MOF-Derived Ni1−xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber

Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy effect among the Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology. MOF-derived Ni@C microspheres dis...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters Vol. 12; no. 1; p. 150
Main Authors: Wang, Lei, Huang, Mengqiu, Yu, Xuefeng, You, Wenbin, Zhang, Jie, Liu, Xianhu, Wang, Min, Che, Renchao
Format: Journal Article
Language:English
Published: Singapore Springer Singapore 01.12.2020
Springer Nature B.V
Subjects:
ISSN:2311-6706, 2150-5551, 2150-5551
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy effect among the Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology. MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB. . Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
AbstractList HighlightsMOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology.MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB..Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1−xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1−xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy effect among the Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology. MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB. . Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
MOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology.MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB.. Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1−xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1−xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
ArticleNumber 150
Author Liu, Xianhu
Che, Renchao
Yu, Xuefeng
Wang, Lei
Zhang, Jie
Wang, Min
You, Wenbin
Huang, Mengqiu
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 2
  givenname: Mengqiu
  surname: Huang
  fullname: Huang, Mengqiu
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 3
  givenname: Xuefeng
  surname: Yu
  fullname: Yu, Xuefeng
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 4
  givenname: Wenbin
  surname: You
  fullname: You, Wenbin
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 5
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 6
  givenname: Xianhu
  surname: Liu
  fullname: Liu, Xianhu
  organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education
– sequence: 7
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
– sequence: 8
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University
BookMark eNp9Uj1vFDEQXaEgEkL-AJUlGpoFf653G0R0XAjSJWmCKC3ba98Z7dnB9l6SDqVKDf8wvwSvLgiR4oqxR5r33ryx52W154M3VfUawXcIQv4-UdhiWMMpIG3bGj6rDjBisGaMob2SE4TqhsNmvzpKySnIMOWYM_qi2icUkRa18KC6O7s4qT-Z6DamB-cOPdz_upmFm48zGVXw4NrlFbgcvVSDAefSh4efv8-cjiHlOOo8RgNkAgu3XOVrM51A-h6clmy4BXNrnXbGZzAfjM4xrOXSm-w0-CY3BhyrFKIy8VX13MohmaPH-7D6ejK_nJ3Wi4vPX2bHi1pT3uWayaalVBNMLe6Rsp3VrSLYUqZ63RCFUW_aDnMLO2g4UrxvtEKqY8xCppQmh9WHre7VqNam18VYlIO4im4t460I0on_K96txDJsBOccltZF4O2jQAw_RpOyWLukzTBIb8KYBGYUE8YR5AX65gn0exijL-OJ8guoYajBcDcKk67pGoQLqt2ipmdP0VihXZbZhcmlGwSCYtoIsd0IAaeYNkJMDfAT6t9pd5LIlpQK2C9N_OdqB-sPNqPMGQ
CitedBy_id crossref_primary_10_1016_j_jcis_2021_06_006
crossref_primary_10_1016_j_carbon_2021_08_064
crossref_primary_10_1002_smll_202308581
crossref_primary_10_1016_j_mtphys_2024_101415
crossref_primary_10_1007_s40820_021_00658_8
crossref_primary_10_1016_j_apsusc_2022_155860
crossref_primary_10_1007_s40820_020_00572_5
crossref_primary_10_1016_j_cej_2022_136394
crossref_primary_10_1016_j_cej_2021_132191
crossref_primary_10_1016_j_synthmet_2023_117307
crossref_primary_10_1016_j_ccr_2025_217167
crossref_primary_10_1016_j_carbon_2021_04_050
crossref_primary_10_1016_j_jallcom_2023_173048
crossref_primary_10_1039_D2NR04333E
crossref_primary_10_3390_met12050848
crossref_primary_10_1016_j_cej_2022_134655
crossref_primary_10_1007_s40820_021_00734_z
crossref_primary_10_1016_j_compscitech_2022_109795
crossref_primary_10_1007_s00604_024_06623_7
crossref_primary_10_1016_j_carbon_2023_03_014
crossref_primary_10_1016_j_jallcom_2022_167326
crossref_primary_10_1016_j_materresbull_2024_112928
crossref_primary_10_1016_j_jcis_2022_02_086
crossref_primary_10_1016_j_matchemphys_2021_124457
crossref_primary_10_1016_j_materresbull_2025_113517
crossref_primary_10_1016_j_cej_2022_139430
crossref_primary_10_1016_j_jmst_2021_06_052
crossref_primary_10_1039_D1QM00659B
crossref_primary_10_1016_j_physe_2022_115463
crossref_primary_10_1016_j_cap_2021_06_008
crossref_primary_10_1016_j_cej_2023_146582
crossref_primary_10_1002_adfm_202203161
crossref_primary_10_1002_adma_202106195
crossref_primary_10_1002_asia_202400896
crossref_primary_10_1016_j_jmst_2023_06_024
crossref_primary_10_1016_j_carbon_2021_04_029
crossref_primary_10_1016_j_solmat_2025_113967
crossref_primary_10_1002_adfm_202308898
crossref_primary_10_1002_smtd_202200429
crossref_primary_10_1016_j_carbon_2021_12_075
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_26599_NR_2025_94907209
crossref_primary_10_1016_j_cej_2021_129350
crossref_primary_10_1016_j_carbon_2025_120459
crossref_primary_10_1016_j_jmmm_2022_169086
crossref_primary_10_1016_j_cej_2023_147413
crossref_primary_10_1016_j_carbon_2022_06_026
crossref_primary_10_1016_j_apsusc_2025_163655
crossref_primary_10_1016_j_carbon_2022_07_072
crossref_primary_10_1016_j_ceramint_2022_10_140
crossref_primary_10_1016_j_jallcom_2023_172182
crossref_primary_10_1016_j_jallcom_2024_173690
crossref_primary_10_1016_j_carbon_2022_06_031
crossref_primary_10_1016_j_colsurfa_2023_131678
crossref_primary_10_1016_j_ceramint_2022_06_229
crossref_primary_10_1007_s12613_022_2488_2
crossref_primary_10_1016_j_carbon_2020_11_044
crossref_primary_10_1016_j_carbon_2021_11_043
crossref_primary_10_1002_aelm_202201159
crossref_primary_10_1016_j_pnsc_2024_03_008
crossref_primary_10_1016_j_carbon_2021_11_047
crossref_primary_10_1007_s42114_025_01340_y
crossref_primary_10_1016_j_carbon_2022_10_083
crossref_primary_10_1016_j_jallcom_2023_170017
crossref_primary_10_1002_adfm_202315722
crossref_primary_10_1007_s13204_020_01639_w
crossref_primary_10_1016_j_ceramint_2024_11_367
crossref_primary_10_1002_smll_202308378
crossref_primary_10_1002_smll_202306990
crossref_primary_10_1016_j_jallcom_2021_160556
crossref_primary_10_1016_j_carbon_2022_07_051
crossref_primary_10_1016_j_jallcom_2023_169368
crossref_primary_10_1142_S0217984924502105
crossref_primary_10_1016_j_fuel_2022_125811
crossref_primary_10_1016_j_carbon_2022_10_091
crossref_primary_10_1016_j_jece_2023_109652
crossref_primary_10_1016_j_carbon_2023_01_057
crossref_primary_10_1007_s10854_023_11245_5
crossref_primary_10_1016_j_cej_2024_148584
crossref_primary_10_1007_s10854_022_09789_z
crossref_primary_10_1016_j_ijhydene_2023_08_027
crossref_primary_10_1016_j_carbon_2021_05_031
crossref_primary_10_1016_j_carbon_2021_11_027
crossref_primary_10_1016_j_compositesb_2021_109175
crossref_primary_10_1016_j_carbon_2022_02_024
crossref_primary_10_1016_j_carbon_2020_09_050
crossref_primary_10_1007_s40820_020_00568_1
crossref_primary_10_1016_j_carbon_2025_120650
crossref_primary_10_1016_j_compositesb_2024_111344
crossref_primary_10_1002_advs_202303217
crossref_primary_10_1016_j_ceramint_2023_05_037
crossref_primary_10_1039_D0NR06267G
crossref_primary_10_1002_smll_202306503
crossref_primary_10_1016_j_cej_2022_138160
crossref_primary_10_1016_j_carbon_2023_118400
crossref_primary_10_1016_j_compositesa_2025_108770
crossref_primary_10_1016_j_cej_2025_159506
crossref_primary_10_1016_j_carbon_2022_02_015
crossref_primary_10_1016_j_mtla_2023_101727
crossref_primary_10_1016_j_materresbull_2024_112673
crossref_primary_10_1016_j_jmst_2022_05_015
crossref_primary_10_1016_j_cej_2023_148383
crossref_primary_10_1016_j_jmmm_2024_172423
crossref_primary_10_1007_s40820_022_00865_x
crossref_primary_10_1063_5_0052153
crossref_primary_10_1016_j_jcis_2023_08_135
crossref_primary_10_1002_smll_202101416
crossref_primary_10_1016_j_carbon_2022_08_066
crossref_primary_10_1016_j_cej_2023_142398
crossref_primary_10_1016_j_powtec_2021_09_019
crossref_primary_10_1016_j_jcis_2023_05_049
crossref_primary_10_1007_s12274_022_4695_6
crossref_primary_10_1016_j_jcis_2021_10_065
crossref_primary_10_1007_s10853_022_07487_z
crossref_primary_10_1016_j_cej_2022_137409
crossref_primary_10_1039_D1RA01880A
crossref_primary_10_1016_j_cej_2023_146199
crossref_primary_10_1016_j_ceramint_2022_01_171
crossref_primary_10_1016_j_micromeso_2022_111763
crossref_primary_10_1016_j_cej_2025_165960
crossref_primary_10_1016_j_matlet_2021_130766
crossref_primary_10_1002_smll_202104380
crossref_primary_10_1002_smll_202204649
crossref_primary_10_1016_j_carbon_2024_119817
crossref_primary_10_1016_j_mtphys_2022_100950
crossref_primary_10_1016_j_carbon_2022_07_005
crossref_primary_10_1039_D1NR01607E
crossref_primary_10_1016_j_jre_2025_06_011
crossref_primary_10_1002_adma_202107538
crossref_primary_10_1016_j_jmst_2021_11_006
crossref_primary_10_1016_S1872_5805_22_60624_3
crossref_primary_10_1016_j_apmate_2022_100091
crossref_primary_10_1016_j_energy_2025_136813
crossref_primary_10_1039_D1NR03450B
crossref_primary_10_1016_j_synthmet_2021_116827
crossref_primary_10_1016_j_jallcom_2023_170829
crossref_primary_10_1016_j_carbon_2021_09_041
crossref_primary_10_1007_s10853_025_10802_z
crossref_primary_10_1039_D0NR07991J
crossref_primary_10_1016_j_cej_2021_133586
crossref_primary_10_1016_j_ceramint_2020_10_074
crossref_primary_10_1063_5_0067791
crossref_primary_10_1016_j_cej_2024_152225
crossref_primary_10_1016_j_carbon_2022_08_090
crossref_primary_10_1016_j_jcis_2023_05_195
crossref_primary_10_1016_j_jmst_2022_06_013
crossref_primary_10_1016_j_jcis_2022_08_082
crossref_primary_10_1007_s42114_022_00514_2
crossref_primary_10_1088_1361_6463_ac196d
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1002_smll_202309806
crossref_primary_10_1016_j_carbon_2023_01_031
crossref_primary_10_1016_j_apsusc_2023_156935
crossref_primary_10_1002_advs_202304218
crossref_primary_10_1016_j_ijhydene_2025_01_379
crossref_primary_10_3390_nano15110806
crossref_primary_10_1007_s10853_024_09553_0
crossref_primary_10_1039_D2NR01024K
crossref_primary_10_1002_advs_202204151
crossref_primary_10_1016_j_carbon_2023_118117
crossref_primary_10_1016_j_carbon_2024_119604
crossref_primary_10_1016_j_coco_2022_101135
crossref_primary_10_1002_smll_202201587
crossref_primary_10_1016_j_carbon_2021_08_025
crossref_primary_10_1016_j_jcis_2021_11_197
crossref_primary_10_1016_j_mser_2024_100838
crossref_primary_10_1007_s11837_022_05236_w
crossref_primary_10_1016_j_ceramint_2022_10_323
crossref_primary_10_1016_j_mtphys_2023_101178
crossref_primary_10_1002_smll_202003905
crossref_primary_10_1016_j_ccr_2023_215465
crossref_primary_10_1016_j_mtphys_2023_101058
crossref_primary_10_1002_cjoc_202400131
crossref_primary_10_1016_j_jcis_2022_09_027
crossref_primary_10_1002_smll_202302686
crossref_primary_10_1016_j_apsusc_2020_148051
crossref_primary_10_1002_sstr_202100033
crossref_primary_10_1007_s40820_021_00667_7
crossref_primary_10_1016_j_jallcom_2022_164257
crossref_primary_10_1002_smll_202503955
crossref_primary_10_1016_j_powtec_2020_11_044
crossref_primary_10_1002_adfm_202305082
crossref_primary_10_1007_s40820_021_00606_6
crossref_primary_10_1016_j_jcis_2022_06_156
crossref_primary_10_1016_j_colsurfa_2024_135372
crossref_primary_10_1007_s40820_020_00552_9
crossref_primary_10_1016_j_cej_2021_133112
crossref_primary_10_1016_j_partic_2022_12_013
crossref_primary_10_1016_j_jallcom_2024_175499
crossref_primary_10_1016_j_carbon_2021_10_077
crossref_primary_10_1007_s40820_021_00704_5
crossref_primary_10_1039_D0QI01502D
crossref_primary_10_1007_s12274_022_4401_8
crossref_primary_10_3390_buildings14041096
crossref_primary_10_1007_s40820_022_00808_6
crossref_primary_10_1016_j_cej_2022_140876
crossref_primary_10_1016_j_mtphys_2024_101390
crossref_primary_10_1007_s12274_022_4522_0
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1016_j_carbon_2022_05_029
crossref_primary_10_1039_D1QM00731A
crossref_primary_10_1002_advs_202412890
crossref_primary_10_1016_j_jcis_2021_08_143
crossref_primary_10_1016_j_carbon_2024_119513
crossref_primary_10_1016_j_synthmet_2022_117077
crossref_primary_10_1016_j_ceramint_2025_01_136
crossref_primary_10_1016_j_mtnano_2025_100591
crossref_primary_10_3390_cryst12070894
crossref_primary_10_1016_j_ceramint_2021_08_027
crossref_primary_10_1002_sstr_202200219
crossref_primary_10_1016_j_nanoms_2024_06_007
crossref_primary_10_1016_j_jallcom_2022_164232
crossref_primary_10_1007_s42114_024_01077_0
crossref_primary_10_1016_j_carbon_2025_120241
crossref_primary_10_1016_j_jmst_2023_01_053
crossref_primary_10_1016_j_carbon_2022_05_037
crossref_primary_10_1016_j_cej_2025_164370
crossref_primary_10_1016_j_jallcom_2023_172384
crossref_primary_10_1016_j_jcis_2021_01_090
Cites_doi 10.1016/j.carbon.2018
10.1021/acsami.8b10685
10.1021/jacs.7b12420
10.1002/adma.201907156
10.1039/c9tc03691a
10.1038/nenergy.2015.6
10.1007/s40820-017-0179-8
10.1021/acsami.5b12789
10.1038/46248
10.1039/c8tc04984j
10.1016/j.matlet.2019.02.023
10.1021/acsami.5b05595
10.1007/s40820-019-0307-8
10.1038/ncomms15341
10.1002/adfm.201908299
10.1016/j.compositesb.2018.11.008
10.1016/j.carbon.2017.01.036
10.1016/j.carbon.2017.09.007
10.1039/C3CS60472A
10.1016/j.cej.2019.123099
10.1016/j.carbon.2019.07.049
10.1021/acssuschemeng.7b02565
10.1016/j.cej.2020.124149
10.1021/acsami.9b00593
10.1021/acssuschemeng.8b01270
10.1016/j.jmmm.2019.165334
10.1002/smll.201602779
10.1016/j.carbon.2009.10.028
10.1021/acsami.8b00320
10.1016/j.cej.2018.01.152
10.1016/j.compositesb.2019.02.054
10.1016/j.cej.2016.11.089
10.1016/j.cej.2017.09.101
10.1016/j.cej.2019.122591
10.1021/ja511539a
10.1016/j.apcatb.2019.118317
10.1039/C5NR03745J
10.1021/acsami.8b05414
10.1038/ncomms7628
10.1002/chem.201805565
10.1016/j.carbon.2017.10.092
10.1016/j.jallcom.2018.10.378
10.1039/C6TC04048A
10.1016/j.jallcom.2019.07.334
10.1021/acsami.8b09093
10.1016/j.cej.2016.12.117
10.1021/acsami.7b10067
10.1039/B807080F
10.1021/acs.langmuir.8b03238
10.1007/s40820-019-0270-4
10.1039/c7tc01991b
10.1039/C5TA01457C
10.1021/acsami.8b16727
10.1002/adma.201400108
10.1002/smll.202000158
10.1021/acsami.8b00965
10.1002/adfm.201707573
10.1002/adma.201503149
10.1002/smll.201900900
10.1016/j.carbon.2020.02.047
10.1016/j.carbon.2013.07.110
10.1126/science.1056598
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s40820-020-00488-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 2150-5551
ExternalDocumentID PMC7770844
10_1007_s40820_020_00488_0
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c479t-5a6844c324f2d1bf9fc8b32f45bdc63b21de8927f090e71b7d6cb1b955f05bbc3
IEDL.DBID M7S
ISICitedReferencesCount 279
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553132900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2311-6706
2150-5551
IngestDate Tue Nov 04 02:02:10 EST 2025
Sat Sep 27 22:27:12 EDT 2025
Sat Oct 18 22:50:15 EDT 2025
Sat Oct 18 22:44:15 EDT 2025
Tue Nov 18 21:31:35 EST 2025
Sat Nov 29 02:07:24 EST 2025
Fri Feb 21 02:35:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Polarization
Electromagnetic parameters
Microwave absorption
Magnetic coupling
Metal–organic frameworks
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-5a6844c324f2d1bf9fc8b32f45bdc63b21de8927f090e71b7d6cb1b955f05bbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2471651620?pq-origsite=%requestingapplication%
PMID 34138180
PQID 2423969612
PQPubID 2044332
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770844
proquest_miscellaneous_2542357107
proquest_journals_2471651620
proquest_journals_2423969612
crossref_citationtrail_10_1007_s40820_020_00488_0
crossref_primary_10_1007_s40820_020_00488_0
springer_journals_10_1007_s40820_020_00488_0
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Kuang, Song, Ning, Li, Zhao (CR56) 2018; 127
Wang, Xu, Fu, Zhu, Jiao (CR14) 2019; 11
Li, Li, Zong, Tan, Sun (CR48) 2017; 115
Liao, He, Zhou, Nie, Wang (CR22) 2018; 34
Liao, He, Zhou, Nie, Wang (CR35) 2018; 10
Tang, Salunkhe, Liu, Torad, Imura, Furukawa, Yamauchi (CR9) 2015; 137
Zhang, Gao, Xing (CR54) 2019; 777
Liu, Cao, Bi, Liang, Yuan, She, Yang, Che (CR12) 2016; 28
You, Bi, She, Zhang, Che (CR58) 2017; 13
Li, Han, Ma, Liu, Wang (CR17) 2018; 6
Xu, Liu, Liu, Ouyang, Hu (CR10) 2018; 28
Wang, Li, Li, Zhao, Che (CR31) 2018; 10
Ma, Wang, Cao, Han, Yang, Yuan, Cao (CR36) 2018; 339
Chen, Eddaoudi, Hyde, O’Keeffe, Yaghi (CR4) 2001; 291
Zhao, Lv, Zhou, Zheng, Wu, Xu (CR37) 2018; 10
Li, Yin, Han, Song, Sun (CR41) 2017; 5
Xiang, Song, Xiong, Pan, Wang (CR40) 2019; 142
Qiao, Zhang, Xu, Kong, Lv (CR42) 2020; 380
Qu, Zhu, Li, Zhang, Chen (CR57) 2016; 8
Li, Eddaoudi, O’Keeffe, Yaghi (CR1) 1999; 402
Wang, Yu, Li, Zhang, Wang, Che (CR18) 2020; 383
Wu, Wang, Jin, Yan, Yi (CR26) 2019; 244
Wang, Zhang, Wang, Che (CR39) 2019; 7
Wang, Ma, Shu, Cao (CR33) 2017; 332
Zhang, Liu, Cheng, Cao, Zheng (CR15) 2019; 11
Lu, Cao, Chen, Cao, Liu (CR60) 2015; 7
Gao, Zhang, Xing, Li (CR55) 2020; 387
Wang, Dai, Geng, Ma, Li (CR32) 2015; 7
Wang, Yu, Li, Zhang, Wang, Che (CR38) 2019; 155
Liu, Liu, Feng, Shui, Yu (CR19) 2017; 314
Liang, Quan, Ji, Liu, Zhao (CR21) 2017; 5
Wang, Chen, Tian, Li, Zhou, Duan, Liu (CR46) 2018; 10
Liu, Liu, Yang, Xu, Hou, Ji (CR24) 2018; 10
Balci, Polat, Kakenov, Kocabas (CR13) 2015; 6
He, Cao, Shu, Cai, Wang, Zhao, Yuan (CR61) 2019; 11
Shi, Benetti, Li, Wei, Rosei (CR11) 2020; 263
Liu, Shao, Ji, Liang, Quan, Du (CR34) 2017; 313
Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (CR7) 2009; 38
Shu, Cao, Zhang, Wang, Cao, Fang, Cao (CR47) 2020; 30
Wen, Cao, Lu, Cao, Shi (CR59) 2014; 26
Huang, Wang, Pei, You, Yu, Wu, Che (CR62) 2020; 16
Zhang, Lv, Chen, Wu, He, Zhang, Zou (CR29) 2019; 487
Ma, Zhang, Liu, Ji (CR27) 2016; 4
Zhou, Wu, Liu, Yan (CR43) 2019; 25
Duan, Chen, Zhao (CR5) 2017; 8
Chen, Huang, Huang, Zhang, Ge (CR53) 2017; 124
Chen, Xi, Zhou, Peng, Chen, Gao (CR52) 2018; 10
Wang, Li, Li, Yu, Zhao, Zhang, Wang, Che (CR30) 2019; 15
Xia, Yan, Li, Wu, Lou, Wang (CR3) 2016; 1
Wang, Bai, Wen, Du, Lin (CR28) 2019; 166
Pan, Sun, Liu, Cao, Wu (CR6) 2018; 140
Gu, Lv, Quan, Liang, Zhang, Ji (CR23) 2019; 806
Yan, Huang, Han, Gao, Liu (CR49) 2019; 163
Zhu, Xu (CR2) 2014; 43
Liu, Tan, Yang, Ji (CR16) 2018; 10
Cao, Wang, Zhang, Cao, Fang, Yuan (CR44) 2020; 32
Yin, Liu, Wei, Li, Nie (CR20) 2017; 9
Wu, Liu, Xu, Liu, Liu (CR45) 2019; 7
Wen, Cao, Hou, Song, Zhang (CR51) 2013; 65
Qiang, Du, Zhao, Wang, Tian (CR25) 2015; 3
Cao, Song, Hou, Wen, Yuan (CR50) 2010; 48
Shu, Yang, Zhang, Huang, Cao (CR8) 2020; 162
W Liu (488_CR16) 2018; 10
Y Pan (488_CR6) 2018; 140
J Lee (488_CR7) 2009; 38
BL Chen (488_CR4) 2001; 291
B Wen (488_CR59) 2014; 26
B Kuang (488_CR56) 2018; 127
L Wang (488_CR38) 2019; 155
L Wang (488_CR31) 2018; 10
L Wang (488_CR18) 2020; 383
B Wen (488_CR51) 2013; 65
MQ Huang (488_CR62) 2020; 16
JC Shu (488_CR8) 2020; 162
J Ma (488_CR27) 2016; 4
C Zhou (488_CR43) 2019; 25
XX Wang (488_CR33) 2017; 332
C Chen (488_CR52) 2018; 10
J Qiao (488_CR42) 2020; 380
H Li (488_CR1) 1999; 402
Z Li (488_CR48) 2017; 115
QL Zhu (488_CR2) 2014; 43
X Xu (488_CR10) 2018; 28
H Wang (488_CR32) 2015; 7
S Wang (488_CR14) 2019; 11
X Liang (488_CR21) 2017; 5
L Shi (488_CR11) 2020; 263
WB You (488_CR58) 2017; 13
L Wang (488_CR28) 2019; 166
R Qiang (488_CR25) 2015; 3
YC Zhang (488_CR54) 2019; 777
H Chen (488_CR53) 2017; 124
J Yan (488_CR49) 2019; 163
Q Liao (488_CR22) 2018; 34
Q Wu (488_CR26) 2019; 244
Q Liao (488_CR35) 2018; 10
Z Li (488_CR17) 2018; 6
W Gu (488_CR23) 2019; 806
L Wang (488_CR39) 2019; 7
MM Lu (488_CR60) 2015; 7
MS Cao (488_CR44) 2020; 32
G Zhao (488_CR37) 2018; 10
KF Wang (488_CR46) 2018; 10
Z Zhang (488_CR29) 2019; 487
N Wu (488_CR45) 2019; 7
J Tang (488_CR9) 2015; 137
P He (488_CR61) 2019; 11
JJ Duan (488_CR5) 2017; 8
BY Xia (488_CR3) 2016; 1
J Ma (488_CR36) 2018; 339
D Zhang (488_CR15) 2019; 11
MS Cao (488_CR50) 2010; 48
O Balci (488_CR13) 2015; 6
ST Gao (488_CR55) 2020; 387
JC Shu (488_CR47) 2020; 30
X Li (488_CR41) 2017; 5
Q Liu (488_CR19) 2017; 314
L Wang (488_CR30) 2019; 15
W Liu (488_CR34) 2017; 313
Z Xiang (488_CR40) 2019; 142
W Liu (488_CR24) 2018; 10
Q Liu (488_CR12) 2016; 28
B Qu (488_CR57) 2016; 8
Y Yin (488_CR20) 2017; 9
References_xml – volume: 142
  start-page: 20
  year: 2019
  end-page: 31
  ident: CR40
  article-title: Enhanced electromagnetic wave absorption of nanoporous Fe O @carbon composites derived from metal–organic frameworks
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018
– volume: 10
  start-page: 31610
  year: 2018
  end-page: 31622
  ident: CR16
  article-title: Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10685
– volume: 140
  start-page: 2610
  year: 2018
  end-page: 2618
  ident: CR6
  article-title: Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12420
– volume: 32
  start-page: 1907156
  year: 2020
  ident: CR44
  article-title: Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907156
– volume: 7
  start-page: 11167
  year: 2019
  end-page: 11176
  ident: CR39
  article-title: Hollow porous Fe O microspheres wrapped by reduced graphene oxides with high-performance microwave absorption
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc03691a
– volume: 1
  start-page: 15006
  year: 2016
  ident: CR3
  article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.6
– volume: 10
  start-page: 26
  issue: 2
  year: 2018
  ident: CR52
  article-title: Porous graphene microflowers for high-performance microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0179-8
– volume: 8
  start-page: 3730
  issue: 6
  year: 2016
  end-page: 3735
  ident: CR57
  article-title: Coupling hollow Fe O –Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12789
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  ident: CR1
  article-title: Design and synthesis of an exceptionally stable and highly porous metal–organic framework
  publication-title: Nature
  doi: 10.1038/46248
– volume: 7
  start-page: 1659
  year: 2019
  end-page: 1669
  ident: CR45
  article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c8tc04984j
– volume: 244
  start-page: 138
  year: 2019
  end-page: 141
  ident: CR26
  article-title: MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.02.023
– volume: 7
  start-page: 19408
  issue: 34
  year: 2015
  end-page: 19415
  ident: CR60
  article-title: Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05595
– volume: 11
  start-page: 76
  year: 2019
  ident: CR14
  article-title: Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0307-8
– volume: 8
  start-page: 15341
  year: 2017
  ident: CR5
  article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 30
  start-page: 1908299
  year: 2020
  ident: CR47
  article-title: Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908299
– volume: 163
  start-page: 67
  year: 2019
  end-page: 76
  ident: CR49
  article-title: Metal organic framework (ZIF-67)-derived hollow CoS /N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.11.008
– volume: 115
  start-page: 493
  year: 2017
  end-page: 502
  ident: CR48
  article-title: Solvothermal synthesis of nitrogen-doped graphene decorated by super-paramagnetic Fe O nanoparticles and their applications as enhanced synergistic microwave absorbers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.036
– volume: 124
  start-page: 506
  year: 2017
  end-page: 514
  ident: CR53
  article-title: Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.09.007
– volume: 43
  start-page: 5468
  year: 2014
  end-page: 5512
  ident: CR2
  article-title: Metal–organic framework composites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 383
  start-page: 123099
  year: 2020
  ident: CR18
  article-title: MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123099
– volume: 155
  start-page: 298
  year: 2019
  end-page: 308
  ident: CR38
  article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe O anchored on multi-wall carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.049
– volume: 5
  start-page: 10570
  year: 2017
  end-page: 10579
  ident: CR21
  article-title: Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband absorption
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02565
– volume: 387
  start-page: 124149
  year: 2020
  ident: CR55
  article-title: Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption
  publication-title: Chem. Engin. J.
  doi: 10.1016/j.cej.2020.124149
– volume: 11
  start-page: 12535
  year: 2019
  end-page: 12543
  ident: CR61
  article-title: Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00593
– volume: 6
  start-page: 8904
  year: 2018
  end-page: 8913
  ident: CR17
  article-title: MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01270
– volume: 487
  start-page: 165334
  year: 2019
  ident: CR29
  article-title: Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165334
– volume: 13
  start-page: 1602779
  year: 2017
  ident: CR58
  article-title: Dipolar-distribution cavity γ-Fe O @C@α-MnO nanospindle with broadened microwave absorption bandwidth by chemically etching
  publication-title: Small
  doi: 10.1002/smll.201602779
– volume: 48
  start-page: 788
  year: 2010
  end-page: 796
  ident: CR50
  article-title: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.10.028
– volume: 10
  start-page: 8965
  year: 2018
  end-page: 8975
  ident: CR24
  article-title: A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b00320
– volume: 339
  start-page: 487
  year: 2018
  end-page: 498
  ident: CR36
  article-title: A facile fabrication and highly tunable microwave absorption of 3D flower-like Co O –rGO hybrid-architectures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.152
– volume: 166
  start-page: 464
  year: 2019
  end-page: 471
  ident: CR28
  article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber
  publication-title: Compos. B
  doi: 10.1016/j.compositesb.2019.02.054
– volume: 314
  start-page: 320
  year: 2017
  end-page: 327
  ident: CR19
  article-title: Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.089
– volume: 332
  start-page: 321
  year: 2017
  end-page: 330
  ident: CR33
  article-title: Confinedly tailoring Fe O clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.101
– volume: 380
  start-page: 122591
  year: 2020
  ident: CR42
  article-title: Design and synthesis of TiO /Co/carbon nanofibers with tunable and efficient electromagnetic absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122591
– volume: 137
  start-page: 1572
  year: 2015
  end-page: 1580
  ident: CR9
  article-title: Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511539a
– volume: 263
  start-page: 118317
  year: 2020
  ident: CR11
  article-title: Phase-junction design of MOF-derived TiO2 photoanodes sensitized with quantum dots for efficient hydrogen generation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118317
– volume: 7
  start-page: 17312
  issue: 41
  year: 2015
  end-page: 17319
  ident: CR32
  article-title: Co Ni nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption
  publication-title: Nanoscale
  doi: 10.1039/C5NR03745J
– volume: 10
  start-page: 22602
  year: 2018
  end-page: 22610
  ident: CR31
  article-title: Enhanced polarization from hollow cube-like ZnSnO wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05414
– volume: 6
  start-page: 6628
  year: 2015
  ident: CR13
  article-title: Graphene-enabled electrically switchable radar-absorbing surfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7628
– volume: 25
  start-page: 2234
  year: 2019
  end-page: 2241
  ident: CR43
  article-title: Metal–organic framework derived hierarchical Co/C@V O hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber
  publication-title: Chem
  doi: 10.1002/chem.201805565
– volume: 127
  start-page: 209
  year: 2018
  end-page: 217
  ident: CR56
  article-title: Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.092
– volume: 777
  start-page: 544
  year: 2019
  end-page: 553
  ident: CR54
  article-title: Reduced graphene oxide wrapped cube-like ZnSnO : as a high-performance microwave absorber
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.10.378
– volume: 4
  start-page: 11419
  year: 2016
  end-page: 11426
  ident: CR27
  article-title: Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04048A
– volume: 806
  start-page: 983
  year: 2019
  end-page: 991
  ident: CR23
  article-title: Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.334
– volume: 10
  start-page: 29136
  year: 2018
  end-page: 29144
  ident: CR35
  article-title: Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09093
– volume: 313
  start-page: 734
  year: 2017
  end-page: 744
  ident: CR34
  article-title: Metal–organic–frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.117
– volume: 9
  start-page: 30850
  year: 2017
  end-page: 30861
  ident: CR20
  article-title: Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10067
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: CR7
  article-title: Metal–organic framework materials as catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B807080F
– volume: 34
  start-page: 15854
  year: 2018
  end-page: 15863
  ident: CR22
  article-title: Rational construction of Ti C T /Co-MOF-derived laminated Co/TiO -C hybrids for enhanced electromagnetic wave absorption
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03238
– volume: 11
  start-page: 38
  year: 2019
  ident: CR15
  article-title: Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0270-4
– volume: 5
  start-page: 7621
  year: 2017
  end-page: 7628
  ident: CR41
  article-title: A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti CTx MXene
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c7tc01991b
– volume: 3
  start-page: 13426
  year: 2015
  end-page: 13434
  ident: CR25
  article-title: Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01457C
– volume: 10
  start-page: 42925
  year: 2018
  end-page: 42932
  ident: CR37
  article-title: Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16727
– volume: 26
  start-page: 3484
  year: 2014
  end-page: 3489
  ident: CR59
  article-title: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 16
  start-page: 2000158
  year: 2020
  ident: CR62
  article-title: Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic–dielectric synergy toward strong microwave absorption
  publication-title: Small
  doi: 10.1002/smll.202000158
– volume: 10
  start-page: 11333
  issue: 13
  year: 2018
  end-page: 11342
  ident: CR46
  article-title: Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00965
– volume: 28
  start-page: 1707573
  year: 2018
  ident: CR10
  article-title: A general metal–organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707573
– volume: 28
  start-page: 486
  year: 2016
  end-page: 490
  ident: CR12
  article-title: CoNi@SiO @TiO and CoNi@Air@TiO microspheres with strong wideband microwave absorption
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503149
– volume: 15
  start-page: 1900900
  year: 2019
  ident: CR30
  article-title: Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth
  publication-title: Small
  doi: 10.1002/smll.201900900
– volume: 162
  start-page: 157
  year: 2020
  end-page: 171
  ident: CR8
  article-title: Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.047
– volume: 65
  start-page: 124
  year: 2013
  end-page: 139
  ident: CR51
  article-title: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.110
– volume: 291
  start-page: 1021
  year: 2001
  end-page: 1023
  ident: CR4
  article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores
  publication-title: Science
  doi: 10.1126/science.1056598
– volume: 26
  start-page: 3484
  year: 2014
  ident: 488_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 11
  start-page: 76
  year: 2019
  ident: 488_CR14
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0307-8
– volume: 124
  start-page: 506
  year: 2017
  ident: 488_CR53
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.09.007
– volume: 10
  start-page: 26
  issue: 2
  year: 2018
  ident: 488_CR52
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0179-8
– volume: 13
  start-page: 1602779
  year: 2017
  ident: 488_CR58
  publication-title: Small
  doi: 10.1002/smll.201602779
– volume: 25
  start-page: 2234
  year: 2019
  ident: 488_CR43
  publication-title: Chem
  doi: 10.1002/chem.201805565
– volume: 166
  start-page: 464
  year: 2019
  ident: 488_CR28
  publication-title: Compos. B
  doi: 10.1016/j.compositesb.2019.02.054
– volume: 115
  start-page: 493
  year: 2017
  ident: 488_CR48
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.036
– volume: 43
  start-page: 5468
  year: 2014
  ident: 488_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 7
  start-page: 17312
  issue: 41
  year: 2015
  ident: 488_CR32
  publication-title: Nanoscale
  doi: 10.1039/C5NR03745J
– volume: 7
  start-page: 19408
  issue: 34
  year: 2015
  ident: 488_CR60
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05595
– volume: 48
  start-page: 788
  year: 2010
  ident: 488_CR50
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.10.028
– volume: 142
  start-page: 20
  year: 2019
  ident: 488_CR40
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018
– volume: 11
  start-page: 12535
  year: 2019
  ident: 488_CR61
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00593
– volume: 10
  start-page: 29136
  year: 2018
  ident: 488_CR35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09093
– volume: 402
  start-page: 276
  year: 1999
  ident: 488_CR1
  publication-title: Nature
  doi: 10.1038/46248
– volume: 314
  start-page: 320
  year: 2017
  ident: 488_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.089
– volume: 313
  start-page: 734
  year: 2017
  ident: 488_CR34
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.117
– volume: 5
  start-page: 7621
  year: 2017
  ident: 488_CR41
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c7tc01991b
– volume: 806
  start-page: 983
  year: 2019
  ident: 488_CR23
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.334
– volume: 28
  start-page: 486
  year: 2016
  ident: 488_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503149
– volume: 3
  start-page: 13426
  year: 2015
  ident: 488_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01457C
– volume: 1
  start-page: 15006
  year: 2016
  ident: 488_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.6
– volume: 11
  start-page: 38
  year: 2019
  ident: 488_CR15
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0270-4
– volume: 10
  start-page: 8965
  year: 2018
  ident: 488_CR24
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b00320
– volume: 8
  start-page: 15341
  year: 2017
  ident: 488_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 383
  start-page: 123099
  year: 2020
  ident: 488_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123099
– volume: 30
  start-page: 1908299
  year: 2020
  ident: 488_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908299
– volume: 7
  start-page: 11167
  year: 2019
  ident: 488_CR39
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc03691a
– volume: 10
  start-page: 31610
  year: 2018
  ident: 488_CR16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10685
– volume: 8
  start-page: 3730
  issue: 6
  year: 2016
  ident: 488_CR57
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12789
– volume: 127
  start-page: 209
  year: 2018
  ident: 488_CR56
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.092
– volume: 244
  start-page: 138
  year: 2019
  ident: 488_CR26
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.02.023
– volume: 16
  start-page: 2000158
  year: 2020
  ident: 488_CR62
  publication-title: Small
  doi: 10.1002/smll.202000158
– volume: 7
  start-page: 1659
  year: 2019
  ident: 488_CR45
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c8tc04984j
– volume: 6
  start-page: 6628
  year: 2015
  ident: 488_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7628
– volume: 140
  start-page: 2610
  year: 2018
  ident: 488_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12420
– volume: 155
  start-page: 298
  year: 2019
  ident: 488_CR38
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.049
– volume: 137
  start-page: 1572
  year: 2015
  ident: 488_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511539a
– volume: 380
  start-page: 122591
  year: 2020
  ident: 488_CR42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122591
– volume: 9
  start-page: 30850
  year: 2017
  ident: 488_CR20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10067
– volume: 332
  start-page: 321
  year: 2017
  ident: 488_CR33
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.101
– volume: 10
  start-page: 42925
  year: 2018
  ident: 488_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16727
– volume: 5
  start-page: 10570
  year: 2017
  ident: 488_CR21
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02565
– volume: 387
  start-page: 124149
  year: 2020
  ident: 488_CR55
  publication-title: Chem. Engin. J.
  doi: 10.1016/j.cej.2020.124149
– volume: 28
  start-page: 1707573
  year: 2018
  ident: 488_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707573
– volume: 487
  start-page: 165334
  year: 2019
  ident: 488_CR29
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165334
– volume: 777
  start-page: 544
  year: 2019
  ident: 488_CR54
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.10.378
– volume: 163
  start-page: 67
  year: 2019
  ident: 488_CR49
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.11.008
– volume: 32
  start-page: 1907156
  year: 2020
  ident: 488_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907156
– volume: 263
  start-page: 118317
  year: 2020
  ident: 488_CR11
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118317
– volume: 6
  start-page: 8904
  year: 2018
  ident: 488_CR17
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01270
– volume: 34
  start-page: 15854
  year: 2018
  ident: 488_CR22
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03238
– volume: 10
  start-page: 22602
  year: 2018
  ident: 488_CR31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05414
– volume: 339
  start-page: 487
  year: 2018
  ident: 488_CR36
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.152
– volume: 38
  start-page: 1450
  year: 2009
  ident: 488_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B807080F
– volume: 4
  start-page: 11419
  year: 2016
  ident: 488_CR27
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04048A
– volume: 291
  start-page: 1021
  year: 2001
  ident: 488_CR4
  publication-title: Science
  doi: 10.1126/science.1056598
– volume: 15
  start-page: 1900900
  year: 2019
  ident: 488_CR30
  publication-title: Small
  doi: 10.1002/smll.201900900
– volume: 10
  start-page: 11333
  issue: 13
  year: 2018
  ident: 488_CR46
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00965
– volume: 65
  start-page: 124
  year: 2013
  ident: 488_CR51
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.110
– volume: 162
  start-page: 157
  year: 2020
  ident: 488_CR8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.047
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.626329
Snippet Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy...
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy...
HighlightsMOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among...
MOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150
SubjectTerms Absorbers
Architecture
Bimetals
Carbon
Chemical synthesis
Composite materials
Dielectric strength
Electromagnetic radiation
Energy conversion
Engineering
Functional materials
Holography
Magnetic properties
Metal-organic frameworks
Microspheres
Microwave absorption
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Thermal decomposition
Wave power
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQ4QAH3oiFgozEDSzFXjtOblTLrjjQhUMRvUWxY8NKJUFJdyk3xIkz_MP-EmacV7eiSHDIIbKtxOOxZ8Yz8w0hT63zcWqVYdakikmtYmYiVzAjCy-9L0BkmFBsQi-XyeFh-rZLCmv6aPfeJRlO6iHZDUsjRwzNncB2DAz1y4onKQbyzUbMcaGxGtPoG8SSyvIMQo1EPJfpCGKmELRMj9iYSkiQ6Z2QbZVoje6rUKWOcxbrKO6yb_78W9sSblRbzwddnvO8BoG2uPF_pLhJrncKLN1rOe4WueTK2-TaGVjDO-T7_psFewkvG1fQ5Yqf_vh5MqtOXszy2lQlxatferAOSVsUTvfq9NuvfYwLbLFs17WjeUNf463Bl3BxS_OyoBiQcvSVzgPkBUyOztsCPp_yDyUmYtL3-cbRPdNUtXH1XfJuMT-YvWJdrQdmpU6PmcrjREoL6p0XBTc-9TYxU-GlMoWNp0bwwiWp0D5KI6e50UVsDQf-Uj5SxtjpPbJTVqW7T6go0lw4Y0ETlKAsemMkMJzIhVUazjc7Ibxfn8x2QOhYj-MoGyCcA32zCB-kbxZNyLNhzOcWBuSvvXf7Zc-6I6HJUHFFKCIuLmgGy1XxWMDoJ0Mz7HV04OSlq9bQR0lEJwKLfUL0FjcNP4Vo4dst5epjQA3XMHkg8YQ873lq_PjFU3nwb90fkqsC2TLE--ySHeAb94hcsZvjVVM_Dvv0Nz1JMi4
  priority: 102
  providerName: Springer Nature
Title MOF-Derived Ni1−xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber
URI https://link.springer.com/article/10.1007/s40820-020-00488-0
https://www.proquest.com/docview/2423969612
https://www.proquest.com/docview/2471651620
https://www.proquest.com/docview/2542357107
https://pubmed.ncbi.nlm.nih.gov/PMC7770844
Volume 12
WOSCitedRecordID wos000553132900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoywEOvBGBEhmJGxh2HXudPUEbEoEgIYIiApfV-gWRym5JmlAuCHHiDP-wv4QZZzdpK7UXDrG0sqNd74zHszPj7yPkvnE-SY3UzOhUMqFkwnTkLNPCeuG9hS1DB7IJNRi0R6N0WAXcplVZZW0Tg6G2pcEY-WMOVjSRccKjJ3tfGbJGYXa1otBYIxuIkhCH0r23tT5xhbxMqywhkiuLI1g1ApFdWis4M4nwZWqFkinhnlxV2-3CnVaYyAp8dXHMEhUl1TmccBoPuZsjht9jYV2w6Phet3JgT5ZfnsjBhq2td_l_X8oVcqlyaunWQguvknOuuEYuHoE6vE5-9V_32DO4mDtLB-P48Pefg0558LSTT3RZUAwH051ZOMhFweKXhz__9rFWcIFvO5s4mk_pK4wkfAvBXJoXlmKRyu532g0wGDBN2l2Q-nzJPxV4OJO-z-eObulpOdFucoO863V3Os9Zxf_AjFDpPpN50hbCgMvnuY21T71p6xb3QmprkpbmsXXtlCsfpZFTsVY2MToGnZM-klqb1k2yXpSFu0Uot2nOnTbgHQpwIL3WApSQ59xIBTbPNEhcSyozFTg6cnTsZktY5yDdLMIfSjeLGuTB8j97C2iQM0dv1iLMKjMxzdCZRXiimJ_SXYu3Qe4tu2H9Y1InL1w5gzFSIGIRfMU3iDqmV8uHQgTx4z3F-HNAElcweXjFDfKw1sDVzU-fyu2zn_UOucBxEYSan02yDnri7pLzZr4_nk6aZE2N2k2ysd0dDN_AVYeLZgiEQPty-1EzrGBsf3ShHcqPMHb4oj_88A_8AEXW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGhwQc-I8oDDASnMDCce24OSCYular1pYeithOIXZsqDSS0W7ddkOcOMP34EPtk-DnJO06abvtwKGHyEkaO7_3J37v_R5CL7SxYaSFIlpFgnApQqKoSYniqeXWps5kKN9sQg4Gze3taLiC_la1MJBWWelEr6jTXMMe-RvmtGgogpDRd3vfCXSNguhq1UKjgMWWOT50n2zTt90N935fMtZpj1qbpOwqQDSX0T4RSdjkXDtHwrI0UDayuqkazHKhUh02FAtS04yYtDSiRgZKpqFWgZuJsFQopRvuvlfQKgew19DqsNsf7lQIZhI6QS3iktDOmZ9ix-HAJdNYEKgJIEyTC15O4WbJZGngCwdeQujMd8gLAhJKGpaVP77-D7pFUwJfgF4SCV22rguX-WzC55morzemnVv_22u4jW6WbjteL-TsDlox2V104xSZ4z30s_-hQzbcwcykeDAOTn79PmrlR-9byUTlGYYNbzw68KVq2Nm0_OTHnz5kQxYMvgcTg5Mp7sFeyaHfrsZJlmJIw9k9xm1P9OGWFbeLtkXfki8ZlJ_iT8nM4HU1zSfKTO6jj5eyCA9QLcsz8xBhlkYJM0o7_9dBs2GV4k7MWMK0kE6r6zoKKmTEuqR_hy4ku_GcuNqjKabwAzTFtI5eza_ZK8hPLjx7rYJMXCrCaQzuOhAwBeyc4QpOdfR8Puw0HIStkszkB-4cwYGTKaCyjuQSjucPBRzpyyPZ-KvnSpdu8m6J6-h1hfjFn58_lUcXP-szdG1z1O_Fve5g6zG6zkAAfYbTGqo5zJgn6Kqe7Y-nk6elfsDo82XLwj8mq5yx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQQgOvBELbTESN7CaeO14c6Pa7gpEu_RQRG9R_IKVSlJlH5Qb4sQZ_mF_CTNOdrNbUSTEIYfIjmI7XzwznplvCHlunE9SIzUzOpVMKJkwHTnLtLBeeG9BZOhQbEKNRr3j4_RwJYs_RLsvXJJ1TgOyNBXTnVPrd5aJb1gmOWJo-gQIMjDar6JHCjHeb_nHucLKTK2fEMsrixW2GoHcLt2W0EwigZlqeTIlFyDfG4FbK9QKXVmhYl0cs0RFSZOJ8-dhrUu7VoW9GIB5wQsbhNvw9v8vyx1yq1Fs6W6NxLvkiivukZsrdIf3yfeDd0O2BzdzZ-loHJ__-HnWL89e9fNKlwXFI2F6NAvJXBR2_fL8268DjBesOW5nlaP5hO7jacKXcKBL88JSDFQ5-UoHgQoDhkoHdWGfz_nHAhM06Yd87uiunpSVdtUD8n44OOq_Zk0NCGaESqdM5klPCANqn-c21j71pqe73AuprUm6msfW9VKufJRGTsVa2cToGHAnfSS1Nt2HZKMoC_eIUG7TnDttQEMUoER6rQUAkefcSAX7numQePGtMtMQpGOdjpNsSe0c1jeL8ML1zaIOebF85rSmB_lr780FBLJmq5hkqNAiRVHML2kGi1bGCYenny2bYQ9Ax05euHIGfaRA1iKw5DtErSFrOShkEV9vKcafApu4gsnDEnfIywW-2pdfPpXH_9b9Kbl-uDfM9t-M3j4hNzgiNIQEbZINgJDbItfMfDqeVNvh9_0N2E899w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-Derived+Ni1%E2%88%92xCox%40Carbon+with+Tunable+Nano%E2%80%93Microstructure+as+Lightweight+and+Highly+Efficient+Electromagnetic+Wave+Absorber&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Lei&rft.au=Huang%2C+Mengqiu&rft.au=Yu%2C+Xuefeng&rft.au=You%2C+Wenbin&rft.date=2020-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft_id=info:doi/10.1007%2Fs40820-020-00488-0&rft_id=info%3Apmid%2F34138180&rft.externalDocID=PMC7770844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon