Permutation and Grouping Methods for Sharpening Gaussian Process Approximations

Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the article i...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics Vol. 60; no. 4; pp. 415 - 429
Main Author: Guinness, Joseph
Format: Journal Article
Language:English
Published: United States Taylor & Francis 01.01.2018
American Society for Quality and the American Statistical Association
American Society for Quality
Subjects:
ISSN:0040-1706, 1537-2723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the article includes a systematic study of how ordering affects the accuracy of Vecchia's approximation. We demonstrate the surprising result that random orderings can give dramatically sharper approximations than default coordinate-based orderings. Additional ordering schemes are described and analyzed numerically, including orderings capable of improving on random orderings. The second contribution of this article is a new automatic method for grouping calculations of components of the approximation. The grouping methods simultaneously improve approximation accuracy and reduce computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by more than a factor of 60 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equations. Computational details are provided, including the use of the approximations for prediction and conditional simulation. An application to space-time satellite data is presented.
AbstractList Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the article includes a systematic study of how ordering affects the accuracy of Vecchia's approximation. We demonstrate the surprising result that random orderings can give dramatically sharper approximations than default coordinate-based orderings. Additional ordering schemes are described and analyzed numerically, including orderings capable of improving on random orderings. The second contribution of this article is a new automatic method for grouping calculations of components of the approximation. The grouping methods simultaneously improve approximation accuracy and reduce computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by more than a factor of 60 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equations. Computational details are provided, including the use of the approximations for prediction and conditional simulation. An application to space-time satellite data is presented.
Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the paper includes a systematic study of how ordering affects the accuracy of Vecchia's approximation. We demonstrate the surprising result that random orderings can give dramatically sharper approximations than default coordinate-based orderings. Additional ordering schemes are described and analyzed numerically, including orderings capable of improving on random orderings. The second contribution of this paper is a new automatic method for grouping calculations of components of the approximation. The grouping methods simultaneously improve approximation accuracy and reduce computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by more than a factor of 60 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equations. Computational details are provided, including the use of the approximations for prediction and conditional simulation. An application to space-time satellite data is presented.
Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the paper includes a systematic study of how ordering affects the accuracy of Vecchia's approximation. We demonstrate the surprising result that random orderings can give dramatically sharper approximations than default coordinate-based orderings. Additional ordering schemes are described and analyzed numerically, including orderings capable of improving on random orderings. The second contribution of this paper is a new automatic method for grouping calculations of components of the approximation. The grouping methods simultaneously improve approximation accuracy and reduce computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by more than a factor of 60 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equations. Computational details are provided, including the use of the approximations for prediction and conditional simulation. An application to space-time satellite data is presented.Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This article takes the alternative standpoint that the ordering can be tuned to sharpen the approximations. Indeed, the first part of the paper includes a systematic study of how ordering affects the accuracy of Vecchia's approximation. We demonstrate the surprising result that random orderings can give dramatically sharper approximations than default coordinate-based orderings. Additional ordering schemes are described and analyzed numerically, including orderings capable of improving on random orderings. The second contribution of this paper is a new automatic method for grouping calculations of components of the approximation. The grouping methods simultaneously improve approximation accuracy and reduce computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by more than a factor of 60 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equations. Computational details are provided, including the use of the approximations for prediction and conditional simulation. An application to space-time satellite data is presented.
Author Guinness, Joseph
Author_xml – sequence: 1
  givenname: Joseph
  orcidid: 0000-0003-0564-6639
  surname: Guinness
  fullname: Guinness, Joseph
  email: jsguinne@ncsu.edu
  organization: Department of Statistics, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31447491$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9r1TAYxoNM3Nn0IygFEXbTY_61aRDEMfQoTDZQr0Oavt3JoU1q0ur27U3tOTJ3oVeB5Pe8ed7nOUFHzjtA6DnBa4Ir_BpjjonA5ZpiUq0JZ4KL8hFakYKJnArKjtBqZvIZOkYnMe4wJoxW4gk6ZoRzwSVZoatrCP006tF6l2nXZJvgp8G6m-wzjFvfxKz1Ifuy1WEAN19v9BSj1S67Dt5AjNn5MAR_a_vfI-JT9LjVXYRn-_MUffvw_uvFx_zyavPp4vwyN1zIMSdaNlozRqQwvIZWNlAyLojkZVtrXlCCsamghLYWpsaMFqaEgmBZ1VJyDewUvV3mDlPdQ2PAjUF3agjJSLhTXlv194uzW3Xjf6hSYCEKkgac7QcE_32COKreRgNdpx34KSpKK1xwyahI6MsH6M5PwaX1FCWipEWKu0zUi_uO_lg5ZJ2ANwtggo8xQKuMXYJPBm2nCFZzs-rQrJqbVftmk7p4oD588D_dq0W3i6MP90WUYaFS1AlnPHHvFs661Hivf_rQNWrUd50PbdDO2JhW-edXvwAAY8Xw
CitedBy_id crossref_primary_10_1002_env_2868
crossref_primary_10_1007_s13253_023_00573_y
crossref_primary_10_1002_env_2748
crossref_primary_10_1137_23M1565139
crossref_primary_10_1093_biomet_asae029
crossref_primary_10_1007_s11222_024_10510_9
crossref_primary_10_1007_s12145_024_01352_0
crossref_primary_10_1007_s13253_020_00401_7
crossref_primary_10_1016_j_jmva_2021_104823
crossref_primary_10_1137_20M1336254
crossref_primary_10_1080_00031305_2019_1665584
crossref_primary_10_1007_s11222_023_10227_1
crossref_primary_10_1007_s11222_021_10077_9
crossref_primary_10_1016_j_csda_2020_107081
crossref_primary_10_1080_00401706_2022_2046170
crossref_primary_10_1145_3476576_3476637
crossref_primary_10_1080_00949655_2020_1792472
crossref_primary_10_3390_en17163895
crossref_primary_10_1214_23_BA1405
crossref_primary_10_1007_s13253_024_00602_4
crossref_primary_10_1137_23M1606253
crossref_primary_10_1007_s13253_022_00525_y
crossref_primary_10_1016_j_spasta_2022_100708
crossref_primary_10_1080_00401706_2025_2475784
crossref_primary_10_1093_biomtc_ujaf093
crossref_primary_10_1093_biomtc_ujaf055
crossref_primary_10_1002_env_2675
crossref_primary_10_1007_s13253_023_00584_9
crossref_primary_10_1016_j_jcmds_2022_100063
crossref_primary_10_1080_10618600_2023_2218027
crossref_primary_10_1080_01621459_2024_2410004
crossref_primary_10_1002_env_2818
crossref_primary_10_1093_jrsssa_qnae108
crossref_primary_10_1214_19_STS755
crossref_primary_10_1016_j_jag_2024_104224
crossref_primary_10_1016_j_spasta_2018_12_007
crossref_primary_10_1016_j_spasta_2023_100742
crossref_primary_10_1007_s11222_023_10231_5
crossref_primary_10_1007_s11222_021_09999_1
crossref_primary_10_1214_22_STS868
crossref_primary_10_1038_s41598_024_60002_z
crossref_primary_10_1002_wics_1574
crossref_primary_10_1080_01621459_2024_2445874
crossref_primary_10_1080_00949655_2021_2016759
crossref_primary_10_1016_j_csda_2023_107887
crossref_primary_10_1016_j_csda_2021_107368
crossref_primary_10_1093_biomet_asz004
crossref_primary_10_1080_10618600_2023_2285332
crossref_primary_10_1107_S1600577519012785
crossref_primary_10_1038_s41467_023_39748_z
crossref_primary_10_1145_3658199
crossref_primary_10_1080_01621459_2020_1833889
crossref_primary_10_1080_10618600_2023_2175686
crossref_primary_10_1214_21_BA1273
crossref_primary_10_1002_sam_11635
crossref_primary_10_1080_10618600_2021_1923518
crossref_primary_10_1080_10618600_2025_2516020
crossref_primary_10_1111_jtsa_12457
crossref_primary_10_6339_22_JDS1071
crossref_primary_10_1016_j_scitotenv_2019_133776
crossref_primary_10_1002_env_2571
crossref_primary_10_1080_24725854_2023_2219468
crossref_primary_10_6339_22_JDS1074
crossref_primary_10_1080_10618600_2024_2409784
crossref_primary_10_1214_25_AOAS2027
crossref_primary_10_1145_3731196
crossref_primary_10_1098_rspa_2024_0763
crossref_primary_10_1002_env_2879
crossref_primary_10_1111_sjos_12555
crossref_primary_10_1007_s13253_023_00580_z
crossref_primary_10_1002_env_2839
crossref_primary_10_1093_pnasnexus_pgae088
crossref_primary_10_1016_j_geoderma_2022_115697
crossref_primary_10_1080_10618600_2018_1537924
crossref_primary_10_1137_24M1717282
crossref_primary_10_1007_s13253_021_00462_2
crossref_primary_10_1016_j_spasta_2020_100417
crossref_primary_10_1137_19M129526X
crossref_primary_10_1214_24_STS923
crossref_primary_10_1080_01621459_2019_1665526
crossref_primary_10_1145_3450626_3459851
crossref_primary_10_1093_biomet_asab017
crossref_primary_10_1007_s13253_022_00488_0
crossref_primary_10_1080_10618600_2022_2129662
crossref_primary_10_1002_env_2844
Cites_doi 10.1137/S0895479894278952
10.1007/BF02187718
10.1111/j.1467-9868.2011.00777.x
10.1201/b17115
10.1093/biomet/86.3.677
10.1198/004017007000000155
10.1080/01621459.2015.1072541
10.1198/106186006X132178
10.1093/biomet/71.1.135
10.1198/016214502753479194
10.1016/S0098-3004(97)00040-X
10.1002/wics.1383
10.1080/01621459.2015.1044091
10.1111/j.1467-9868.2008.00700.x
10.1016/j.spasta.2013.06.003
10.1137/0602010
10.3150/12-BEJSP06
10.1007/978-1-4612-0699-6_25
10.1214/aos/1015362194
10.1016/j.jmva.2015.08.018
10.1198/016214508000000959
10.1093/biomet/93.4.989
10.1080/10618600.2014.975230
10.1046/j.1369-7412.2003.05512.x
10.1137/1.9780898718003
10.1111/j.2517-6161.1988.tb01729.x
10.1214/16-AOAS931
10.1214/ss/1177012413
10.1080/10618600.2014.914442
ContentType Journal Article
Copyright 2018 American Statistical Association and the American Society for Quality 2018
2018 American Statistical Association and the American Society for Quality
Copyright American Society for Quality 2018
Copyright_xml – notice: 2018 American Statistical Association and the American Society for Quality 2018
– notice: 2018 American Statistical Association and the American Society for Quality
– notice: Copyright American Society for Quality 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1080/00401706.2018.1437476
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1537-2723
EndPage 429
ExternalDocumentID PMC6707751
31447491
10_1080_00401706_2018_1437476
45220134
1437476
Genre Article
Journal Article
GroupedDBID -ET
-~X
..I
.7F
.DC
.QJ
07G
0BK
0R~
123
29Q
2AX
30N
4.4
5RE
7WY
85S
8FL
96U
AAAVZ
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
AEGXH
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFAZI
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AMXXU
AQRUH
AQTUD
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DQDLB
DSRWC
DU5
DWIFK
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HFX
HF~
HQ6
HZ~
H~P
I-F
IHF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
M4Z
MS~
MW2
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SA0
SNACF
TAE
TAQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UT5
UU3
WH7
WZA
YNT
ZGOLN
~02
~S~
ADYSH
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
0B8
3R3
3V.
41~
88I
8AO
8C1
8FE
8FG
8P6
AAIKQ
AAKBW
AAKYL
AAYJJ
ABEFU
ABJCF
ABTAH
ABUWG
ACAGQ
ACDIW
ACGEE
ADBBV
ADULT
AELPN
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AIHAF
ALCKM
AMATQ
AMEWO
AZQEC
BENPR
BES
BEZIV
BGLVJ
BHOJU
BPHCQ
CCPQU
CRFIH
DMQIW
DWQXO
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HGD
HVGLF
IAO
IEA
IGG
IOF
IVXBP
JSODD
L6V
LJTGL
M0C
M2P
M7S
MVM
N95
NHB
NPM
NUSFT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
QCRFL
S0X
TFMCV
UAP
UKHRP
VOH
VXZ
XOL
YHZ
YXB
YYP
Z5M
ZCG
ZE2
ZXP
ZY4
7X8
5PM
ID FETCH-LOGICAL-c479t-1a9daa33197c4bef9de63471946fba452100c8e6efb7cb0325c6e51098b994ae3
IEDL.DBID TFW
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457339400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-1706
IngestDate Tue Nov 04 01:52:57 EST 2025
Thu Oct 02 10:53:21 EDT 2025
Wed Aug 13 09:13:27 EDT 2025
Wed Feb 19 02:36:20 EST 2025
Sat Nov 29 03:42:50 EST 2025
Tue Nov 18 22:23:27 EST 2025
Thu May 29 09:01:30 EDT 2025
Mon Oct 20 23:49:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-1a9daa33197c4bef9de63471946fba452100c8e6efb7cb0325c6e51098b994ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0564-6639
PMID 31447491
PQID 2176252726
PQPubID 24108
PageCount 15
ParticipantIDs proquest_miscellaneous_2280549327
pubmed_primary_31447491
informaworld_taylorfrancis_310_1080_00401706_2018_1437476
jstor_primary_10_2307_45220134
proquest_journals_2176252726
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6707751
crossref_citationtrail_10_1080_00401706_2018_1437476
crossref_primary_10_1080_00401706_2018_1437476
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Technometrics
PublicationTitleAlternate Technometrics
PublicationYear 2018
Publisher Taylor & Francis
American Society for Quality and the American Statistical Association
American Society for Quality
Publisher_xml – name: Taylor & Francis
– name: American Society for Quality and the American Statistical Association
– name: American Society for Quality
References cit0011
cit0033
cit0012
cit0034
cit0010
cit0032
cit0030
Santner T. J. (cit0031) 2013
Nychka D. (cit0023) 2016
cit0019
cit0017
cit0018
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0001
cit0020
cit0021
R Development Core Team (cit0027) 2008
Bates D. (cit0003) 2016
Vecchia A. V. (cit0037) 1988
Heyde C. C. (cit0015) 2008
cit0008
cit0009
Hung Y. (cit0016) 2016
cit0006
cit0028
cit0007
cit0029
cit0026
cit0005
cit0002
cit0024
Beygelzimer A. (cit0004) 2013
cit0025
References_xml – ident: cit0001
  doi: 10.1137/S0895479894278952
– volume-title: FNN: Fast Nearest Neighbor Search Algorithms and Applications
  year: 2013
  ident: cit0004
– ident: cit0036
  doi: 10.1007/BF02187718
– ident: cit0020
  doi: 10.1111/j.1467-9868.2011.00777.x
– ident: cit0002
  doi: 10.1201/b17115
– ident: cit0026
  doi: 10.1093/biomet/86.3.677
– year: 2016
  ident: cit0016
  publication-title: Statistica Sinica, in press
– ident: cit0018
  doi: 10.1198/004017007000000155
– ident: cit0025
  doi: 10.1080/01621459.2015.1072541
– ident: cit0010
  doi: 10.1198/106186006X132178
– ident: cit0021
  doi: 10.1093/biomet/71.1.135
– ident: cit0009
  doi: 10.1198/016214502753479194
– ident: cit0024
  doi: 10.1016/S0098-3004(97)00040-X
– volume-title: Quasi-likelihood and Its Application: A General Approach to Optimal Parameter Estimation
  year: 2008
  ident: cit0015
– ident: cit0007
  doi: 10.1002/wics.1383
– ident: cit0006
  doi: 10.1080/01621459.2015.1044091
– volume-title: The Design and Analysis of Computer Experiments
  year: 2013
  ident: cit0031
– ident: cit0028
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: cit0033
  doi: 10.1016/j.spasta.2013.06.003
– ident: cit0038
  doi: 10.1137/0602010
– volume-title: Fields: Tools for Spatial Data
  year: 2016
  ident: cit0023
– ident: cit0011
  doi: 10.3150/12-BEJSP06
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2008
  ident: cit0027
– ident: cit0017
  doi: 10.1007/978-1-4612-0699-6_25
– ident: cit0032
  doi: 10.1214/aos/1015362194
– volume-title: Matrix: Sparse and Dense Matrix Classes and Methods
  year: 2016
  ident: cit0003
– ident: cit0013
  doi: 10.1016/j.jmva.2015.08.018
– ident: cit0019
  doi: 10.1198/016214508000000959
– ident: cit0014
  doi: 10.1093/biomet/93.4.989
– ident: cit0035
  doi: 10.1080/10618600.2014.975230
– ident: cit0034
  doi: 10.1046/j.1369-7412.2003.05512.x
– ident: cit0005
– ident: cit0022
– ident: cit0029
  doi: 10.1137/1.9780898718003
– start-page: 297
  year: 1988
  ident: cit0037
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1988.tb01729.x
– ident: cit0008
  doi: 10.1214/16-AOAS931
– ident: cit0030
  doi: 10.1214/ss/1177012413
– ident: cit0012
  doi: 10.1080/10618600.2014.914442
SSID ssj0013287
Score 2.576756
Snippet Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This...
Vecchia’s approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which has been cited as a deficiency. This...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms Accuracy
Approximation
Comparative analysis
Computation
Computer simulation
Conditional simulation
Divergence
Gaussian process
Kriging
Mathematical models
Normal distribution
Parallel computation
Partial differential equations
Permutations
Process parameters
Sharpening
Spatial-temporal data
Stochastic models
Vecchia's approximation
Title Permutation and Grouping Methods for Sharpening Gaussian Process Approximations
URI https://www.tandfonline.com/doi/abs/10.1080/00401706.2018.1437476
https://www.jstor.org/stable/45220134
https://www.ncbi.nlm.nih.gov/pubmed/31447491
https://www.proquest.com/docview/2176252726
https://www.proquest.com/docview/2280549327
https://pubmed.ncbi.nlm.nih.gov/PMC6707751
Volume 60
WOSCitedRecordID wos000457339400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: TFW
  dateStart: 19590201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4B4rAcWl6FlGXlSr0GbWKvHR8RYuHC4wDq3iwncdSVqoDILuLndyZOomwF2kO5RIniSWJnxv7GHn8D8FPgoFkUkQ1FLjkeoii0Usgwd7GaFLFzKvXJJtTtbTKb6fsmmrBqwirJhy48UUTdV5Nx27RqI-KIj6dmfaHArARNnSMkJtJtRPak4w_TX711hES1cXMk0u7h-egpK6PTCndpG6_4HhL9N6CyN0JNv35C3XbhSwNP2bnXpz3YcOU-7PRIC_HqpmN6rfZhQGjVkz0fwN099vNLv7jP8BNYPbOFUuymTlRdMawpI47oZ0fzMezKLivaxcma_QrsnCjO3-Z-P2V1CI_Ty4eL67DJ2BBmQulFGFmdW8vRrFUmUlfo3EmOw58WskitQKgwHmeJk65IVZaOeTzJpMNeQSep1sI6_g22yqfSHQNTBHwmOSKoKBPo9WnETRJPOJZX6IQFINo_ZbKGzpyyavwxUcd66pvSUFOapikDOOvEnj2fxzoB3VcDs6gnUgqf9cTwNbKjWmf6b6LAe0M09qicIoBhq0ym6Tsqg04iOqUxVjKAH91ttHpayrGle1pimThBrI3YWwVw5HWvewnH1lJCRwGoFa3sChCj-Oqdcv67ZhaXihgRo-__UecTGNCln6UawtbiZelOYTt7RV18GcGmmiWj2kb_AvZWMws
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xgjR42AdjIxtjRuI1qIldO36s0Dqm0W4PneDNchJHVEIBkRbx53MXJ1GKNvGwvVSt7Gtq98734bvfARwLVJpFEdlQ5JLjSxSFVgoZ5i5WoyJ2TqW-2YSazZLLS92vhaG0SvKhCw8UUZ_VJNwUjG5T4giQp4Z9ocysBGWdo00sX8DmCHUtpfXNJxe9m4REtZlzRNNW8fzta9b00xp6aZux-Cdb9GlKZU9HTV7_j9W9gVeNhcrGnqXewoYrd2Gnh1uIn6Yd2Gu1C9tksHq853fw8xce9St_v8_wN7A6uIVUbFr3qq4YLpURTPSto5AM-2ZXFRVysqZkgY0J5fxh4Usqqz34Pfk6Pz0Lm6YNYSaUXoaR1bm1HCVbZSJ1hc6d5KgBtZBFagVaC8NhljjpilRl6ZDHo0w6PBh0kmotrOPvYVDelG4fmCLbZ5SjERVlAh0_jaaTxDcc5yv0wwIQ7V9lsgbRnBprXJuoAz71W2loK02zlQGcdGS3HtLjOQLd5wOzrGMphW98YvgztIc10_SfRLn3hpDskTtFAActN5nm-KgM-onol8a4yACOumEUfLrNsaW7WeGcOEFzG81vFcAHz3zdQzjulhI6CkCtsWU3gUDF10fKxVUNLi4VgSJGH_9hzV_g5dl8em7Ov89-fIJtGvJBqwMYLO9W7jNsZffIl3eHtag-AvyqNkQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQGh74GN8LDCGkXgNamLXjh-nQQHBSh-G2JvlJLY2CWXV0k7783dnJ1GKQHuAl6iRfXXt3tm_s8-_A3gncNH0PrOpqCXHR5alVgqZ1i5XU587p8qYbELN58XpqV500YRtF1ZJPrSPRBFhribjXta-j4gjPp7A-kKBWQWaOkdILO_CvUCOhSp9Mvs5OkgoVB84RzL9JZ6_fc3G8rRBXtoHLP4Jiv4eUTlaomaP_kPnHsPDDp-yw6hQT-COa3ZhZ8RaiG_HA9VruwvbBFcj2_NT-L7AiX4dT_cZ_gQWtrZQih2HTNUtw54yIoleOtqQYZ_suqVrnKy7sMAOieP8-jxeqGyfwY_Zx5Ojz2mXsiGthNKrNLO6tpajXatKlM7r2kmO658W0pdWIFaYTKrCSedLVZUTnk8r6XBa0EWptbCOP4et5qJxe8AUIZ9pjRAqqwS6fRqBk8QPHOsr9MISEP0_ZaqOz5zSavwy2UB7GofS0FCabigTeD-ILSOhx20CeqwGZhV2UnxMe2L4LbIHQWfGLVHkvSEee1ROkcB-r0ymmzxag14ieqU5djKBt0Mxmj2d5djGXayxTl4g2EbwrRJ4EXVvaITjaCmhswTUhlYOFYhSfLOkOT8L1OJSESVi9vIf-vwGHiw-zMy3L_Ovr2CbSuKO1T5srS7X7jXcr65QLS8PgqHeAOoJNOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permutation+and+Grouping+Methods+for+Sharpening+Gaussian+Process+Approximations&rft.jtitle=Technometrics&rft.au=Guinness%2C+Joseph&rft.date=2018-01-01&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=60&rft.issue=4&rft.spage=415&rft.epage=429&rft_id=info:doi/10.1080%2F00401706.2018.1437476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00401706_2018_1437476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon