MOF-Derived Ni1−xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber
Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy effect among the Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology. MOF-derived Ni@C microspheres dis...
Saved in:
| Published in: | Nano-micro letters Vol. 12; no. 1; p. 150 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Singapore
01.12.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2311-6706, 2150-5551, 2150-5551 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Highlights
MOF-derived porous Ni
1−
x
Co
x
@Carbon composites with tuning nano-micro structure were successfully synthesized.
Magnetic-dielectric synergy effect among the Ni
1−
x
Co
x
@Carbon microspheres was confirmed by the off-axis electron holography technology.
MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB.
.
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni
1−
x
Co
x
@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon
sp
2
arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni
1−
x
Co
x
@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni
1−
x
Co
x
@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. |
|---|---|
| AbstractList | HighlightsMOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology.MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB..Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1−xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1−xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. Highlights MOF-derived porous Ni 1− x Co x @Carbon composites with tuning nano-micro structure were successfully synthesized. Magnetic-dielectric synergy effect among the Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology. MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB. . Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. MOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology.MOF-derived Ni@C microspheres displayed strong microwave absorption value of − 59.5 dB.. Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1−xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1−xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni1−xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni 1− x Co x @Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp 2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni 1− x Co x @Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value − 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic–dielectric synergy effect of MOF-derived Ni 1− x Co x @Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism. |
| ArticleNumber | 150 |
| Author | Liu, Xianhu Che, Renchao Yu, Xuefeng Wang, Lei Zhang, Jie Wang, Min You, Wenbin Huang, Mengqiu |
| Author_xml | – sequence: 1 givenname: Lei surname: Wang fullname: Wang, Lei organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 2 givenname: Mengqiu surname: Huang fullname: Huang, Mengqiu organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 3 givenname: Xuefeng surname: Yu fullname: Yu, Xuefeng organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 4 givenname: Wenbin surname: You fullname: You, Wenbin organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 5 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 6 givenname: Xianhu surname: Liu fullname: Liu, Xianhu organization: Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education – sequence: 7 givenname: Min surname: Wang fullname: Wang, Min organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University – sequence: 8 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University |
| BookMark | eNp9Uj1vFDEQXaEgEkL-AJUlGpoFf653G0R0XAjSJWmCKC3ba98Z7dnB9l6SDqVKDf8wvwSvLgiR4oqxR5r33ryx52W154M3VfUawXcIQv4-UdhiWMMpIG3bGj6rDjBisGaMob2SE4TqhsNmvzpKySnIMOWYM_qi2icUkRa18KC6O7s4qT-Z6DamB-cOPdz_upmFm48zGVXw4NrlFbgcvVSDAefSh4efv8-cjiHlOOo8RgNkAgu3XOVrM51A-h6clmy4BXNrnXbGZzAfjM4xrOXSm-w0-CY3BhyrFKIy8VX13MohmaPH-7D6ejK_nJ3Wi4vPX2bHi1pT3uWayaalVBNMLe6Rsp3VrSLYUqZ63RCFUW_aDnMLO2g4UrxvtEKqY8xCppQmh9WHre7VqNam18VYlIO4im4t460I0on_K96txDJsBOccltZF4O2jQAw_RpOyWLukzTBIb8KYBGYUE8YR5AX65gn0exijL-OJ8guoYajBcDcKk67pGoQLqt2ipmdP0VihXZbZhcmlGwSCYtoIsd0IAaeYNkJMDfAT6t9pd5LIlpQK2C9N_OdqB-sPNqPMGQ |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2021_06_006 crossref_primary_10_1016_j_carbon_2021_08_064 crossref_primary_10_1002_smll_202308581 crossref_primary_10_1016_j_mtphys_2024_101415 crossref_primary_10_1007_s40820_021_00658_8 crossref_primary_10_1016_j_apsusc_2022_155860 crossref_primary_10_1007_s40820_020_00572_5 crossref_primary_10_1016_j_cej_2022_136394 crossref_primary_10_1016_j_cej_2021_132191 crossref_primary_10_1016_j_synthmet_2023_117307 crossref_primary_10_1016_j_ccr_2025_217167 crossref_primary_10_1016_j_carbon_2021_04_050 crossref_primary_10_1016_j_jallcom_2023_173048 crossref_primary_10_1039_D2NR04333E crossref_primary_10_3390_met12050848 crossref_primary_10_1016_j_cej_2022_134655 crossref_primary_10_1007_s40820_021_00734_z crossref_primary_10_1016_j_compscitech_2022_109795 crossref_primary_10_1007_s00604_024_06623_7 crossref_primary_10_1016_j_carbon_2023_03_014 crossref_primary_10_1016_j_jallcom_2022_167326 crossref_primary_10_1016_j_materresbull_2024_112928 crossref_primary_10_1016_j_jcis_2022_02_086 crossref_primary_10_1016_j_matchemphys_2021_124457 crossref_primary_10_1016_j_materresbull_2025_113517 crossref_primary_10_1016_j_cej_2022_139430 crossref_primary_10_1016_j_jmst_2021_06_052 crossref_primary_10_1039_D1QM00659B crossref_primary_10_1016_j_physe_2022_115463 crossref_primary_10_1016_j_cap_2021_06_008 crossref_primary_10_1016_j_cej_2023_146582 crossref_primary_10_1002_adfm_202203161 crossref_primary_10_1002_adma_202106195 crossref_primary_10_1002_asia_202400896 crossref_primary_10_1016_j_jmst_2023_06_024 crossref_primary_10_1016_j_carbon_2021_04_029 crossref_primary_10_1016_j_solmat_2025_113967 crossref_primary_10_1002_adfm_202308898 crossref_primary_10_1002_smtd_202200429 crossref_primary_10_1016_j_carbon_2021_12_075 crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_26599_NR_2025_94907209 crossref_primary_10_1016_j_cej_2021_129350 crossref_primary_10_1016_j_carbon_2025_120459 crossref_primary_10_1016_j_jmmm_2022_169086 crossref_primary_10_1016_j_cej_2023_147413 crossref_primary_10_1016_j_carbon_2022_06_026 crossref_primary_10_1016_j_apsusc_2025_163655 crossref_primary_10_1016_j_carbon_2022_07_072 crossref_primary_10_1016_j_ceramint_2022_10_140 crossref_primary_10_1016_j_jallcom_2023_172182 crossref_primary_10_1016_j_jallcom_2024_173690 crossref_primary_10_1016_j_carbon_2022_06_031 crossref_primary_10_1016_j_colsurfa_2023_131678 crossref_primary_10_1016_j_ceramint_2022_06_229 crossref_primary_10_1007_s12613_022_2488_2 crossref_primary_10_1016_j_carbon_2020_11_044 crossref_primary_10_1016_j_carbon_2021_11_043 crossref_primary_10_1002_aelm_202201159 crossref_primary_10_1016_j_pnsc_2024_03_008 crossref_primary_10_1016_j_carbon_2021_11_047 crossref_primary_10_1007_s42114_025_01340_y crossref_primary_10_1016_j_carbon_2022_10_083 crossref_primary_10_1016_j_jallcom_2023_170017 crossref_primary_10_1002_adfm_202315722 crossref_primary_10_1007_s13204_020_01639_w crossref_primary_10_1016_j_ceramint_2024_11_367 crossref_primary_10_1002_smll_202308378 crossref_primary_10_1002_smll_202306990 crossref_primary_10_1016_j_jallcom_2021_160556 crossref_primary_10_1016_j_carbon_2022_07_051 crossref_primary_10_1016_j_jallcom_2023_169368 crossref_primary_10_1142_S0217984924502105 crossref_primary_10_1016_j_fuel_2022_125811 crossref_primary_10_1016_j_carbon_2022_10_091 crossref_primary_10_1016_j_jece_2023_109652 crossref_primary_10_1016_j_carbon_2023_01_057 crossref_primary_10_1007_s10854_023_11245_5 crossref_primary_10_1016_j_cej_2024_148584 crossref_primary_10_1007_s10854_022_09789_z crossref_primary_10_1016_j_ijhydene_2023_08_027 crossref_primary_10_1016_j_carbon_2021_05_031 crossref_primary_10_1016_j_carbon_2021_11_027 crossref_primary_10_1016_j_compositesb_2021_109175 crossref_primary_10_1016_j_carbon_2022_02_024 crossref_primary_10_1016_j_carbon_2020_09_050 crossref_primary_10_1007_s40820_020_00568_1 crossref_primary_10_1016_j_carbon_2025_120650 crossref_primary_10_1016_j_compositesb_2024_111344 crossref_primary_10_1002_advs_202303217 crossref_primary_10_1016_j_ceramint_2023_05_037 crossref_primary_10_1039_D0NR06267G crossref_primary_10_1002_smll_202306503 crossref_primary_10_1016_j_cej_2022_138160 crossref_primary_10_1016_j_carbon_2023_118400 crossref_primary_10_1016_j_compositesa_2025_108770 crossref_primary_10_1016_j_cej_2025_159506 crossref_primary_10_1016_j_carbon_2022_02_015 crossref_primary_10_1016_j_mtla_2023_101727 crossref_primary_10_1016_j_materresbull_2024_112673 crossref_primary_10_1016_j_jmst_2022_05_015 crossref_primary_10_1016_j_cej_2023_148383 crossref_primary_10_1016_j_jmmm_2024_172423 crossref_primary_10_1007_s40820_022_00865_x crossref_primary_10_1063_5_0052153 crossref_primary_10_1016_j_jcis_2023_08_135 crossref_primary_10_1002_smll_202101416 crossref_primary_10_1016_j_carbon_2022_08_066 crossref_primary_10_1016_j_cej_2023_142398 crossref_primary_10_1016_j_powtec_2021_09_019 crossref_primary_10_1016_j_jcis_2023_05_049 crossref_primary_10_1007_s12274_022_4695_6 crossref_primary_10_1016_j_jcis_2021_10_065 crossref_primary_10_1007_s10853_022_07487_z crossref_primary_10_1016_j_cej_2022_137409 crossref_primary_10_1039_D1RA01880A crossref_primary_10_1016_j_cej_2023_146199 crossref_primary_10_1016_j_ceramint_2022_01_171 crossref_primary_10_1016_j_micromeso_2022_111763 crossref_primary_10_1016_j_cej_2025_165960 crossref_primary_10_1016_j_matlet_2021_130766 crossref_primary_10_1002_smll_202104380 crossref_primary_10_1002_smll_202204649 crossref_primary_10_1016_j_carbon_2024_119817 crossref_primary_10_1016_j_mtphys_2022_100950 crossref_primary_10_1016_j_carbon_2022_07_005 crossref_primary_10_1039_D1NR01607E crossref_primary_10_1016_j_jre_2025_06_011 crossref_primary_10_1002_adma_202107538 crossref_primary_10_1016_j_jmst_2021_11_006 crossref_primary_10_1016_S1872_5805_22_60624_3 crossref_primary_10_1016_j_apmate_2022_100091 crossref_primary_10_1016_j_energy_2025_136813 crossref_primary_10_1039_D1NR03450B crossref_primary_10_1016_j_synthmet_2021_116827 crossref_primary_10_1016_j_jallcom_2023_170829 crossref_primary_10_1016_j_carbon_2021_09_041 crossref_primary_10_1007_s10853_025_10802_z crossref_primary_10_1039_D0NR07991J crossref_primary_10_1016_j_cej_2021_133586 crossref_primary_10_1016_j_ceramint_2020_10_074 crossref_primary_10_1063_5_0067791 crossref_primary_10_1016_j_cej_2024_152225 crossref_primary_10_1016_j_carbon_2022_08_090 crossref_primary_10_1016_j_jcis_2023_05_195 crossref_primary_10_1016_j_jmst_2022_06_013 crossref_primary_10_1016_j_jcis_2022_08_082 crossref_primary_10_1007_s42114_022_00514_2 crossref_primary_10_1088_1361_6463_ac196d crossref_primary_10_1002_smll_202302738 crossref_primary_10_1002_smll_202309806 crossref_primary_10_1016_j_carbon_2023_01_031 crossref_primary_10_1016_j_apsusc_2023_156935 crossref_primary_10_1002_advs_202304218 crossref_primary_10_1016_j_ijhydene_2025_01_379 crossref_primary_10_3390_nano15110806 crossref_primary_10_1007_s10853_024_09553_0 crossref_primary_10_1039_D2NR01024K crossref_primary_10_1002_advs_202204151 crossref_primary_10_1016_j_carbon_2023_118117 crossref_primary_10_1016_j_carbon_2024_119604 crossref_primary_10_1016_j_coco_2022_101135 crossref_primary_10_1002_smll_202201587 crossref_primary_10_1016_j_carbon_2021_08_025 crossref_primary_10_1016_j_jcis_2021_11_197 crossref_primary_10_1016_j_mser_2024_100838 crossref_primary_10_1007_s11837_022_05236_w crossref_primary_10_1016_j_ceramint_2022_10_323 crossref_primary_10_1016_j_mtphys_2023_101178 crossref_primary_10_1002_smll_202003905 crossref_primary_10_1016_j_ccr_2023_215465 crossref_primary_10_1016_j_mtphys_2023_101058 crossref_primary_10_1002_cjoc_202400131 crossref_primary_10_1016_j_jcis_2022_09_027 crossref_primary_10_1002_smll_202302686 crossref_primary_10_1016_j_apsusc_2020_148051 crossref_primary_10_1002_sstr_202100033 crossref_primary_10_1007_s40820_021_00667_7 crossref_primary_10_1016_j_jallcom_2022_164257 crossref_primary_10_1002_smll_202503955 crossref_primary_10_1016_j_powtec_2020_11_044 crossref_primary_10_1002_adfm_202305082 crossref_primary_10_1007_s40820_021_00606_6 crossref_primary_10_1016_j_jcis_2022_06_156 crossref_primary_10_1016_j_colsurfa_2024_135372 crossref_primary_10_1007_s40820_020_00552_9 crossref_primary_10_1016_j_cej_2021_133112 crossref_primary_10_1016_j_partic_2022_12_013 crossref_primary_10_1016_j_jallcom_2024_175499 crossref_primary_10_1016_j_carbon_2021_10_077 crossref_primary_10_1007_s40820_021_00704_5 crossref_primary_10_1039_D0QI01502D crossref_primary_10_1007_s12274_022_4401_8 crossref_primary_10_3390_buildings14041096 crossref_primary_10_1007_s40820_022_00808_6 crossref_primary_10_1016_j_cej_2022_140876 crossref_primary_10_1016_j_mtphys_2024_101390 crossref_primary_10_1007_s12274_022_4522_0 crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1016_j_carbon_2022_05_029 crossref_primary_10_1039_D1QM00731A crossref_primary_10_1002_advs_202412890 crossref_primary_10_1016_j_jcis_2021_08_143 crossref_primary_10_1016_j_carbon_2024_119513 crossref_primary_10_1016_j_synthmet_2022_117077 crossref_primary_10_1016_j_ceramint_2025_01_136 crossref_primary_10_1016_j_mtnano_2025_100591 crossref_primary_10_3390_cryst12070894 crossref_primary_10_1016_j_ceramint_2021_08_027 crossref_primary_10_1002_sstr_202200219 crossref_primary_10_1016_j_nanoms_2024_06_007 crossref_primary_10_1016_j_jallcom_2022_164232 crossref_primary_10_1007_s42114_024_01077_0 crossref_primary_10_1016_j_carbon_2025_120241 crossref_primary_10_1016_j_jmst_2023_01_053 crossref_primary_10_1016_j_carbon_2022_05_037 crossref_primary_10_1016_j_cej_2025_164370 crossref_primary_10_1016_j_jallcom_2023_172384 crossref_primary_10_1016_j_jcis_2021_01_090 |
| Cites_doi | 10.1016/j.carbon.2018 10.1021/acsami.8b10685 10.1021/jacs.7b12420 10.1002/adma.201907156 10.1039/c9tc03691a 10.1038/nenergy.2015.6 10.1007/s40820-017-0179-8 10.1021/acsami.5b12789 10.1038/46248 10.1039/c8tc04984j 10.1016/j.matlet.2019.02.023 10.1021/acsami.5b05595 10.1007/s40820-019-0307-8 10.1038/ncomms15341 10.1002/adfm.201908299 10.1016/j.compositesb.2018.11.008 10.1016/j.carbon.2017.01.036 10.1016/j.carbon.2017.09.007 10.1039/C3CS60472A 10.1016/j.cej.2019.123099 10.1016/j.carbon.2019.07.049 10.1021/acssuschemeng.7b02565 10.1016/j.cej.2020.124149 10.1021/acsami.9b00593 10.1021/acssuschemeng.8b01270 10.1016/j.jmmm.2019.165334 10.1002/smll.201602779 10.1016/j.carbon.2009.10.028 10.1021/acsami.8b00320 10.1016/j.cej.2018.01.152 10.1016/j.compositesb.2019.02.054 10.1016/j.cej.2016.11.089 10.1016/j.cej.2017.09.101 10.1016/j.cej.2019.122591 10.1021/ja511539a 10.1016/j.apcatb.2019.118317 10.1039/C5NR03745J 10.1021/acsami.8b05414 10.1038/ncomms7628 10.1002/chem.201805565 10.1016/j.carbon.2017.10.092 10.1016/j.jallcom.2018.10.378 10.1039/C6TC04048A 10.1016/j.jallcom.2019.07.334 10.1021/acsami.8b09093 10.1016/j.cej.2016.12.117 10.1021/acsami.7b10067 10.1039/B807080F 10.1021/acs.langmuir.8b03238 10.1007/s40820-019-0270-4 10.1039/c7tc01991b 10.1039/C5TA01457C 10.1021/acsami.8b16727 10.1002/adma.201400108 10.1002/smll.202000158 10.1021/acsami.8b00965 10.1002/adfm.201707573 10.1002/adma.201503149 10.1002/smll.201900900 10.1016/j.carbon.2020.02.047 10.1016/j.carbon.2013.07.110 10.1126/science.1056598 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
| DOI | 10.1007/s40820-020-00488-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 2150-5551 |
| ExternalDocumentID | PMC7770844 10_1007_s40820_020_00488_0 |
| GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c479t-5a6844c324f2d1bf9fc8b32f45bdc63b21de8927f090e71b7d6cb1b955f05bbc3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 279 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553132900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2311-6706 2150-5551 |
| IngestDate | Tue Nov 04 02:02:10 EST 2025 Sat Sep 27 22:27:12 EDT 2025 Sat Oct 18 22:50:15 EDT 2025 Sat Oct 18 22:44:15 EDT 2025 Tue Nov 18 21:31:35 EST 2025 Sat Nov 29 02:07:24 EST 2025 Fri Feb 21 02:35:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Polarization Electromagnetic parameters Microwave absorption Magnetic coupling Metal–organic frameworks |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c479t-5a6844c324f2d1bf9fc8b32f45bdc63b21de8927f090e71b7d6cb1b955f05bbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2471651620?pq-origsite=%requestingapplication% |
| PMID | 34138180 |
| PQID | 2423969612 |
| PQPubID | 2044332 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770844 proquest_miscellaneous_2542357107 proquest_journals_2471651620 proquest_journals_2423969612 crossref_citationtrail_10_1007_s40820_020_00488_0 crossref_primary_10_1007_s40820_020_00488_0 springer_journals_10_1007_s40820_020_00488_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationTitle | Nano-micro letters |
| PublicationTitleAbbrev | Nano-Micro Lett |
| PublicationYear | 2020 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Kuang, Song, Ning, Li, Zhao (CR56) 2018; 127 Wang, Xu, Fu, Zhu, Jiao (CR14) 2019; 11 Li, Li, Zong, Tan, Sun (CR48) 2017; 115 Liao, He, Zhou, Nie, Wang (CR22) 2018; 34 Liao, He, Zhou, Nie, Wang (CR35) 2018; 10 Tang, Salunkhe, Liu, Torad, Imura, Furukawa, Yamauchi (CR9) 2015; 137 Zhang, Gao, Xing (CR54) 2019; 777 Liu, Cao, Bi, Liang, Yuan, She, Yang, Che (CR12) 2016; 28 You, Bi, She, Zhang, Che (CR58) 2017; 13 Li, Han, Ma, Liu, Wang (CR17) 2018; 6 Xu, Liu, Liu, Ouyang, Hu (CR10) 2018; 28 Wang, Li, Li, Zhao, Che (CR31) 2018; 10 Ma, Wang, Cao, Han, Yang, Yuan, Cao (CR36) 2018; 339 Chen, Eddaoudi, Hyde, O’Keeffe, Yaghi (CR4) 2001; 291 Zhao, Lv, Zhou, Zheng, Wu, Xu (CR37) 2018; 10 Li, Yin, Han, Song, Sun (CR41) 2017; 5 Xiang, Song, Xiong, Pan, Wang (CR40) 2019; 142 Qiao, Zhang, Xu, Kong, Lv (CR42) 2020; 380 Qu, Zhu, Li, Zhang, Chen (CR57) 2016; 8 Li, Eddaoudi, O’Keeffe, Yaghi (CR1) 1999; 402 Wang, Yu, Li, Zhang, Wang, Che (CR18) 2020; 383 Wu, Wang, Jin, Yan, Yi (CR26) 2019; 244 Wang, Zhang, Wang, Che (CR39) 2019; 7 Wang, Ma, Shu, Cao (CR33) 2017; 332 Zhang, Liu, Cheng, Cao, Zheng (CR15) 2019; 11 Lu, Cao, Chen, Cao, Liu (CR60) 2015; 7 Gao, Zhang, Xing, Li (CR55) 2020; 387 Wang, Dai, Geng, Ma, Li (CR32) 2015; 7 Wang, Yu, Li, Zhang, Wang, Che (CR38) 2019; 155 Liu, Liu, Feng, Shui, Yu (CR19) 2017; 314 Liang, Quan, Ji, Liu, Zhao (CR21) 2017; 5 Wang, Chen, Tian, Li, Zhou, Duan, Liu (CR46) 2018; 10 Liu, Liu, Yang, Xu, Hou, Ji (CR24) 2018; 10 Balci, Polat, Kakenov, Kocabas (CR13) 2015; 6 He, Cao, Shu, Cai, Wang, Zhao, Yuan (CR61) 2019; 11 Shi, Benetti, Li, Wei, Rosei (CR11) 2020; 263 Liu, Shao, Ji, Liang, Quan, Du (CR34) 2017; 313 Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (CR7) 2009; 38 Shu, Cao, Zhang, Wang, Cao, Fang, Cao (CR47) 2020; 30 Wen, Cao, Lu, Cao, Shi (CR59) 2014; 26 Huang, Wang, Pei, You, Yu, Wu, Che (CR62) 2020; 16 Zhang, Lv, Chen, Wu, He, Zhang, Zou (CR29) 2019; 487 Ma, Zhang, Liu, Ji (CR27) 2016; 4 Zhou, Wu, Liu, Yan (CR43) 2019; 25 Duan, Chen, Zhao (CR5) 2017; 8 Chen, Huang, Huang, Zhang, Ge (CR53) 2017; 124 Chen, Xi, Zhou, Peng, Chen, Gao (CR52) 2018; 10 Wang, Li, Li, Yu, Zhao, Zhang, Wang, Che (CR30) 2019; 15 Xia, Yan, Li, Wu, Lou, Wang (CR3) 2016; 1 Wang, Bai, Wen, Du, Lin (CR28) 2019; 166 Pan, Sun, Liu, Cao, Wu (CR6) 2018; 140 Gu, Lv, Quan, Liang, Zhang, Ji (CR23) 2019; 806 Yan, Huang, Han, Gao, Liu (CR49) 2019; 163 Zhu, Xu (CR2) 2014; 43 Liu, Tan, Yang, Ji (CR16) 2018; 10 Cao, Wang, Zhang, Cao, Fang, Yuan (CR44) 2020; 32 Yin, Liu, Wei, Li, Nie (CR20) 2017; 9 Wu, Liu, Xu, Liu, Liu (CR45) 2019; 7 Wen, Cao, Hou, Song, Zhang (CR51) 2013; 65 Qiang, Du, Zhao, Wang, Tian (CR25) 2015; 3 Cao, Song, Hou, Wen, Yuan (CR50) 2010; 48 Shu, Yang, Zhang, Huang, Cao (CR8) 2020; 162 W Liu (488_CR16) 2018; 10 Y Pan (488_CR6) 2018; 140 J Lee (488_CR7) 2009; 38 BL Chen (488_CR4) 2001; 291 B Wen (488_CR59) 2014; 26 B Kuang (488_CR56) 2018; 127 L Wang (488_CR38) 2019; 155 L Wang (488_CR31) 2018; 10 L Wang (488_CR18) 2020; 383 B Wen (488_CR51) 2013; 65 MQ Huang (488_CR62) 2020; 16 JC Shu (488_CR8) 2020; 162 J Ma (488_CR27) 2016; 4 C Zhou (488_CR43) 2019; 25 XX Wang (488_CR33) 2017; 332 C Chen (488_CR52) 2018; 10 J Qiao (488_CR42) 2020; 380 H Li (488_CR1) 1999; 402 Z Li (488_CR48) 2017; 115 QL Zhu (488_CR2) 2014; 43 X Xu (488_CR10) 2018; 28 H Wang (488_CR32) 2015; 7 S Wang (488_CR14) 2019; 11 X Liang (488_CR21) 2017; 5 L Shi (488_CR11) 2020; 263 WB You (488_CR58) 2017; 13 L Wang (488_CR28) 2019; 166 R Qiang (488_CR25) 2015; 3 YC Zhang (488_CR54) 2019; 777 H Chen (488_CR53) 2017; 124 J Yan (488_CR49) 2019; 163 Q Liao (488_CR22) 2018; 34 Q Wu (488_CR26) 2019; 244 Q Liao (488_CR35) 2018; 10 Z Li (488_CR17) 2018; 6 W Gu (488_CR23) 2019; 806 L Wang (488_CR39) 2019; 7 MM Lu (488_CR60) 2015; 7 MS Cao (488_CR44) 2020; 32 G Zhao (488_CR37) 2018; 10 KF Wang (488_CR46) 2018; 10 Z Zhang (488_CR29) 2019; 487 N Wu (488_CR45) 2019; 7 J Tang (488_CR9) 2015; 137 P He (488_CR61) 2019; 11 JJ Duan (488_CR5) 2017; 8 BY Xia (488_CR3) 2016; 1 J Ma (488_CR36) 2018; 339 D Zhang (488_CR15) 2019; 11 MS Cao (488_CR50) 2010; 48 O Balci (488_CR13) 2015; 6 ST Gao (488_CR55) 2020; 387 JC Shu (488_CR47) 2020; 30 X Li (488_CR41) 2017; 5 Q Liu (488_CR19) 2017; 314 L Wang (488_CR30) 2019; 15 W Liu (488_CR34) 2017; 313 Z Xiang (488_CR40) 2019; 142 W Liu (488_CR24) 2018; 10 Q Liu (488_CR12) 2016; 28 B Qu (488_CR57) 2016; 8 Y Yin (488_CR20) 2017; 9 |
| References_xml | – volume: 142 start-page: 20 year: 2019 end-page: 31 ident: CR40 article-title: Enhanced electromagnetic wave absorption of nanoporous Fe O @carbon composites derived from metal–organic frameworks publication-title: Carbon doi: 10.1016/j.carbon.2018 – volume: 10 start-page: 31610 year: 2018 end-page: 31622 ident: CR16 article-title: Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10685 – volume: 140 start-page: 2610 year: 2018 end-page: 2618 ident: CR6 article-title: Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12420 – volume: 32 start-page: 1907156 year: 2020 ident: CR44 article-title: Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy publication-title: Adv. Mater. doi: 10.1002/adma.201907156 – volume: 7 start-page: 11167 year: 2019 end-page: 11176 ident: CR39 article-title: Hollow porous Fe O microspheres wrapped by reduced graphene oxides with high-performance microwave absorption publication-title: J. Mater. Chem. C doi: 10.1039/c9tc03691a – volume: 1 start-page: 15006 year: 2016 ident: CR3 article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 10 start-page: 26 issue: 2 year: 2018 ident: CR52 article-title: Porous graphene microflowers for high-performance microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-017-0179-8 – volume: 8 start-page: 3730 issue: 6 year: 2016 end-page: 3735 ident: CR57 article-title: Coupling hollow Fe O –Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12789 – volume: 402 start-page: 276 year: 1999 end-page: 279 ident: CR1 article-title: Design and synthesis of an exceptionally stable and highly porous metal–organic framework publication-title: Nature doi: 10.1038/46248 – volume: 7 start-page: 1659 year: 2019 end-page: 1669 ident: CR45 article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples publication-title: J. Mater. Chem. C doi: 10.1039/c8tc04984j – volume: 244 start-page: 138 year: 2019 end-page: 141 ident: CR26 article-title: MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.02.023 – volume: 7 start-page: 19408 issue: 34 year: 2015 end-page: 19415 ident: CR60 article-title: Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05595 – volume: 11 start-page: 76 year: 2019 ident: CR14 article-title: Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0307-8 – volume: 8 start-page: 15341 year: 2017 ident: CR5 article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 30 start-page: 1908299 year: 2020 ident: CR47 article-title: Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908299 – volume: 163 start-page: 67 year: 2019 end-page: 76 ident: CR49 article-title: Metal organic framework (ZIF-67)-derived hollow CoS /N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.008 – volume: 115 start-page: 493 year: 2017 end-page: 502 ident: CR48 article-title: Solvothermal synthesis of nitrogen-doped graphene decorated by super-paramagnetic Fe O nanoparticles and their applications as enhanced synergistic microwave absorbers publication-title: Carbon doi: 10.1016/j.carbon.2017.01.036 – volume: 124 start-page: 506 year: 2017 end-page: 514 ident: CR53 article-title: Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands publication-title: Carbon doi: 10.1016/j.carbon.2017.09.007 – volume: 43 start-page: 5468 year: 2014 end-page: 5512 ident: CR2 article-title: Metal–organic framework composites publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 383 start-page: 123099 year: 2020 ident: CR18 article-title: MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123099 – volume: 155 start-page: 298 year: 2019 end-page: 308 ident: CR38 article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe O anchored on multi-wall carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2019.07.049 – volume: 5 start-page: 10570 year: 2017 end-page: 10579 ident: CR21 article-title: Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband absorption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02565 – volume: 387 start-page: 124149 year: 2020 ident: CR55 article-title: Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption publication-title: Chem. Engin. J. doi: 10.1016/j.cej.2020.124149 – volume: 11 start-page: 12535 year: 2019 end-page: 12543 ident: CR61 article-title: Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00593 – volume: 6 start-page: 8904 year: 2018 end-page: 8913 ident: CR17 article-title: MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01270 – volume: 487 start-page: 165334 year: 2019 ident: CR29 article-title: Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165334 – volume: 13 start-page: 1602779 year: 2017 ident: CR58 article-title: Dipolar-distribution cavity γ-Fe O @C@α-MnO nanospindle with broadened microwave absorption bandwidth by chemically etching publication-title: Small doi: 10.1002/smll.201602779 – volume: 48 start-page: 788 year: 2010 end-page: 796 ident: CR50 article-title: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites publication-title: Carbon doi: 10.1016/j.carbon.2009.10.028 – volume: 10 start-page: 8965 year: 2018 end-page: 8975 ident: CR24 article-title: A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b00320 – volume: 339 start-page: 487 year: 2018 end-page: 498 ident: CR36 article-title: A facile fabrication and highly tunable microwave absorption of 3D flower-like Co O –rGO hybrid-architectures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.152 – volume: 166 start-page: 464 year: 2019 end-page: 471 ident: CR28 article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber publication-title: Compos. B doi: 10.1016/j.compositesb.2019.02.054 – volume: 314 start-page: 320 year: 2017 end-page: 327 ident: CR19 article-title: Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.089 – volume: 332 start-page: 321 year: 2017 end-page: 330 ident: CR33 article-title: Confinedly tailoring Fe O clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.101 – volume: 380 start-page: 122591 year: 2020 ident: CR42 article-title: Design and synthesis of TiO /Co/carbon nanofibers with tunable and efficient electromagnetic absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122591 – volume: 137 start-page: 1572 year: 2015 end-page: 1580 ident: CR9 article-title: Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511539a – volume: 263 start-page: 118317 year: 2020 ident: CR11 article-title: Phase-junction design of MOF-derived TiO2 photoanodes sensitized with quantum dots for efficient hydrogen generation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118317 – volume: 7 start-page: 17312 issue: 41 year: 2015 end-page: 17319 ident: CR32 article-title: Co Ni nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption publication-title: Nanoscale doi: 10.1039/C5NR03745J – volume: 10 start-page: 22602 year: 2018 end-page: 22610 ident: CR31 article-title: Enhanced polarization from hollow cube-like ZnSnO wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05414 – volume: 6 start-page: 6628 year: 2015 ident: CR13 article-title: Graphene-enabled electrically switchable radar-absorbing surfaces publication-title: Nat. Commun. doi: 10.1038/ncomms7628 – volume: 25 start-page: 2234 year: 2019 end-page: 2241 ident: CR43 article-title: Metal–organic framework derived hierarchical Co/C@V O hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber publication-title: Chem doi: 10.1002/chem.201805565 – volume: 127 start-page: 209 year: 2018 end-page: 217 ident: CR56 article-title: Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide publication-title: Carbon doi: 10.1016/j.carbon.2017.10.092 – volume: 777 start-page: 544 year: 2019 end-page: 553 ident: CR54 article-title: Reduced graphene oxide wrapped cube-like ZnSnO : as a high-performance microwave absorber publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.378 – volume: 4 start-page: 11419 year: 2016 end-page: 11426 ident: CR27 article-title: Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04048A – volume: 806 start-page: 983 year: 2019 end-page: 991 ident: CR23 article-title: Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.334 – volume: 10 start-page: 29136 year: 2018 end-page: 29144 ident: CR35 article-title: Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09093 – volume: 313 start-page: 734 year: 2017 end-page: 744 ident: CR34 article-title: Metal–organic–frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.117 – volume: 9 start-page: 30850 year: 2017 end-page: 30861 ident: CR20 article-title: Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10067 – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: CR7 article-title: Metal–organic framework materials as catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/B807080F – volume: 34 start-page: 15854 year: 2018 end-page: 15863 ident: CR22 article-title: Rational construction of Ti C T /Co-MOF-derived laminated Co/TiO -C hybrids for enhanced electromagnetic wave absorption publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03238 – volume: 11 start-page: 38 year: 2019 ident: CR15 article-title: Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0270-4 – volume: 5 start-page: 7621 year: 2017 end-page: 7628 ident: CR41 article-title: A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti CTx MXene publication-title: J. Mater. Chem. C doi: 10.1039/c7tc01991b – volume: 3 start-page: 13426 year: 2015 end-page: 13434 ident: CR25 article-title: Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01457C – volume: 10 start-page: 42925 year: 2018 end-page: 42932 ident: CR37 article-title: Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16727 – volume: 26 start-page: 3484 year: 2014 end-page: 3489 ident: CR59 article-title: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 16 start-page: 2000158 year: 2020 ident: CR62 article-title: Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic–dielectric synergy toward strong microwave absorption publication-title: Small doi: 10.1002/smll.202000158 – volume: 10 start-page: 11333 issue: 13 year: 2018 end-page: 11342 ident: CR46 article-title: Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00965 – volume: 28 start-page: 1707573 year: 2018 ident: CR10 article-title: A general metal–organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707573 – volume: 28 start-page: 486 year: 2016 end-page: 490 ident: CR12 article-title: CoNi@SiO @TiO and CoNi@Air@TiO microspheres with strong wideband microwave absorption publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 15 start-page: 1900900 year: 2019 ident: CR30 article-title: Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth publication-title: Small doi: 10.1002/smll.201900900 – volume: 162 start-page: 157 year: 2020 end-page: 171 ident: CR8 article-title: Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices publication-title: Carbon doi: 10.1016/j.carbon.2020.02.047 – volume: 65 start-page: 124 year: 2013 end-page: 139 ident: CR51 article-title: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites publication-title: Carbon doi: 10.1016/j.carbon.2013.07.110 – volume: 291 start-page: 1021 year: 2001 end-page: 1023 ident: CR4 article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores publication-title: Science doi: 10.1126/science.1056598 – volume: 26 start-page: 3484 year: 2014 ident: 488_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 11 start-page: 76 year: 2019 ident: 488_CR14 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0307-8 – volume: 124 start-page: 506 year: 2017 ident: 488_CR53 publication-title: Carbon doi: 10.1016/j.carbon.2017.09.007 – volume: 10 start-page: 26 issue: 2 year: 2018 ident: 488_CR52 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-017-0179-8 – volume: 13 start-page: 1602779 year: 2017 ident: 488_CR58 publication-title: Small doi: 10.1002/smll.201602779 – volume: 25 start-page: 2234 year: 2019 ident: 488_CR43 publication-title: Chem doi: 10.1002/chem.201805565 – volume: 166 start-page: 464 year: 2019 ident: 488_CR28 publication-title: Compos. B doi: 10.1016/j.compositesb.2019.02.054 – volume: 115 start-page: 493 year: 2017 ident: 488_CR48 publication-title: Carbon doi: 10.1016/j.carbon.2017.01.036 – volume: 43 start-page: 5468 year: 2014 ident: 488_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 7 start-page: 17312 issue: 41 year: 2015 ident: 488_CR32 publication-title: Nanoscale doi: 10.1039/C5NR03745J – volume: 7 start-page: 19408 issue: 34 year: 2015 ident: 488_CR60 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05595 – volume: 48 start-page: 788 year: 2010 ident: 488_CR50 publication-title: Carbon doi: 10.1016/j.carbon.2009.10.028 – volume: 142 start-page: 20 year: 2019 ident: 488_CR40 publication-title: Carbon doi: 10.1016/j.carbon.2018 – volume: 11 start-page: 12535 year: 2019 ident: 488_CR61 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00593 – volume: 10 start-page: 29136 year: 2018 ident: 488_CR35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09093 – volume: 402 start-page: 276 year: 1999 ident: 488_CR1 publication-title: Nature doi: 10.1038/46248 – volume: 314 start-page: 320 year: 2017 ident: 488_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.089 – volume: 313 start-page: 734 year: 2017 ident: 488_CR34 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.117 – volume: 5 start-page: 7621 year: 2017 ident: 488_CR41 publication-title: J. Mater. Chem. C doi: 10.1039/c7tc01991b – volume: 806 start-page: 983 year: 2019 ident: 488_CR23 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.334 – volume: 28 start-page: 486 year: 2016 ident: 488_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 3 start-page: 13426 year: 2015 ident: 488_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01457C – volume: 1 start-page: 15006 year: 2016 ident: 488_CR3 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 11 start-page: 38 year: 2019 ident: 488_CR15 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0270-4 – volume: 10 start-page: 8965 year: 2018 ident: 488_CR24 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b00320 – volume: 8 start-page: 15341 year: 2017 ident: 488_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 383 start-page: 123099 year: 2020 ident: 488_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123099 – volume: 30 start-page: 1908299 year: 2020 ident: 488_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908299 – volume: 7 start-page: 11167 year: 2019 ident: 488_CR39 publication-title: J. Mater. Chem. C doi: 10.1039/c9tc03691a – volume: 10 start-page: 31610 year: 2018 ident: 488_CR16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10685 – volume: 8 start-page: 3730 issue: 6 year: 2016 ident: 488_CR57 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12789 – volume: 127 start-page: 209 year: 2018 ident: 488_CR56 publication-title: Carbon doi: 10.1016/j.carbon.2017.10.092 – volume: 244 start-page: 138 year: 2019 ident: 488_CR26 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.02.023 – volume: 16 start-page: 2000158 year: 2020 ident: 488_CR62 publication-title: Small doi: 10.1002/smll.202000158 – volume: 7 start-page: 1659 year: 2019 ident: 488_CR45 publication-title: J. Mater. Chem. C doi: 10.1039/c8tc04984j – volume: 6 start-page: 6628 year: 2015 ident: 488_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms7628 – volume: 140 start-page: 2610 year: 2018 ident: 488_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12420 – volume: 155 start-page: 298 year: 2019 ident: 488_CR38 publication-title: Carbon doi: 10.1016/j.carbon.2019.07.049 – volume: 137 start-page: 1572 year: 2015 ident: 488_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511539a – volume: 380 start-page: 122591 year: 2020 ident: 488_CR42 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122591 – volume: 9 start-page: 30850 year: 2017 ident: 488_CR20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10067 – volume: 332 start-page: 321 year: 2017 ident: 488_CR33 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.101 – volume: 10 start-page: 42925 year: 2018 ident: 488_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16727 – volume: 5 start-page: 10570 year: 2017 ident: 488_CR21 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02565 – volume: 387 start-page: 124149 year: 2020 ident: 488_CR55 publication-title: Chem. Engin. J. doi: 10.1016/j.cej.2020.124149 – volume: 28 start-page: 1707573 year: 2018 ident: 488_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707573 – volume: 487 start-page: 165334 year: 2019 ident: 488_CR29 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165334 – volume: 777 start-page: 544 year: 2019 ident: 488_CR54 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.378 – volume: 163 start-page: 67 year: 2019 ident: 488_CR49 publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.008 – volume: 32 start-page: 1907156 year: 2020 ident: 488_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201907156 – volume: 263 start-page: 118317 year: 2020 ident: 488_CR11 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118317 – volume: 6 start-page: 8904 year: 2018 ident: 488_CR17 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01270 – volume: 34 start-page: 15854 year: 2018 ident: 488_CR22 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03238 – volume: 10 start-page: 22602 year: 2018 ident: 488_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05414 – volume: 339 start-page: 487 year: 2018 ident: 488_CR36 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.152 – volume: 38 start-page: 1450 year: 2009 ident: 488_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/B807080F – volume: 4 start-page: 11419 year: 2016 ident: 488_CR27 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04048A – volume: 291 start-page: 1021 year: 2001 ident: 488_CR4 publication-title: Science doi: 10.1126/science.1056598 – volume: 15 start-page: 1900900 year: 2019 ident: 488_CR30 publication-title: Small doi: 10.1002/smll.201900900 – volume: 10 start-page: 11333 issue: 13 year: 2018 ident: 488_CR46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00965 – volume: 65 start-page: 124 year: 2013 ident: 488_CR51 publication-title: Carbon doi: 10.1016/j.carbon.2013.07.110 – volume: 162 start-page: 157 year: 2020 ident: 488_CR8 publication-title: Carbon doi: 10.1016/j.carbon.2020.02.047 |
| SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
| Score | 2.626329 |
| Snippet | Highlights
MOF-derived porous Ni
1−
x
Co
x
@Carbon composites with tuning nano-micro structure were successfully synthesized.
Magnetic-dielectric synergy... Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy... HighlightsMOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among... MOF-derived porous Ni1−xCox@Carbon composites with tuning nano-micro structure were successfully synthesized.Magnetic-dielectric synergy effect among the... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 150 |
| SubjectTerms | Absorbers Architecture Bimetals Carbon Chemical synthesis Composite materials Dielectric strength Electromagnetic radiation Energy conversion Engineering Functional materials Holography Magnetic properties Metal-organic frameworks Microspheres Microwave absorption Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Thermal decomposition Wave power |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQ4QAH3oiFgozEDSzFXjtOblTLrjjQhUMRvUWxY8NKJUFJdyk3xIkz_MP-EmacV7eiSHDIIbKtxOOxZ8Yz8w0hT63zcWqVYdakikmtYmYiVzAjCy-9L0BkmFBsQi-XyeFh-rZLCmv6aPfeJRlO6iHZDUsjRwzNncB2DAz1y4onKQbyzUbMcaGxGtPoG8SSyvIMQo1EPJfpCGKmELRMj9iYSkiQ6Z2QbZVoje6rUKWOcxbrKO6yb_78W9sSblRbzwddnvO8BoG2uPF_pLhJrncKLN1rOe4WueTK2-TaGVjDO-T7_psFewkvG1fQ5Yqf_vh5MqtOXszy2lQlxatferAOSVsUTvfq9NuvfYwLbLFs17WjeUNf463Bl3BxS_OyoBiQcvSVzgPkBUyOztsCPp_yDyUmYtL3-cbRPdNUtXH1XfJuMT-YvWJdrQdmpU6PmcrjREoL6p0XBTc-9TYxU-GlMoWNp0bwwiWp0D5KI6e50UVsDQf-Uj5SxtjpPbJTVqW7T6go0lw4Y0ETlKAsemMkMJzIhVUazjc7Ibxfn8x2QOhYj-MoGyCcA32zCB-kbxZNyLNhzOcWBuSvvXf7Zc-6I6HJUHFFKCIuLmgGy1XxWMDoJ0Mz7HV04OSlq9bQR0lEJwKLfUL0FjcNP4Vo4dst5epjQA3XMHkg8YQ873lq_PjFU3nwb90fkqsC2TLE--ySHeAb94hcsZvjVVM_Dvv0Nz1JMi4 priority: 102 providerName: Springer Nature |
| Title | MOF-Derived Ni1−xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber |
| URI | https://link.springer.com/article/10.1007/s40820-020-00488-0 https://www.proquest.com/docview/2423969612 https://www.proquest.com/docview/2471651620 https://www.proquest.com/docview/2542357107 https://pubmed.ncbi.nlm.nih.gov/PMC7770844 |
| Volume | 12 |
| WOSCitedRecordID | wos000553132900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoywEOvBGBEhmJGxh2HXudPUEbEoEgIYIiApfV-gWRym5JmlAuCHHiDP-wv4QZZzdpK7UXDrG0sqNd74zHszPj7yPkvnE-SY3UzOhUMqFkwnTkLNPCeuG9hS1DB7IJNRi0R6N0WAXcplVZZW0Tg6G2pcEY-WMOVjSRccKjJ3tfGbJGYXa1otBYIxuIkhCH0r23tT5xhbxMqywhkiuLI1g1ApFdWis4M4nwZWqFkinhnlxV2-3CnVaYyAp8dXHMEhUl1TmccBoPuZsjht9jYV2w6Phet3JgT5ZfnsjBhq2td_l_X8oVcqlyaunWQguvknOuuEYuHoE6vE5-9V_32DO4mDtLB-P48Pefg0558LSTT3RZUAwH051ZOMhFweKXhz__9rFWcIFvO5s4mk_pK4wkfAvBXJoXlmKRyu532g0wGDBN2l2Q-nzJPxV4OJO-z-eObulpOdFucoO863V3Os9Zxf_AjFDpPpN50hbCgMvnuY21T71p6xb3QmprkpbmsXXtlCsfpZFTsVY2MToGnZM-klqb1k2yXpSFu0Uot2nOnTbgHQpwIL3WApSQ59xIBTbPNEhcSyozFTg6cnTsZktY5yDdLMIfSjeLGuTB8j97C2iQM0dv1iLMKjMxzdCZRXiimJ_SXYu3Qe4tu2H9Y1InL1w5gzFSIGIRfMU3iDqmV8uHQgTx4z3F-HNAElcweXjFDfKw1sDVzU-fyu2zn_UOucBxEYSan02yDnri7pLzZr4_nk6aZE2N2k2ysd0dDN_AVYeLZgiEQPty-1EzrGBsf3ShHcqPMHb4oj_88A_8AEXW |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGhwQc-I8oDDASnMDCce24OSCYular1pYeithOIXZsqDSS0W7ddkOcOMP34EPtk-DnJO06abvtwKGHyEkaO7_3J37v_R5CL7SxYaSFIlpFgnApQqKoSYniqeXWps5kKN9sQg4Gze3taLiC_la1MJBWWelEr6jTXMMe-RvmtGgogpDRd3vfCXSNguhq1UKjgMWWOT50n2zTt90N935fMtZpj1qbpOwqQDSX0T4RSdjkXDtHwrI0UDayuqkazHKhUh02FAtS04yYtDSiRgZKpqFWgZuJsFQopRvuvlfQKgew19DqsNsf7lQIZhI6QS3iktDOmZ9ix-HAJdNYEKgJIEyTC15O4WbJZGngCwdeQujMd8gLAhJKGpaVP77-D7pFUwJfgF4SCV22rguX-WzC55morzemnVv_22u4jW6WbjteL-TsDlox2V104xSZ4z30s_-hQzbcwcykeDAOTn79PmrlR-9byUTlGYYNbzw68KVq2Nm0_OTHnz5kQxYMvgcTg5Mp7sFeyaHfrsZJlmJIw9k9xm1P9OGWFbeLtkXfki8ZlJ_iT8nM4HU1zSfKTO6jj5eyCA9QLcsz8xBhlkYJM0o7_9dBs2GV4k7MWMK0kE6r6zoKKmTEuqR_hy4ku_GcuNqjKabwAzTFtI5eza_ZK8hPLjx7rYJMXCrCaQzuOhAwBeyc4QpOdfR8Puw0HIStkszkB-4cwYGTKaCyjuQSjucPBRzpyyPZ-KvnSpdu8m6J6-h1hfjFn58_lUcXP-szdG1z1O_Fve5g6zG6zkAAfYbTGqo5zJgn6Kqe7Y-nk6elfsDo82XLwj8mq5yx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQQgOvBELbTESN7CaeO14c6Pa7gpEu_RQRG9R_IKVSlJlH5Qb4sQZ_mF_CTNOdrNbUSTEIYfIjmI7XzwznplvCHlunE9SIzUzOpVMKJkwHTnLtLBeeG9BZOhQbEKNRr3j4_RwJYs_RLsvXJJ1TgOyNBXTnVPrd5aJb1gmOWJo-gQIMjDar6JHCjHeb_nHucLKTK2fEMsrixW2GoHcLt2W0EwigZlqeTIlFyDfG4FbK9QKXVmhYl0cs0RFSZOJ8-dhrUu7VoW9GIB5wQsbhNvw9v8vyx1yq1Fs6W6NxLvkiivukZsrdIf3yfeDd0O2BzdzZ-loHJ__-HnWL89e9fNKlwXFI2F6NAvJXBR2_fL8268DjBesOW5nlaP5hO7jacKXcKBL88JSDFQ5-UoHgQoDhkoHdWGfz_nHAhM06Yd87uiunpSVdtUD8n44OOq_Zk0NCGaESqdM5klPCANqn-c21j71pqe73AuprUm6msfW9VKufJRGTsVa2cToGHAnfSS1Nt2HZKMoC_eIUG7TnDttQEMUoER6rQUAkefcSAX7numQePGtMtMQpGOdjpNsSe0c1jeL8ML1zaIOebF85rSmB_lr780FBLJmq5hkqNAiRVHML2kGi1bGCYenny2bYQ9Ax05euHIGfaRA1iKw5DtErSFrOShkEV9vKcafApu4gsnDEnfIywW-2pdfPpXH_9b9Kbl-uDfM9t-M3j4hNzgiNIQEbZINgJDbItfMfDqeVNvh9_0N2E899w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-Derived+Ni1%E2%88%92xCox%40Carbon+with+Tunable+Nano%E2%80%93Microstructure+as+Lightweight+and+Highly+Efficient+Electromagnetic+Wave+Absorber&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Lei&rft.au=Huang%2C+Mengqiu&rft.au=Yu%2C+Xuefeng&rft.au=You%2C+Wenbin&rft.date=2020-12-01&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft_id=info:doi/10.1007%2Fs40820-020-00488-0&rft_id=info%3Apmid%2F34138180&rft.externalDocID=PMC7770844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |