQKQ
RHI
RXW
SJN
SV3
TAE
TAF
TR2
TRP
TWZ
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
YKV
YOC
YQT
YR5
YSK
YWH
YYQ
YZZ
ZCA
ZGI
ZUP
7X8
ID FETCH-LOGICAL-c479t-766255141cf2acbae470c2eeb64aaae21344e48cfc46ddb73f4fc8404fd44eb12
IEDL.DBID 7X8
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271162100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-7748
IngestDate Thu Oct 02 07:50:06 EDT 2025
Mon Jul 21 05:37:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-766255141cf2acbae470c2eeb64aaae21344e48cfc46ddb73f4fc8404fd44eb12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://jgp.rupress.org/content/jgp/134/5/397.full.pdf
PMID 19822638
PQID 733945911
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733945911
pubmed_primary_19822638
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2009
References 16319308 - J Neurosci. 2005 Nov 30;25(48):11084-91
7511217 - Nature. 1994 Apr 7;368(6471):545-8
9539801 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4696-701
9545240 - EMBO J. 1998 Apr 15;17(8):2273-84
18703537 - Chem Senses. 2008 Nov;33(9):839-59
1697649 - Nature. 1990 Sep 13;347(6289):184-7
10197534 - Neuron. 1999 Mar;22(3):549-58
12467591 - Neuron. 2002 Dec 5;36(5):881-9
11739959 - Science. 2001 Dec 7;294(5549):2172-5
18585356 - Cell. 2008 Jun 27;133(7):1228-40
19089328 - Handb Exp Pharmacol. 2009;(191):111-36
18534995 - Chem Senses. 2008 Sep;33(7):581-96
15195096 - Nat Neurosci. 2004 Jul;7(7):705-10
18466748 - Neuron. 2008 May 8;58(3):374-86
15922582 - Curr Opin Neurobiol. 2005 Jun;15(3):343-9
15134637 - Neuron. 2004 May 13;42(3):401-10
12044166 - Biochemistry. 2002 Jun 11;41(23):7344-9
12467592 - Neuron. 2002 Dec 5;36(5):891-6
10777729 - Biophys J. 2000 May;78(5):2307-20
16533895 - J Gen Physiol. 2006 Apr;127(4):375-89
16631748 - FEBS Lett. 2006 May 22;580(12):2853-9
10377344 - J Neurosci. 1999 Jul 1;19(13):5332-47
7522482 - Neuron. 1994 Sep;13(3):611-21
7513349 - J Gen Physiol. 1994 Jan;103(1):87-106
7522325 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8890-4
9034189 - Nature. 1997 Feb 20;385(6618):725-9
17917115 - Mol Neurobiol. 2007 Jun;35(3):266-77
19052108 - J Neurophysiol. 2009 Feb;101(2):1089-102
12626507 - J Biol Chem. 2003 May 23;278(21):18705-8
15572116 - Neuron. 2004 Dec 2;44(5):865-76
15003852 - Cell Calcium. 2004 May;35(5):427-31
18400181 - Structure. 2008 Apr;16(4):607-20
17322905 - Nature. 2007 Mar 22;446(7134):440-3
17438121 - J Gen Physiol. 2007 May;129(5):379-83
9878057 - EMBO J. 1999 Jan 4;18(1):131-44
11739960 - Science. 2001 Dec 7;294(5549):2176-8
12087135 - Physiol Rev. 2002 Jul;82(3):769-824
11826271 - Annu Rev Physiol. 2002;64:289-311
12954880 - J Neurosci. 2003 Sep 3;23(22):8167-75
9806962 - J Gen Physiol. 1998 Nov;112(5):529-35
15976304 - Science. 2005 Jun 24;308(5730):1931-4
9468504 - J Biol Chem. 1998 Feb 20;273(8):4497-505
10512843 - Biophys J. 1999 Oct;77(4):2237-50
16081488 - J Physiol. 2005 Nov 15;569(Pt 1):91-102
12432397 - Nature. 2002 Nov 14;420(6912):193-8
16880129 - Neuron. 2006 Aug 3;51(3):351-8
1719541 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9868-72
15134638 - Neuron. 2004 May 13;42(3):411-21
14570562 - Annu Rev Cell Dev Biol. 2003;19:23-44
10516302 - J Neurosci. 1999 Oct 15;19(20):8830-8
14500775 - J Physiol. 2004 Jan 15;554(Pt 2):255-61
18817728 - Neuron. 2008 Sep 25;59(6):873-81
2354505 - Cell Calcium. 1990 Feb-Mar;11(2-3):75-83
19091924 - J Neurophysiol. 2009 Feb;101(2):1073-88
7526466 - Science. 1994 Nov 25;266(5189):1348-54
18399719 - PLoS Biol. 2008 Apr 8;6(4):e82
7546741 - Neuron. 1995 Sep;15(3):619-25
8660407 - J Membr Biol. 1996 Jul;152(1):13-23
16460277 - Annu Rev Physiol. 2006;68:375-401
References_xml – reference: 14570562 - Annu Rev Cell Dev Biol. 2003;19:23-44
– reference: 7513349 - J Gen Physiol. 1994 Jan;103(1):87-106
– reference: 16081488 - J Physiol. 2005 Nov 15;569(Pt 1):91-102
– reference: 16533895 - J Gen Physiol. 2006 Apr;127(4):375-89
– reference: 9034189 - Nature. 1997 Feb 20;385(6618):725-9
– reference: 12432397 - Nature. 2002 Nov 14;420(6912):193-8
– reference: 11739959 - Science. 2001 Dec 7;294(5549):2172-5
– reference: 19089328 - Handb Exp Pharmacol. 2009;(191):111-36
– reference: 16460277 - Annu Rev Physiol. 2006;68:375-401
– reference: 9545240 - EMBO J. 1998 Apr 15;17(8):2273-84
– reference: 9806962 - J Gen Physiol. 1998 Nov;112(5):529-35
– reference: 16880129 - Neuron. 2006 Aug 3;51(3):351-8
– reference: 7522325 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8890-4
– reference: 9878057 - EMBO J. 1999 Jan 4;18(1):131-44
– reference: 2354505 - Cell Calcium. 1990 Feb-Mar;11(2-3):75-83
– reference: 17322905 - Nature. 2007 Mar 22;446(7134):440-3
– reference: 17917115 - Mol Neurobiol. 2007 Jun;35(3):266-77
– reference: 15195096 - Nat Neurosci. 2004 Jul;7(7):705-10
– reference: 1719541 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9868-72
– reference: 12467591 - Neuron. 2002 Dec 5;36(5):881-9
– reference: 1697649 - Nature. 1990 Sep 13;347(6289):184-7
– reference: 11826271 - Annu Rev Physiol. 2002;64:289-311
– reference: 15976304 - Science. 2005 Jun 24;308(5730):1931-4
– reference: 18399719 - PLoS Biol. 2008 Apr 8;6(4):e82
– reference: 19091924 - J Neurophysiol. 2009 Feb;101(2):1073-88
– reference: 18585356 - Cell. 2008 Jun 27;133(7):1228-40
– reference: 15134637 - Neuron. 2004 May 13;42(3):401-10
– reference: 14500775 - J Physiol. 2004 Jan 15;554(Pt 2):255-61
– reference: 10197534 - Neuron. 1999 Mar;22(3):549-58
– reference: 12954880 - J Neurosci. 2003 Sep 3;23(22):8167-75
– reference: 7511217 - Nature. 1994 Apr 7;368(6471):545-8
– reference: 7546741 - Neuron. 1995 Sep;15(3):619-25
– reference: 15922582 - Curr Opin Neurobiol. 2005 Jun;15(3):343-9
– reference: 18703537 - Chem Senses. 2008 Nov;33(9):839-59
– reference: 10512843 - Biophys J. 1999 Oct;77(4):2237-50
– reference: 18817728 - Neuron. 2008 Sep 25;59(6):873-81
– reference: 10777729 - Biophys J. 2000 May;78(5):2307-20
– reference: 7522482 - Neuron. 1994 Sep;13(3):611-21
– reference: 9468504 - J Biol Chem. 1998 Feb 20;273(8):4497-505
– reference: 12467592 - Neuron. 2002 Dec 5;36(5):891-6
– reference: 15003852 - Cell Calcium. 2004 May;35(5):427-31
– reference: 18534995 - Chem Senses. 2008 Sep;33(7):581-96
– reference: 15134638 - Neuron. 2004 May 13;42(3):411-21
– reference: 15572116 - Neuron. 2004 Dec 2;44(5):865-76
– reference: 8660407 - J Membr Biol. 1996 Jul;152(1):13-23
– reference: 10516302 - J Neurosci. 1999 Oct 15;19(20):8830-8
– reference: 11739960 - Science. 2001 Dec 7;294(5549):2176-8
– reference: 9539801 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4696-701
– reference: 19052108 - J Neurophysiol. 2009 Feb;101(2):1089-102
– reference: 12087135 - Physiol Rev. 2002 Jul;82(3):769-824
– reference: 12626507 - J Biol Chem. 2003 May 23;278(21):18705-8
– reference: 7526466 - Science. 1994 Nov 25;266(5189):1348-54
– reference: 12044166 - Biochemistry. 2002 Jun 11;41(23):7344-9
– reference: 16631748 - FEBS Lett. 2006 May 22;580(12):2853-9
– reference: 16319308 - J Neurosci. 2005 Nov 30;25(48):11084-91
– reference: 10377344 - J Neurosci. 1999 Jul 1;19(13):5332-47
– reference: 17438121 - J Gen Physiol. 2007 May;129(5):379-83
– reference: 18400181 - Structure. 2008 Apr;16(4):607-20
– reference: 18466748 - Neuron. 2008 May 8;58(3):374-86
SSID ssj0000520
Score 2.0046158
Snippet Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 397
SubjectTerms Calcium - metabolism
Calcium Signaling
Cyclic AMP - metabolism
Cyclic Nucleotide-Gated Cation Channels - genetics
Cyclic Nucleotide-Gated Cation Channels - metabolism
Electrophysiology
Ion Channel Gating
Mutagenesis, Site-Directed
Olfactory Receptor Neurons - metabolism
Protein Subunits - genetics
Protein Subunits - metabolism
Title Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules
URI https://www.ncbi.nlm.nih.gov/pubmed/19822638
https://www.proquest.com/docview/733945911
Volume 134
WOSCitedRecordID wos000271162100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwKo_ykgfEFjVNnDhmQRGiYmnVAaRukZ-oqE0KaZH67znbaZkQA0uWKFbk13139913CN2GQglOVQIrQEhAwIYEPBQ8YJFMBKw5p0y4ZhN0OMzGYzZquDl1Q6tc34nuolaVtDHyLo1jRhI4mg_zj8A2jbLJ1aaDxjZqxYBkLKOLjn_Ewi3Fw8mlWtIcJVkjsQkgo_v-5rUqwbyy9Hdw6YxM_-Cfv3eI9ht0iXO_HY7Qli6PUTsvwbOerfAddnxPF0hvo2Uu163NMC8VVrYOyTK4fGEmrgwGcIirqW_Js8IyH4xcOE7hhbVwygvPYls7XOrpPZ6ohnq0GcBaTR9sxLNKLae6PkGv_aeXx-egacIQSELZIqApeEiAqnrSRFwKrgkNZaS1SAnnXFtBOKJJJo0kqVKCxoYYCV4jMQpeiF50inbKqtTnCIexUTqVGmBHRhIVsjjkkeQ9pkMNMIl3EF7PbQGb3GYueKmrZV1sZreDzvz6FHMvxlH0rAAhXCIXf398ifZcLshVEl6hloEDrq_RrvxaTOrPG7d54DkcDb4BeOrSbw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+and+desensitization+of+the+olfactory+cAMP-gated+transduction+channel%3A+identification+of+functional+modules&rft.jtitle=The+Journal+of+general+physiology&rft.au=Waldeck%2C+Clemens&rft.au=Vocke%2C+Kerstin&rft.au=Ungerer%2C+Nicole&rft.au=Frings%2C+Stephan&rft.date=2009-11-01&rft.eissn=1540-7748&rft.volume=134&rft.issue=5&rft.spage=397&rft_id=info:doi/10.1085%2Fjgp.200910296&rft_id=info%3Apmid%2F19822638&rft_id=info%3Apmid%2F19822638&rft.externalDocID=19822638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7748&client=summon