Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning

Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model—namely, combine-all in semi...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 23; p. 12163
Main Authors: Hasan, S. M. Kamrul, Linte, Cristian A.
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.12.2022
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model—namely, combine-all in semi-supervised learning (CqSL)—to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L2 similarity (SL2SIM) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
AbstractList Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model—namely, combine-all in semi-supervised learning (CqSL)—to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L2 similarity (SL2SIM) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model-namely, combine-all in semi-supervised learning (CqSL)-to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L 2 similarity ( S L 2 SIM ) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model-namely, combine-all in semi-supervised learning (CqSL)-to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L 2 similarity ( S L 2 SIM ) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model-namely, combine-all in semi-supervised learning (C SL)-to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured similarity loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (C SL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model—namely, combine-all in semi-supervised learning (CqSL)—to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L2 similarity (S L2 SIM) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
Author Hasan, S. M. Kamrul
Linte, Cristian A.
AuthorAffiliation 1 Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA
2 Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
– name: 1 Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA
Author_xml – sequence: 1
  givenname: S. M. Kamrul
  surname: Hasan
  fullname: Hasan, S. M. Kamrul
– sequence: 2
  givenname: Cristian A.
  surname: Linte
  fullname: Linte, Cristian A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37125242$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1UREvpjTOyxIUDAX8lsU8IbflYaRFSF86WY0-yXiVxsJMi_j2G7aJthS-2Zt55_NozT9HZGEZA6DklbzhX5K2ZJsoYp4xW_BG6YKSuCi5ofXZyPkdXKe1JXopySckTdM5rykom2AX6uQETRz92-BpgwjcwRUgwzmb2YUw4tHhlovPG4u0cFzsvOY3bELG4xis_Av5ys8brwXSAt9ANx0o872JYul0ODr7YLhPEW5_A4eN1z9Dj1vQJru72S_T944dvq8_F5uun9er9prCiVnPBm7qpbWOpIJZXRpFW8co6wtqaUqekbEruWOMA2kqB5KQqlZG1BOpK46Tll2h94Lpg9nqKfjDxlw7G67-BEDtt4uxtD9oZBSCt5EJWQrZUiUoxZWXdAlWVoJn17sCalmYAZ_Njo-nvQe9nRr_TXbjVlFAuFCWZ8OqOEMOPBdKsB58s9L0ZISxJM0kkoyVXKktfPpDuwxLH_Fea1UKWueklz6oXp5b-eTk2OAvYQWBjSClCq60_tCg79H22pv8Mkj4dpFz0-kHRkftf-W9R1skA
CitedBy_id crossref_primary_10_3390_app13020984
Cites_doi 10.1007/978-3-030-00889-5_1
10.1109/TPAMI.2013.50
10.1007/978-3-319-68127-6_1
10.1109/CVPR.2016.265
10.1609/aaai.v32i1.11671
10.1016/j.media.2019.101535
10.1007/978-3-319-66179-7_47
10.1145/3236386.3241340
10.1109/CVPR.2017.632
10.1109/CVPR.2017.316
10.1109/CVPR42600.2020.01070
10.1109/WACV51458.2022.00130
10.1007/978-3-319-24574-4_28
10.1162/neco_a_01458
10.1109/ICCV.2017.606
10.1145/3523055
10.1109/BIBM55620.2022.9995040
10.1109/ICCV.2017.167
10.1007/978-3-319-66185-8_29
10.1109/CVPR52688.2022.01565
10.1109/CVPR.2017.437
10.1109/JBHI.2021.3094311
10.1109/CVPR.2019.00244
10.1109/ICCV.2017.304
10.1109/42.906421
10.1007/978-3-030-01219-9_11
10.1007/978-3-031-12053-4_28
10.1007/978-3-030-00919-9_17
10.18653/v1/2020.emnlp-main.101
10.1109/ICCV.2017.244
10.1109/TMI.2018.2837502
10.1109/CVPR42600.2020.00500
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/app122312163
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_da9ee8c8348648f1946929c87fe19641
PMC10134910
37125242
10_3390_app122312163
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM128877
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABJCF
ARAPS
ATCPS
BBNVY
BHPHI
BKSAR
HCIFZ
K7-
KB.
M0K
M7P
M7S
N95
NPM
PATMY
PCBAR
PDBOC
PYCSY
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c479t-3b7b7cbc140c36a90f936cd02f711d988b53d2bdeef69e830659a878e1d5ad8c3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:42:48 EDT 2025
Tue Nov 04 02:07:09 EST 2025
Fri Sep 05 06:37:14 EDT 2025
Mon Jun 30 11:31:32 EDT 2025
Wed Feb 19 02:24:02 EST 2025
Sat Nov 29 07:12:27 EST 2025
Tue Nov 18 21:41:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords generative adversarial network
image quality
disentangled representation
cardiac segmentation
reconstruction
domain invariant features
mutual information
augmentation
variational autoencoder
Language English
License This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-3b7b7cbc140c36a90f936cd02f711d988b53d2bdeef69e830659a878e1d5ad8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions: Conceptualization, S.M.K.H. and C.A.L.; methodology, S.M.K.H.; software, S.M.K.H.; validation, S.M.K.H.; formal analysis, S.M.K.H. and C.A.L.; resources, S.M.K.H. and C.A.L.; writing—original draft preparation, S.M.K.H.; writing—review and editing, S.M.K.H. and C.A.L.; visualization, S.M.K.H.; supervision, C.A.L.; funding acquisition, C.A.L. All authors have read and agreed to the published version of the manuscript.
OpenAccessLink https://www.proquest.com/docview/2748523153?pq-origsite=%requestingapplication%
PMID 37125242
PQID 2748523153
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_da9ee8c8348648f1946929c87fe19641
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10134910
proquest_miscellaneous_2808215399
proquest_journals_2748523153
pubmed_primary_37125242
crossref_citationtrail_10_3390_app122312163
crossref_primary_10_3390_app122312163
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Applied sciences
PublicationTitleAlternate Appl Sci (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Elakkiya (ref_6) 2021; 26
ref_14
ref_12
ref_56
ref_11
ref_55
ref_10
ref_53
ref_52
ref_51
ref_19
ref_18
ref_17
ref_16
ref_15
Bengio (ref_25) 2013; 35
Lipton (ref_26) 2018; 16
Chartsias (ref_49) 2019; 58
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
Frangi (ref_54) 2001; 20
ref_36
ref_35
ref_34
Marino (ref_40) 2022; 34
ref_33
ref_32
ref_31
ref_30
ref_39
ref_38
ref_37
Gomes (ref_13) 2022; 55
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
Bernard (ref_48) 2018; 37
ref_1
ref_3
ref_2
ref_9
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_5
– ident: ref_51
– ident: ref_42
  doi: 10.1007/978-3-030-00889-5_1
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_25
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: ref_20
  doi: 10.1007/978-3-319-68127-6_1
– ident: ref_32
  doi: 10.1109/CVPR.2016.265
– ident: ref_38
  doi: 10.1609/aaai.v32i1.11671
– ident: ref_23
– volume: 58
  start-page: 101535
  year: 2019
  ident: ref_49
  article-title: Disentangled representation learning in cardiac image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101535
– ident: ref_8
– ident: ref_4
– ident: ref_31
– ident: ref_56
– ident: ref_19
  doi: 10.1007/978-3-319-66179-7_47
– ident: ref_27
– ident: ref_52
– volume: 16
  start-page: 31
  year: 2018
  ident: ref_26
  article-title: The mythos of model interpretability
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: ref_41
– ident: ref_28
  doi: 10.1109/CVPR.2017.632
– ident: ref_34
  doi: 10.1109/CVPR.2017.316
– ident: ref_45
– ident: ref_9
  doi: 10.1109/CVPR42600.2020.01070
– ident: ref_22
  doi: 10.1109/WACV51458.2022.00130
– ident: ref_53
– ident: ref_55
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_24
– volume: 34
  start-page: 1
  year: 2022
  ident: ref_40
  article-title: Predictive coding, variational autoencoders, and biological connections
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01458
– ident: ref_47
– ident: ref_16
  doi: 10.1109/ICCV.2017.606
– ident: ref_11
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_13
  article-title: A survey on semi-supervised learning for delayed partially labelled data streams
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3523055
– ident: ref_3
  doi: 10.1109/BIBM55620.2022.9995040
– ident: ref_37
  doi: 10.1109/ICCV.2017.167
– ident: ref_10
  doi: 10.1007/978-3-319-66185-8_29
– ident: ref_15
  doi: 10.1109/CVPR52688.2022.01565
– ident: ref_35
  doi: 10.1109/CVPR.2017.437
– volume: 26
  start-page: 1464
  year: 2021
  ident: ref_6
  article-title: Cervical cancer diagnostics healthcare system using hybrid object detection adversarial networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3094311
– ident: ref_14
– ident: ref_18
– ident: ref_44
– ident: ref_21
– ident: ref_39
  doi: 10.1109/CVPR.2019.00244
– ident: ref_46
  doi: 10.1109/ICCV.2017.304
– volume: 20
  start-page: 2
  year: 2001
  ident: ref_54
  article-title: Three-dimensional modeling for functional analysis of cardiac images, a review
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906421
– ident: ref_30
  doi: 10.1007/978-3-030-01219-9_11
– ident: ref_7
  doi: 10.1007/978-3-031-12053-4_28
– ident: ref_17
  doi: 10.1007/978-3-030-00919-9_17
– ident: ref_50
– ident: ref_33
– ident: ref_2
– ident: ref_12
– ident: ref_43
  doi: 10.18653/v1/2020.emnlp-main.101
– ident: ref_29
  doi: 10.1109/ICCV.2017.244
– volume: 37
  start-page: 2514
  year: 2018
  ident: ref_48
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– ident: ref_36
– ident: ref_1
  doi: 10.1109/CVPR42600.2020.00500
SSID ssj0000913810
Score 2.2458541
Snippet Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12163
SubjectTerms Annotations
augmentation
cardiac segmentation
disentangled representation
domain invariant features
generative adversarial network
image quality
Medical imaging
Methods
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEC2v0IKMBBIIRSS2148jbKnogQp1Qeotil_tSmx2Rbrl7zN2vKssAnHhGju7TuYbz3zK-BuAl2hlM7GOlpUysuSWirKlYVIiOHwtrFdCutRsQp6dqYsL_WXU6ivWhA3ywMOLe-da7b2yinEluArIuQVGdKtk8FFLKhGfSuoRmUp7sK6jdNVQ6c6Q18fvwTWGwprWgu3EoCTV_6f88vcyyVHcObkP93LCSN4PC92HW747gLsjGcED2M8O2pPXWUX6zQP4mZVTL8mx9ytynipe80GjrifLQKYJHJbMkoTsGocJZrCEH5Mp_jb5fH5KThe43ZCZv1xs7iS5sQ9eXMzL2XoV95reO7L5u4fw7eTj1-mnMndZKC2X-rpkRhppjUWmZZlodRU0E9ZVNMi6dlopM2GOGud9ENqr2Gletyqa0k1apyx7BHvdsvNPgLCKtnirNDZYHpyKx3aNM4FTJJFc0QLebt57Y7MEeeyE8b1BKhKt1IytVMCr7ezVIL3xl3kfogm3c6JgdrqAMGoyjJp_waiAow0AmuzFfYOMXSFRx6BQwIvtMPpf_KjSdn65xjkKk6g66vsW8HjAy3YlTGL6iDlQAWoHSTtL3R3p5ldJ4xt9iHFM5Z7-j4c7hDs0ntpIVThHsIew8s_gtr25nvc_nifP-QXLBR3k
  priority: 102
  providerName: Directory of Open Access Journals
Title Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37125242
https://www.proquest.com/docview/2748523153
https://www.proquest.com/docview/2808215399
https://pubmed.ncbi.nlm.nih.gov/PMC10134910
https://doaj.org/article/da9ee8c8348648f1946929c87fe19641
Volume 12
WOSCitedRecordID wos000895998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjQf2AGz8CozKSCCBUERiu7HzhFi3iT6sqlqQylOU2E6ptCZlWeHf5-w6oUXAC4-J7cSSvzvfnc_fAbzEVS76StMwkoUIuaJJmNOyHyI4TJwoIxOhXbEJMRrJ2Swd-4Bb49MqW53oFLWulY2Rv0PvSaLThAL6fvUttFWj7OmqL6GxBweWqQxxfnB6PhpPuiiLZb2UcbTJeGfo39tz4Ri3xJjGCdvZixxl_5_szN_TJbf2n4t7_zvz-3DXW57kwwYqR3DLVMdwuMVHeAxHXtIb8trTUb95AD88BeucnBmzIhOXOutvLFUNqUsycChTZOq4aNfYTNAUJvyMDPDb5HIyJMMl6i0yNfNlO5L4CkH4crkIp-uVVVqN0aT93UP4fHH-afAx9OUaQsVFehOyQhRCFQpdNsWSPI3KlCVKR7QUcaxTKYs-07TQxpRJaqQtWZ_m0mJC93MtFXsE-1VdmSdAWERzHCoKVSpeamnv_xa6KDlFb5RLGsDbduEy5bnMbUmNqwx9GrvM2fYyB_Cq673acHj8pd-pxUDXxzJvuxf19TzzgpzpPDVGKsm4TLgs45QnaGEqKUpjuc3iAE5aFGReHTTZLwgE8KJrRkG2pzN5Zeo19pFojcWWKDiAxxvAdTNhAu1QNKYCkDtQ3Jnqbku1-OrIwlEYGUeb8Om_5_UM7lB7scMl6pzAPgLGPIfb6vvNornuwZ6YyZ4Xrp6LW-DTeHg5_vIT_A4xgA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADZ-BQYYiUkgFJHYbuI8IAQt06KtVbVu0ngKie2USjQpy8rEP8XfyDlxSouAtz3wGjuJlXz3-c4-fwfwHP9y1pWKup7IQpdLGrgpzbsugkP7gdQiCFVdbCIcDsXpaTTagB_tWRiTVtlyYk3UqpRmjfw1Rk8CgyY00Lfzr66pGmV2V9sSGg0sDvT3CwzZqjdxH__vLqV7H457-66tKuBKHkbnLsvCLJSZxMhCsiCNvDxigVQezUPfV5EQWZcpmimt8yDSwlRWj1Jhhq66qRKS4XOvwCY3YO_A5igejD4uV3WMyqbwvSbDnrHIM_vQPk7BPvUDtjb31SUC_uTX_p6euTLf7d36377UbbhpPWvyrjGFLdjQxTbcWNFb3IYty2QVeWHltl_egQsrMTshfa3n5KhODbYnsoqKlDnp1VYkybjW2l1gM0FXn_A-6eGzyeAoJvEMeZmM9WTW3klsBSS8OJu648XckHKlFWlfdxdOLuVz3INOURb6ARDm0RRvDTOZS54rYc43ZyrLOcVomwvqwKsWKIm0Wu2mZMiXBGM2A6tkFVYO7C57zxuNkr_0e28wt-xjlMXrC-XZJLFElag00lpIwbgIuMj9iAfoQUsR5tpot_kO7LSoSyzdVckvyDnwbNmMRGV2n9JClwvsI9Db9I0QsgP3G4AvR8JC9LPRWXRArEF_bajrLcX0cy2GjmTDOPq8D_89rqdwbf94cJgcxsODR3CdmkMsdVLSDnQQPPoxXJXfzqfV2RNr0gQ-XbZt_AQ2mIwo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDiF4ADYYBAYYiUkgFC2x3cR5QAhaKqqxqlqZNJ6yxD9KJZqWZWXiX-Ov45w4pUXA2x54jZ3ESb77fBefvwN4hl85b0tF_UDksc8ljfyMmraP4NBhJLWIYlUVm4gHA3Fykgw34EezF8amVTacWBG1mkn7j3wfoyeBQRMa6L5xaRHDbu_1_KtvK0jZldamnEYNkQP9_QLDt_JVv4vfeo_S3ruPnfe-qzDgSx4n5z7L4zyWucQoQ7IoSwKTsEiqgJo4DFUiRN5miuZKaxMlWtgq60km7GOodqaEZHjdK7CJLjmnLdgc9g-Hn5Z_eKzipgiDOtuesSSwa9IhTschDSO2Ng9W5QL-5OP-nqq5Mvf1bv3Pb-023HQeN3lTm8gWbOhiG26s6DBuw5ZjuJI8dzLcL-7AhZOeHZOu1nNyVKUMu51aRUlmhnQq65JkVGnwLrCZYAhAeJd08Nrk8KhP-lPkazLS42lzJnGVkfDgdOKPFnNL1qVWpLndXTi-lNexA61iVuj7QFhAMzw1zqWR3Chh9z3nKjecYhTOBfXgZQOaVDoNd1tK5EuKsZyFWLoKMQ_2lr3ntXbJX_q9tfhb9rGK49WB2dk4dQSWqizRWkjBuIi4MGHCI_SspYiNtppuoQe7DQJTR4Nl-gt-HjxdNiOB2VWprNCzBfYR6IWGViDZg3s12JcjYTH63-hEeiDWzGBtqOstxeRzJZKOJMQ4-sIP_j2uJ3ANDSL90B8cPITr1O5tqXKVdqGF2NGP4Kr8dj4pzx476yZwetmm8RPVkZTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Deep+Representations+of+Cardiac+Structures+for+4D+Cine+MRI+Image+Segmentation+through+Semi-Supervised+Learning&rft.jtitle=Applied+sciences&rft.au=Kamrul+Hasan%2C+S+M&rft.au=Linte%2C+Cristian+A&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=23&rft.spage=12163&rft_id=info:doi/10.3390%2Fapp122312163&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon