Stochastic Gradient Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice. The drawback of MCMC is that performing exact inference generally requires all of the data to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 116; číslo 533; s. 433 - 450
Hlavní autori: Nemeth, Christopher, Fearnhead, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis 02.01.2021
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice. The drawback of MCMC is that performing exact inference generally requires all of the data to be processed at each iteration of the algorithm. For large datasets, the computational cost of MCMC can be prohibitive, which has led to recent developments in scalable Monte Carlo algorithms that have a significantly lower computational cost than standard MCMC. In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC) which utilizes data subsampling techniques to reduce the per-iteration cost of MCMC. We provide an introduction to some popular SGMCMC algorithms and review the supporting theoretical results, as well as comparing the efficiency of SGMCMC algorithms against MCMC on benchmark examples. The supporting R code is available online at https://github.com/chris-nemeth/sgmcmc-review-paper .
AbstractList Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice. The drawback of MCMC is that performing exact inference generally requires all of the data to be processed at each iteration of the algorithm. For large datasets, the computational cost of MCMC can be prohibitive, which has led to recent developments in scalable Monte Carlo algorithms that have a significantly lower computational cost than standard MCMC. In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC) which utilizes data subsampling techniques to reduce the per-iteration cost of MCMC. We provide an introduction to some popular SGMCMC algorithms and review the supporting theoretical results, as well as comparing the efficiency of SGMCMC algorithms against MCMC on benchmark examples. The supporting R code is available online athttps://github.com/chris-nemeth/sgmcmc-review-paper.
Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice. The drawback of MCMC is that performing exact inference generally requires all of the data to be processed at each iteration of the algorithm. For large datasets, the computational cost of MCMC can be prohibitive, which has led to recent developments in scalable Monte Carlo algorithms that have a significantly lower computational cost than standard MCMC. In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC) which utilizes data subsampling techniques to reduce the per-iteration cost of MCMC. We provide an introduction to some popular SGMCMC algorithms and review the supporting theoretical results, as well as comparing the efficiency of SGMCMC algorithms against MCMC on benchmark examples. The supporting R code is available online at https://github.com/chris-nemeth/sgmcmc-review-paper.
Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice. The drawback of MCMC is that performing exact inference generally requires all of the data to be processed at each iteration of the algorithm. For large datasets, the computational cost of MCMC can be prohibitive, which has led to recent developments in scalable Monte Carlo algorithms that have a significantly lower computational cost than standard MCMC. In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC) which utilizes data subsampling techniques to reduce the per-iteration cost of MCMC. We provide an introduction to some popular SGMCMC algorithms and review the supporting theoretical results, as well as comparing the efficiency of SGMCMC algorithms against MCMC on benchmark examples. The supporting R code is available online at https://github.com/chris-nemeth/sgmcmc-review-paper .
Author Fearnhead, Paul
Nemeth, Christopher
Author_xml – sequence: 1
  givenname: Christopher
  orcidid: 0000-0002-9084-3866
  surname: Nemeth
  fullname: Nemeth, Christopher
  organization: Department of Mathematics and Statistics, Lancaster University
– sequence: 2
  givenname: Paul
  orcidid: 0000-0002-9386-2341
  surname: Fearnhead
  fullname: Fearnhead, Paul
  organization: Department of Mathematics and Statistics, Lancaster University
BookMark eNqFkMtKJDEUQIM4MG3PfMJAgRsXluadKtwojS_oZhajMLtwO5VgtDrRJK3496Zp3bjQbC6Ecy6Xs4d2QwwWoT8EHxHc4WNMJCVc9EcU0_rVcUUo3kETIphqqeL_d9Fkw7Qb6Cfay_ke16e6boIO_5Vo7iAXb5rLBIO3oTQLSA_xuZndgQ_NIoZimxmkMf5CPxyM2f5-n1N0e3F-M7tq538vr2dn89Zw1ZdWSmDCkIENcsAMY9ubJVGOLrFUnXLOMaZc33HLLBm4lBhIJ5ZQNTcsqQI2RQfbvY8pPq1tLnrls7HjCMHGddZUUM4IE5JXdP8Teh_XKdTrKsW6XmDBvqZ431MmCVGVElvKpJhzsk4_Jr-C9KoJ1pvS-qO03pTW76Wrd_LJM75A8TVcAj9-a59ubR9cTCt4iWkcdIHXMSaXIBifNft6xRvljZVD
CitedBy_id crossref_primary_10_1214_24_BA1494
crossref_primary_10_1016_j_spasta_2022_100672
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_1016_j_ocemod_2025_102547
crossref_primary_10_1007_s10489_024_05796_1
crossref_primary_10_1109_TASE_2022_3160420
crossref_primary_10_1214_25_BA1530
crossref_primary_10_1016_j_csl_2025_101806
crossref_primary_10_1016_j_phro_2025_100774
crossref_primary_10_1214_22_STS876
crossref_primary_10_1016_j_jcp_2022_111902
crossref_primary_10_1016_j_crsus_2025_100362
crossref_primary_10_1016_j_engstruct_2022_115433
crossref_primary_10_1002_asmb_2794
crossref_primary_10_1007_s11222_022_10120_3
crossref_primary_10_3390_bios13030389
crossref_primary_10_1177_21582440241289689
crossref_primary_10_1214_23_STS919
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1016_j_neunet_2025_107820
crossref_primary_10_1145_3728716
crossref_primary_10_1002_sta4_523
crossref_primary_10_1007_s11634_023_00547_5
crossref_primary_10_1017_psy_2025_10021
crossref_primary_10_1016_j_ecoinf_2024_102865
crossref_primary_10_3390_en15041369
crossref_primary_10_1016_j_jeconom_2024_105741
crossref_primary_10_1007_s00521_023_08219_3
crossref_primary_10_1088_1361_6420_ad22e7
crossref_primary_10_1007_s13369_022_06835_0
crossref_primary_10_1109_TPAMI_2025_3572766
crossref_primary_10_1088_1751_8121_ad2c26
crossref_primary_10_1214_23_BA1395
crossref_primary_10_1063_5_0219207
crossref_primary_10_1029_2024MS004547
crossref_primary_10_1007_s11222_024_10392_x
crossref_primary_10_1016_j_engappai_2025_111013
crossref_primary_10_1080_01621459_2024_2395504
crossref_primary_10_1016_j_oceaneng_2025_122065
crossref_primary_10_1155_2021_5523468
crossref_primary_10_1111_jedm_12378
crossref_primary_10_1007_s13132_024_02086_6
crossref_primary_10_3390_photonics11020190
crossref_primary_10_1007_s10462_023_10562_9
crossref_primary_10_1007_s13253_023_00580_z
crossref_primary_10_1007_s11425_024_2350_5
crossref_primary_10_1038_s41524_024_01277_8
crossref_primary_10_1002_hbm_26256
crossref_primary_10_3390_math13010060
crossref_primary_10_3390_math13101655
crossref_primary_10_1155_2022_2872965
crossref_primary_10_1186_s12859_022_04830_8
crossref_primary_10_1080_01621459_2023_2287773
crossref_primary_10_1088_2058_9565_aca821
crossref_primary_10_1080_10618600_2024_2380051
crossref_primary_10_3390_forecast7010009
crossref_primary_10_1016_j_knosys_2025_114438
crossref_primary_10_1063_5_0204128
crossref_primary_10_1214_25_EJP1321
crossref_primary_10_1080_10618600_2022_2130928
Cites_doi 10.1111/j.1751-5823.2002.tb00178.x
10.1111/rssb.12183
10.1214/17-BA1063
10.1145/2783258.2783373
10.1023/A:1008929526011
10.18637/jss.v076.i01
10.1534/genetics.114.164350
10.1080/17509653.2016.1142191
10.1016/j.spa.2019.02.016
10.1214/ECP.v2-981
10.1093/biomet/asz066
10.1016/0550-3213(81)90056-0
10.2307/3318418
10.1111/1467-9868.00123
10.1093/biomet/asaa035
10.1214/16-AAP1238
10.1214/19-AAP1467
10.1214/18-AOS1715
10.1214/19-AAP1535
10.1214/aoap/1177004900
10.1111/j.1467-9868.2008.00661.x
10.1063/1.1699114
10.1214/18-STS648
10.1201/b10905-6
10.1007/s00454-018-9992-1
10.1080/10618600.2016.1172487
10.1111/rssb.12365
10.1093/biomet/57.1.97
10.1162/tacl_a_00175
10.1007/s11222-018-9826-2
10.1214/aoms/1177729586
10.1214/ss/1015346320
10.1201/b10905
10.1214/154957804100000024
10.1080/10618600.1998.10474787
10.1162/jmlr.2003.3.4-5.993
10.1002/9780470316726
10.1214/11-AAP828
10.1080/01621459.2018.1448827
10.18637/jss.v091.i03
10.1016/S0167-6377(02)00231-6
10.1137/18M1214780
10.1063/1.430300
10.1080/01621459.2017.1285773
10.1111/j.1467-9868.2010.00765.x
10.1080/01621459.2017.1294075
10.1007/s11222-018-9803-9
10.1145/1390156.1390267
ContentType Journal Article
Copyright 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021
2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021
– notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2020.1847120
DatabaseName Taylor & Francis Open Access
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
AGRICOLA

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 450
ExternalDocumentID 10_1080_01621459_2020_1847120
1847120
Genre Review Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
0YH
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c479t-66a35c1d3d6d0300e9cb17f2b06787fff337f984e3e1d4660a185ba66afdb27a3
IEDL.DBID TFW
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604691700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:02:24 EDT 2025
Mon Nov 10 01:08:44 EST 2025
Mon Nov 24 06:50:35 EST 2025
Sat Nov 29 03:56:45 EST 2025
Tue Nov 18 22:26:13 EST 2025
Mon Oct 20 23:47:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 533
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-66a35c1d3d6d0300e9cb17f2b06787fff337f984e3e1d4660a185ba66afdb27a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9386-2341
0000-0002-9084-3866
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01621459.2020.1847120
PQID 2499236117
PQPubID 41715
PageCount 18
ParticipantIDs proquest_journals_2499236117
informaworld_taylorfrancis_310_1080_01621459_2020_1847120
proquest_miscellaneous_2524313564
crossref_citationtrail_10_1080_01621459_2020_1847120
crossref_primary_10_1080_01621459_2020_1847120
proquest_journals_2538950534
PublicationCentury 2000
PublicationDate 20210102
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 01
  year: 2021
  text: 20210102
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Gorham J. (CIT0043) 2017; 70
CIT0030
CIT0074
Chatterji N. (CIT0025) 2018; 80
CIT0073
CIT0076
Minka T. P. (CIT0058) 2001
CIT0075
CIT0034
CIT0078
Andersen M. (CIT0005) 2018
CIT0033
CIT0077
CIT0070
Gan Z. (CIT0038) 2015
Bishop C. M. (CIT0015) 2006
Plummer M. (CIT0068) 2003; 124
CIT0036
Minsker S. (CIT0059) 2017; 18
CIT0035
CIT0079
CIT0037
CIT0039
CIT0083
CIT0082
Ding N. (CIT0031) 2014
CIT0041
CIT0040
CIT0084
CIT0087
Li W. (CIT0051) 2016
CIT0001
Kucukelbir A. (CIT0049) 2015
CIT0044
Ma Y.-A. (CIT0053) 2015
CIT0081
CIT0080
Wang Y.-X. (CIT0089) 2015
Besag J. (CIT0013) 1994; 56
CIT0003
Hsieh Y.-P. (CIT0046) 2018
Patterson S. (CIT0066) 2013
Balan A. K. (CIT0009) 2015
CIT0004
CIT0007
CIT0008
CIT0050
CIT0052
CIT0054
Srivastava S. (CIT0085) 2018; 19
Raginsky M. (CIT0072) 2017
CIT0012
CIT0056
Dubey K. A. (CIT0032) 2016
CIT0055
CIT0092
CIT0091
Baker J. (CIT0006) 2018
Neiswanger W. (CIT0063) 2014
Neal R. M. (CIT0062) 2012; 118
Ahn S. (CIT0002) 2012
CIT0014
CIT0057
CIT0016
CIT0018
CIT0017
CIT0019
Brosse N. (CIT0021) 2018
CIT0061
Vollmer S. J. (CIT0088) 2016; 17
Korattikara A. (CIT0048) 2014
CIT0060
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
Rabinovich M. (CIT0071) 2015
Bardenet R. (CIT0010) 2014
Bardenet R. (CIT0011) 2017; 18
Welling M. (CIT0090) 2011
Cheng X. (CIT0027) 2018
Hoffman M. D. (CIT0045) 2014; 15
CIT0069
Brosse N. (CIT0022) 2017
CIT0024
Chen T. (CIT0026) 2014
CIT0029
CIT0028
Huggins J. (CIT0047) 2017
Gorham J. (CIT0042) 2015
Teh Y. W. (CIT0086) 2016; 17
References_xml – start-page: 2917
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0053
– ident: CIT0039
  doi: 10.1111/j.1751-5823.2002.tb00178.x
– ident: CIT0028
  doi: 10.1111/rssb.12183
– ident: CIT0064
  doi: 10.1214/17-BA1063
– ident: CIT0082
– volume: 118
  volume-title: Bayesian Learning for Neural Networks
  year: 2012
  ident: CIT0062
– ident: CIT0001
  doi: 10.1145/2783258.2783373
– start-page: 723
  volume-title: Artificial Intelligence and Statistics
  year: 2016
  ident: CIT0051
– ident: CIT0052
  doi: 10.1023/A:1008929526011
– start-page: 2493
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: CIT0089
– ident: CIT0024
  doi: 10.18637/jss.v076.i01
– ident: CIT0073
  doi: 10.1534/genetics.114.164350
– volume: 15
  start-page: 1593
  year: 2014
  ident: CIT0045
  publication-title: Journal of Machine Learning Research
– start-page: 1674
  volume-title: Conference on Learning Theory
  year: 2017
  ident: CIT0072
– ident: CIT0054
– ident: CIT0050
– ident: CIT0083
  doi: 10.1080/17509653.2016.1142191
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: CIT0015
– start-page: 405
  volume-title: International Conference on Machine Learning (ICML
  year: 2014
  ident: CIT0010
– ident: CIT0029
  doi: 10.1016/j.spa.2019.02.016
– start-page: 181
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: CIT0048
– ident: CIT0076
  doi: 10.1214/ECP.v2-981
– ident: CIT0033
  doi: 10.1093/biomet/asz066
– start-page: 568
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0049
– ident: CIT0065
  doi: 10.1016/0550-3213(81)90056-0
– volume: 17
  start-page: 193
  year: 2016
  ident: CIT0086
  publication-title: The Journal of Machine Learning Research
– ident: CIT0080
  doi: 10.2307/3318418
– ident: CIT0060
– start-page: 3102
  volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: CIT0066
– start-page: 1207
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0071
– ident: CIT0077
  doi: 10.1111/1467-9868.00123
– ident: CIT0084
  doi: 10.1093/biomet/asaa035
– ident: CIT0034
  doi: 10.1214/16-AAP1238
– ident: CIT0041
  doi: 10.1214/19-AAP1467
– ident: CIT0014
  doi: 10.1214/18-AOS1715
– start-page: 2883
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: CIT0046
– start-page: 623
  volume-title: ,” in Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence
  year: 2014
  ident: CIT0063
– volume: 124
  start-page: 10
  volume-title: Proceedings of the 3rd International Workshop on Distributed Statistical Computing
  year: 2003
  ident: CIT0068
– start-page: 1436
  volume-title: International Conference on Artificial Intelligence and Statistics
  year: 2018
  ident: CIT0005
– ident: CIT0055
  doi: 10.1214/19-AAP1535
– ident: CIT0057
  doi: 10.1214/aoap/1177004900
– volume: 17
  start-page: 5504
  year: 2016
  ident: CIT0088
  publication-title: The Journal of Machine Learning Research
– volume: 56
  start-page: 591
  year: 1994
  ident: CIT0013
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: CIT0037
  doi: 10.1111/j.1467-9868.2008.00661.x
– ident: CIT0056
  doi: 10.1063/1.1699114
– start-page: 319
  volume-title: Conference on Learning Theory
  year: 2017
  ident: CIT0022
– start-page: 1154
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: CIT0032
– start-page: 362
  volume-title: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
  year: 2001
  ident: CIT0058
– ident: CIT0036
  doi: 10.1214/18-STS648
– ident: CIT0061
  doi: 10.1201/b10905-6
– volume: 70
  start-page: 1292
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: CIT0043
– start-page: 1591
  volume-title: Proceedings of the 29th International Conference on Machine Learning, ICML 2012
  year: 2012
  ident: CIT0002
– ident: CIT0023
  doi: 10.1007/s00454-018-9992-1
– start-page: 8278
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: CIT0021
– ident: CIT0030
  doi: 10.1080/10618600.2016.1172487
– ident: CIT0069
  doi: 10.1111/rssb.12365
– ident: CIT0044
  doi: 10.1093/biomet/57.1.97
– volume: 18
  start-page: 4488
  year: 2017
  ident: CIT0059
  publication-title: The Journal of Machine Learning Research
– ident: CIT0091
  doi: 10.1162/tacl_a_00175
– ident: CIT0007
  doi: 10.1007/s11222-018-9826-2
– ident: CIT0004
– ident: CIT0075
  doi: 10.1214/aoms/1177729586
– start-page: 1823
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: CIT0038
– start-page: 3438
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0009
– start-page: 226
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0042
– ident: CIT0078
  doi: 10.1214/ss/1015346320
– volume: 19
  start-page: 312
  year: 2018
  ident: CIT0085
  publication-title: The Journal of Machine Learning Research
– start-page: 3203
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: CIT0031
– start-page: 300
  volume-title: Proceedings of the 31st Conference on Learning Theory, Proceedings of Machine Learning Research (PMLR)
  year: 2018
  ident: CIT0027
– ident: CIT0020
  doi: 10.1201/b10905
– start-page: 382
  volume-title: Artificial Intelligence and Statistics
  year: 2017
  ident: CIT0047
– ident: CIT0079
  doi: 10.1214/154957804100000024
– ident: CIT0019
  doi: 10.1080/10618600.1998.10474787
– ident: CIT0017
  doi: 10.1162/jmlr.2003.3.4-5.993
– ident: CIT0074
  doi: 10.1002/9780470316726
– volume: 80
  start-page: 764
  volume-title: Proceedings of Machine Learning Research (PMLR)
  year: 2018
  ident: CIT0025
– ident: CIT0067
  doi: 10.1214/11-AAP828
– ident: CIT0070
  doi: 10.1080/01621459.2018.1448827
– volume: 18
  start-page: 1515
  year: 2017
  ident: CIT0011
  publication-title: The Journal of Machine Learning Research
– ident: CIT0008
  doi: 10.18637/jss.v091.i03
– ident: CIT0087
– ident: CIT0012
  doi: 10.1016/S0167-6377(02)00231-6
– start-page: 1683
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: CIT0026
– ident: CIT0003
  doi: 10.1137/18M1214780
– ident: CIT0035
  doi: 10.1063/1.430300
– start-page: 6721
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: CIT0006
– ident: CIT0016
  doi: 10.1080/01621459.2017.1285773
– ident: CIT0040
  doi: 10.1111/j.1467-9868.2010.00765.x
– ident: CIT0018
  doi: 10.1080/01621459.2017.1294075
– ident: CIT0092
  doi: 10.1007/s11222-018-9803-9
– start-page: 681
  volume-title: ,” in Proceedings of the 28th International Conference on Machine Learning (ICML
  year: 2011
  ident: CIT0090
– ident: CIT0081
  doi: 10.1145/1390156.1390267
SSID ssj0000788
Score 2.6615462
SecondaryResourceType review_article
Snippet Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for Bayesian inference. They are theoretically well-understood...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Algorithms
Bayesian analysis
Bayesian inference
Bayesian theory
Computational efficiency
Computing costs
Costs
data collection
Inference
Iterative methods
Markov analysis
Markov chain
Markov chain Monte Carlo
Markov chains
Monte Carlo simulation
Railroad transportation
Regression analysis
Scalable Monte Carlo
Statistical inference
Statistical methods
Statistics
Stochastic gradients
Title Stochastic Gradient Markov Chain Monte Carlo
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2020.1847120
https://www.proquest.com/docview/2499236117
https://www.proquest.com/docview/2538950534
https://www.proquest.com/docview/2524313564
Volume 116
WOSCitedRecordID wos000604691700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86POzitzido4JHo2uTNc1RhtOLQ3DiPJV8MmG00nX7-83rx3So7KDHNv2V8JL3keTl9xC6oFxL4iuJQ64NpsoyLIOuwZHz5Ub2VBRqXRSbYMNhNB7zxyqbcFalVcIa2pZEEYWtBuUWclZnxF27KAX4teGaSeBegX0NYNXuIntI6hsNXj5tMSsqTwICA6S-w_PbX1a80wp36TdbXTigwc4_dH0XbVfRp3dTTpc9tGGSfdSEgLPkaz5Al095qiYCnry7rMgHyz240JMuvP5EvCXeA_BZeX2RTdND9Dy4HfXvcVVRASvKeI7DUJCe8jXRoXba3TVcSZ_ZQILPYtZaQpjlETXE-JqGYVc4dy6Fg1ktAybIEWokaWKOkWcUkYpyy4x1IZUWEZcWMEZqaYyULURrScaqohuHqhfT2K9ZSStZxCCLuJJFC10tYe8l38Y6AP86THFebHTYsipJTNZg2_WYxpXqzmK3HuXASOOzn5udh-AubCS0hc6XzU4n4aBFJCadwzeBi8tIL6Qnf-jdKWoGkEAD-z1BGzXybG7O0JZauCmRddBm9_W-U8z2D3R8978
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EBb34FuszgkejTXaTzR6lqBXbXqxQT8s-qVASqWl_vzt51BYVD3pMNhOW2Xnt7sw3CF0QpiUOlPRjpo1PlKW-DJvGT5wvNzJSSax10WyC9nrJYMDma2EgrRL20LYEiihsNSg3HEbXKXHXLkwBgG2oMwndKzCwodu2r0QJTUDKmy_tT2tMi96TQOIDTV3F89NvFvzTAnrpF2tduKC7zf-Y_BbaqAJQ76aUmG20ZNIdtA4xZwnZvIsun_JMDQU8effjIiUs96CmJ5t6raF4Tb0uQFp5LTEeZXvo-e6232r7VVMFXxHKcj-OBY5UoLGOtVPwpmFKBtSGEtwWtdZiTC1LiMEm0CSOm8J5dCkcmdUypALvo-U0S80B8ozCUhFmqbEuqtIiYdICjZFaGiNlA5GalVxViOPQ-GLEgxqYtOIFB17wihcNdDUjeyshN34jYPPrxPPirMOWjUk4_oX2uF5UXmnvO3dbUgagNAH9ftg5CeYiR0wa6Hw27NQS7lpEarIJfBO60AxHMTn8w-zO0Fq73-3wzkPv8Qith5BPA8c_4TFazscTc4JW1dSJx_i0EPoP9ED6tA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA4yiszFXRzXCh6tTpu0aY4yOirqMOCI3kJWRpBWOh1_v3ldXFDxoMc2_Up5eVvSl-8hdECYljhQ0o-ZNj5Rlvoy7Bo_cbHcyEglsdZlswk6GCQPD2xYVxNO6rJKWEPbiiii9NVg3M_aNhVxxy5LAX5tOGYSulvgX0O3ap91qXMEij3q3787Y1q2ngSID5jmEM9Pr_kUnj6Rl35x1mUE6i_-w7cvoYU6_fROKn1ZRjMmXUFtyDgrwuZVdHhbZGos4Mo7z8uCsMKDEz3Zi9cbi8fUuwFCK68n8qdsDd31z0a9C79uqeArQlnhx7HAkQo01rF25t01TMmA2lBC0KLWWoypZQkx2ASaxHFXuHguhYNZLUMq8DpqpVlqNpBnFJaKMEuNdTmVFgmTFjBGammMlB1EGklyVfONQ9uLJx40tKS1LDjIgtey6KCjN9hzRbjxG4B9nCZelDsdtmpLwvEv2O1mTnltuxPuFqQMKGkC-v2wCxHM5Y2YdND-27AzSvjTIlKTTeGZ0CVmOIrJ5h--bg_ND0_7_PpycLWF2iEU08DeT7iNWkU-NTtoTr047ch3S5V_BUl0-aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Gradient+Markov+Chain+Monte+Carlo&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Nemeth%2C+Christopher&rft.au=Fearnhead%2C+Paul&rft.date=2021-01-02&rft.issn=1537-274X&rft.volume=116&rft.issue=533+p.433-450&rft.spage=433&rft.epage=450&rft_id=info:doi/10.1080%2F01621459.2020.1847120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon