Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods

In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with kno...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of computational mathematics Ročník 18; číslo 5; s. 1199 - 1232
Hlavní autoři: Li, Guoyin, Pong, Ting Kei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2018
Springer Nature B.V
Témata:
ISSN:1615-3375, 1615-3383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is 1 2 . The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is 1 2 . This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with ℓ 1 regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery.
AbstractList In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is 1 2 . The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is 1 2 . This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with ℓ 1 regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery.
In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is 12. The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is 12. This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with ℓ1 regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery.
Author Li, Guoyin
Pong, Ting Kei
Author_xml – sequence: 1
  givenname: Guoyin
  surname: Li
  fullname: Li, Guoyin
  organization: Department of Applied Mathematics, University of New South Wales
– sequence: 2
  givenname: Ting Kei
  surname: Pong
  fullname: Pong, Ting Kei
  email: tk.pong@polyu.edu.hk
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University
BookMark eNp9kEtOHDEQhi1EJF45ADtLWXfisvthL9EIwigTsYG15XFXgycdu7HdwLAJnCFnykVykvRkEJEiJauqkur7q_QdkF0fPBJyDOw9MNZ8SMA4kwWDplCirgu5Q_ahhqoQQord176p9shBSivGoFJQ7pNvM9PbsR8TDR3NN0hPH4Yp2efN_GmM7fqL-fn0_cdzWJnk8N7ZRzr3eDua3uU1Nb6l85zoyTD0zprsgk80B7pwHk2ks-DvMF6jt7jJO3Mx5eIithjpZ8w3oU1H5E1n-oRvX-ohuTo7vZydF4uLj_PZyaKwZaNkAV0pwWJbo6o5VMsWueLVkoNhopRcTW0LctnwcqmsxNqKRlTIu5ILNgloxSF5t80dYrgdMWW9CmP000nNAaCpFeNq2oLtlo0hpYidHqL7auJaA9Mbz3rrWU-e9cazlhPT_MVYl3-byNG4_r8k35JpuuKvMf756d_QL4Iilbw
CitedBy_id crossref_primary_10_1007_s10957_019_01524_9
crossref_primary_10_1080_10618600_2020_1856118
crossref_primary_10_1007_s10107_018_1280_6
crossref_primary_10_1007_s00186_022_00790_0
crossref_primary_10_1109_ACCESS_2025_3589260
crossref_primary_10_1137_22M1469663
crossref_primary_10_1007_s10915_021_01547_3
crossref_primary_10_1016_j_ymssp_2024_111493
crossref_primary_10_1109_TNNLS_2023_3330017
crossref_primary_10_1007_s10957_024_02401_w
crossref_primary_10_1007_s10444_022_10002_2
crossref_primary_10_1137_20M1387213
crossref_primary_10_1137_20M1314057
crossref_primary_10_3934_jimo_2024178
crossref_primary_10_1007_s10208_022_09586_4
crossref_primary_10_1109_ACCESS_2019_2937005
crossref_primary_10_1137_18M1186320
crossref_primary_10_1007_s10107_022_01867_8
crossref_primary_10_1137_19M1245001
crossref_primary_10_1007_s10957_020_01800_z
crossref_primary_10_1137_18M1167498
crossref_primary_10_1007_s10915_024_02712_0
crossref_primary_10_1287_moor_2021_1243
crossref_primary_10_1007_s10589_024_00591_7
crossref_primary_10_1007_s10589_022_00364_0
crossref_primary_10_1007_s11590_022_01907_4
crossref_primary_10_1007_s11590_024_02132_x
crossref_primary_10_1007_s10851_019_00916_w
crossref_primary_10_1137_19M1237466
crossref_primary_10_1007_s10589_025_00680_1
crossref_primary_10_1007_s10957_023_02204_5
crossref_primary_10_1137_20M1325381
crossref_primary_10_1109_LCSYS_2020_2993983
crossref_primary_10_1007_s10107_018_1285_1
crossref_primary_10_1007_s10957_022_02013_2
crossref_primary_10_1137_20M1358669
crossref_primary_10_1007_s10589_024_00556_w
crossref_primary_10_1007_s00211_022_01335_7
crossref_primary_10_1007_s10589_017_9954_1
crossref_primary_10_1137_23M1545781
crossref_primary_10_1007_s10107_024_02136_6
crossref_primary_10_1007_s10208_021_09528_6
crossref_primary_10_1007_s10957_023_02348_4
crossref_primary_10_1287_moor_2022_1350
crossref_primary_10_1109_TNNLS_2019_2935001
crossref_primary_10_1007_s10957_020_01779_7
crossref_primary_10_1007_s10107_025_02197_1
crossref_primary_10_1007_s10957_023_02178_4
crossref_primary_10_1007_s10957_023_02171_x
crossref_primary_10_1007_s10898_021_01114_y
crossref_primary_10_1007_s10957_021_01919_7
crossref_primary_10_1007_s00211_018_0981_3
crossref_primary_10_1007_s10589_022_00416_5
crossref_primary_10_1007_s10107_021_01702_6
crossref_primary_10_1088_1361_6420_ac0966
crossref_primary_10_1007_s10589_017_9900_2
crossref_primary_10_1109_TPAMI_2024_3385920
crossref_primary_10_1287_moor_2024_0457
crossref_primary_10_1007_s10107_022_01809_4
crossref_primary_10_1137_23M1618697
crossref_primary_10_1360_SSM_2024_0024
crossref_primary_10_1007_s10915_022_01815_w
crossref_primary_10_1007_s10957_021_01865_4
crossref_primary_10_1007_s10589_019_00067_z
crossref_primary_10_1287_ijoc_2023_0247
crossref_primary_10_1080_02331934_2024_2345395
crossref_primary_10_1109_TIT_2022_3229765
crossref_primary_10_1137_23M1545720
crossref_primary_10_1137_21M1443455
crossref_primary_10_1007_s00521_024_10883_y
crossref_primary_10_1007_s40305_025_00600_4
crossref_primary_10_1007_s10107_022_01797_5
crossref_primary_10_1137_21M1434507
crossref_primary_10_3934_jimo_2025077
crossref_primary_10_1287_ijoc_2024_0648
crossref_primary_10_1287_moor_2021_1214
crossref_primary_10_1016_j_amc_2020_125822
crossref_primary_10_1002_nla_2391
crossref_primary_10_1137_18M1174313
crossref_primary_10_1109_TSP_2025_3553355
crossref_primary_10_1007_s10957_025_02816_z
crossref_primary_10_1007_s11228_021_00591_3
crossref_primary_10_1007_s40305_019_00271_y
crossref_primary_10_1137_20M1355380
crossref_primary_10_1007_s10898_025_01495_4
crossref_primary_10_3934_fods_2025016
crossref_primary_10_1007_s10898_020_00899_8
crossref_primary_10_1007_s10915_024_02715_x
crossref_primary_10_1287_moor_2022_0135
crossref_primary_10_1007_s11228_020_00570_0
crossref_primary_10_1007_s11590_018_1280_8
crossref_primary_10_1007_s11425_020_1863_5
crossref_primary_10_1007_s11590_023_02026_4
crossref_primary_10_1016_j_jiixd_2025_03_003
crossref_primary_10_1007_s10589_022_00434_3
crossref_primary_10_1007_s10898_019_00789_8
crossref_primary_10_1137_22M1543653
crossref_primary_10_1186_s13660_019_2078_7
crossref_primary_10_1080_10556788_2019_1702661
crossref_primary_10_1287_moor_2021_1203
crossref_primary_10_1109_TSP_2023_3339232
crossref_primary_10_1007_s10589_024_00646_9
crossref_primary_10_1137_24M1636186
crossref_primary_10_1109_LCSYS_2019_2921838
crossref_primary_10_1007_s10957_020_01787_7
crossref_primary_10_1007_s10957_023_02219_y
crossref_primary_10_1007_s10589_024_00618_z
crossref_primary_10_1007_s10957_022_02016_z
crossref_primary_10_1007_s11075_023_01554_5
crossref_primary_10_1007_s10957_024_02536_w
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1007_s10957_021_01827_w
crossref_primary_10_1088_1361_6420_ad2c31
crossref_primary_10_1146_annurev_control_042920_020021
crossref_primary_10_1137_22M1482822
crossref_primary_10_1007_s10957_024_02551_x
crossref_primary_10_1137_20M136801X
crossref_primary_10_1007_s10957_021_01989_7
crossref_primary_10_1007_s10589_024_00560_0
crossref_primary_10_1007_s10915_024_02689_w
crossref_primary_10_1109_TSP_2023_3306824
crossref_primary_10_1007_s10107_023_01937_5
crossref_primary_10_1007_s10107_020_01534_w
crossref_primary_10_1016_j_automatica_2024_111954
crossref_primary_10_3934_jimo_2025128
crossref_primary_10_1007_s10444_023_10040_4
crossref_primary_10_1007_s10915_017_0376_0
crossref_primary_10_1007_s11075_023_01607_9
crossref_primary_10_1080_02331934_2024_2411430
crossref_primary_10_1088_1361_6420_adef74
crossref_primary_10_1007_s00180_022_01249_w
crossref_primary_10_1007_s10957_018_1272_y
crossref_primary_10_1137_22M1472000
crossref_primary_10_1287_moor_2021_1227
crossref_primary_10_1137_22M1530173
crossref_primary_10_1007_s10589_023_00496_x
crossref_primary_10_1137_22M151546X
crossref_primary_10_1007_s10107_022_01883_8
crossref_primary_10_1137_23M159439X
crossref_primary_10_1007_s10444_023_10014_6
crossref_primary_10_1007_s11590_025_02227_z
crossref_primary_10_1137_22M1532354
Cites_doi 10.1007/s10107-014-0806-9
10.1214/09-AOS729
10.1137/070692285
10.1515/9781400873173
10.1007/s10107-010-0394-2
10.1007/3-540-31247-1
10.1007/978-0-387-87821-8
10.1137/S0363012993243022
10.1137/0802004
10.1017/CBO9780511983658
10.1007/s10107-016-1091-6
10.1111/j.1467-9868.2005.00532.x
10.1137/S0036144593251710
10.1137/140990309
10.1137/130942954
10.1137/120887795
10.1007/s10957-014-0642-3
10.1007/s10589-016-9828-y
10.1137/140998135
10.1137/S1052623401387623
10.1007/s10107-016-1100-9
10.1007/BF03178906
10.1007/s10107-015-0963-5
10.1137/0330025
10.1007/s10957-015-0746-4
10.1080/02331930600815884
10.1287/moor.1100.0449
10.1109/34.120331
10.1007/s10107-007-0170-0
10.1007/978-0-387-31256-9
10.1007/s00041-008-9035-z
10.1007/BF02096261
10.1007/978-3-642-02431-3
10.1007/s10107-011-0484-9
10.1007/s10957-015-0730-z
10.1109/TNN.2006.879775
10.13140/RG.2.1.3256.3369
10.1007/BFb0120929
ContentType Journal Article
Copyright SFoCM 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: SFoCM 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-017-9366-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 1232
ExternalDocumentID 10_1007_s10208_017_9366_8
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4798-1f481ced6e96215bde2925b21a0348295b2d18b724b9c8e6c3735e2f4230383d3
IEDL.DBID RSV
ISSN 1615-3375
IngestDate Fri Jul 25 19:18:58 EDT 2025
Sat Nov 29 06:41:14 EST 2025
Tue Nov 18 22:24:15 EST 2025
Fri Feb 21 02:36:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sparse optimization
Linear convergence
Luo–Tseng error bound
90C25
Convergence rate
90C26
90C05
First-order methods
Kurdyka–Łojasiewicz inequality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4798-1f481ced6e96215bde2925b21a0348295b2d18b724b9c8e6c3735e2f4230383d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://handle.unsw.edu.au/1959.4/unsworks_46957
PQID 2111769029
PQPubID 43692
PageCount 34
ParticipantIDs proquest_journals_2111769029
crossref_primary_10_1007_s10208_017_9366_8
crossref_citationtrail_10_1007_s10208_017_9366_8
springer_journals_10_1007_s10208_017_9366_8
PublicationCentury 2000
PublicationDate 20181000
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bolte, Nguyen, Peypouquet, Suter (CR7) 2016; 165
Hare, Lewis (CR18) 2004; 11
Dontchev, Rockafellar (CR12) 2009
Zhang (CR45) 2010; 38
Zhou, So (CR46) 2017; 165
Borwein, Lewis (CR8) 2006
Fachinei, Pang (CR13) 2003
Luo, Tseng (CR28) 1992; 30
Blumensath, Davies (CR6) 2008; 14
CR39
Attouch, Bolte, Svaiter (CR3) 2013; 137
Bauschke, Borwein (CR5) 1996; 38
Daniilidis, Hare, Malick (CR11) 2006; 55
Li, Mordukhovich, Pham (CR23) 2015; 153
Bauschke, Combettes (CR4) 2010
Luo, Tseng (CR29) 1992; 1
Tseng, Yun (CR41) 2009; 117
Nikolova, Ng, Zhang, Ching (CR34) 2008; 1
Chambolle, Dossal (CR10) 2015; 166
Attouch, Bolte, Redont, Soubeyran (CR2) 2010; 35
Ochs, Chen, Brox, Pock (CR35) 2014; 7
Boţ, Csetnek (CR9) 2016; 171
Forti, Nistri, Quincampoix (CR15) 2006; 17
Hong, Luo, Razaviyayn (CR19) 2016; 26
Mordukhovich, Shao (CR32) 1995; 2
Mordukhovich (CR33) 2006
Lewis (CR22) 2002; 13
Xu, Yin (CR43) 2013; 6
Luo, Tseng (CR30) 1993; 46
CR27
CR47
Ames, Hong (CR1) 2016; 64
Geman, Reynolds (CR17) 1992; 14
CR21
CR20
Rockafellar (CR36) 1970
Robinson (CR37) 1981
Rockafellar, Wets (CR38) 1998
CR42
Fan (CR14) 1997; 6
Li (CR26) 1995; 33
Li, Pong (CR25) 2015; 25
Yuan, Lin (CR44) 2006; 68
Tseng (CR40) 2010; 125
Li, Pong (CR24) 2016; 159
Frankel, Garrigos, Peypouquet (CR16) 2015; 165
Luo, Pang, Ralph (CR31) 1996
G Li (9366_CR23) 2015; 153
Y Xu (9366_CR43) 2013; 6
AS Lewis (9366_CR22) 2002; 13
HH Bauschke (9366_CR4) 2010
9366_CR7
M Forti (9366_CR15) 2006; 17
BS Mordukhovich (9366_CR33) 2006
RI Boţ (9366_CR9) 2016; 171
F Fachinei (9366_CR13) 2003
M Yuan (9366_CR44) 2006; 68
9366_CR27
RT Rockafellar (9366_CR38) 1998
M Nikolova (9366_CR34) 2008; 1
P Tseng (9366_CR41) 2009; 117
HH Bauschke (9366_CR5) 1996; 38
M Hong (9366_CR19) 2016; 26
D Geman (9366_CR17) 1992; 14
9366_CR21
9366_CR20
G Li (9366_CR25) 2015; 25
9366_CR42
H Attouch (9366_CR3) 2013; 137
G Li (9366_CR24) 2016; 159
9366_CR47
9366_CR46
WL Hare (9366_CR18) 2004; 11
H Attouch (9366_CR2) 2010; 35
W Li (9366_CR26) 1995; 33
P Tseng (9366_CR40) 2010; 125
J Borwein (9366_CR8) 2006
AL Dontchev (9366_CR12) 2009
P Frankel (9366_CR16) 2015; 165
ZQ Luo (9366_CR29) 1992; 1
ZQ Luo (9366_CR28) 1992; 30
BS Mordukhovich (9366_CR32) 1995; 2
P Ochs (9366_CR35) 2014; 7
BPW Ames (9366_CR1) 2016; 64
ZQ Luo (9366_CR30) 1993; 46
9366_CR37
9366_CR39
J Fan (9366_CR14) 1997; 6
A Chambolle (9366_CR10) 2015; 166
C-H Zhang (9366_CR45) 2010; 38
T Blumensath (9366_CR6) 2008; 14
ZQ Luo (9366_CR31) 1996
RT Rockafellar (9366_CR36) 1970
A Daniilidis (9366_CR11) 2006; 55
References_xml – volume: 153
  start-page: 333
  year: 2015
  end-page: 362
  ident: CR23
  article-title: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0806-9
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: CR45
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– ident: CR47
– volume: 1
  start-page: 2
  year: 2008
  end-page: 25
  ident: CR34
  article-title: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070692285
– ident: CR39
– year: 1970
  ident: CR36
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– volume: 125
  start-page: 263
  year: 2010
  end-page: 295
  ident: CR40
  article-title: Approximation accuracy, gradient methods, and error bound for structured convex optimization
  publication-title: Math. Program
  doi: 10.1007/s10107-010-0394-2
– year: 2006
  ident: CR33
  publication-title: Variational Analysis and Generalized differentiation, I: Basic Theory, II: Applications
  doi: 10.1007/3-540-31247-1
– year: 2009
  ident: CR12
  publication-title: Implicit Functions and Solution Mappings
  doi: 10.1007/978-0-387-87821-8
– volume: 33
  start-page: 1510
  year: 1995
  end-page: 1529
  ident: CR26
  article-title: Error bounds for piecewise convex quadratic programs and applications
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012993243022
– volume: 1
  start-page: 43
  year: 1992
  end-page: 54
  ident: CR29
  article-title: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem
  publication-title: SIAM J. Optim.
  doi: 10.1137/0802004
– year: 1996
  ident: CR31
  publication-title: Mathematical Programs with Equilibrium Constraints
  doi: 10.1017/CBO9780511983658
– volume: 165
  start-page: 471
  issue: 2
  year: 2016
  end-page: 507
  ident: CR7
  article-title: From error bounds to the complexity of first-order descent methods for convex functions
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-016-1091-6
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: CR44
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. Royal Stat. Soc. B.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 38
  start-page: 367
  year: 1996
  end-page: 426
  ident: CR5
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– ident: CR27
– ident: CR42
– volume: 26
  start-page: 337
  year: 2016
  end-page: 364
  ident: CR19
  article-title: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/140990309
– ident: CR21
– volume: 7
  start-page: 1388
  year: 2014
  end-page: 1419
  ident: CR35
  article-title: iPiano: inertial proximal algorithm for non-convex optimization
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130942954
– volume: 6
  start-page: 1758
  year: 2013
  end-page: 1789
  ident: CR43
  article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume: 165
  start-page: 874
  year: 2015
  end-page: 900
  ident: CR16
  article-title: Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0642-3
– volume: 2
  start-page: 211
  year: 1995
  end-page: 227
  ident: CR32
  article-title: On nonconvex subdifferential calculus in Banach spaces
  publication-title: J. Convex Anal.
– volume: 64
  start-page: 725
  year: 2016
  end-page: 754
  ident: CR1
  article-title: Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-016-9828-y
– volume: 25
  start-page: 2434
  year: 2015
  end-page: 2460
  ident: CR25
  article-title: Global convergence of splitting methods for nonconvex composite optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– volume: 13
  start-page: 702
  year: 2002
  end-page: 725
  ident: CR22
  article-title: Active sets, nonsmoothness, and sensitivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401387623
– volume: 165
  start-page: 689
  issue: 2
  year: 2017
  end-page: 728
  ident: CR46
  article-title: A unified approach to error bounds for structured convex optimization problems
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-016-1100-9
– volume: 6
  start-page: 131
  year: 1997
  end-page: 138
  ident: CR14
  article-title: Comments on “wavelets in statistics: a review” by A. Antoniadis
  publication-title: J. Ital. Stat. Soc
  doi: 10.1007/BF03178906
– volume: 159
  start-page: 371
  year: 2016
  end-page: 401
  ident: CR24
  article-title: Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0963-5
– volume: 30
  start-page: 408
  year: 1992
  end-page: 425
  ident: CR28
  article-title: On the linear convergence of descent methods for convex essentially smooth minimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330025
– volume: 11
  start-page: 251
  year: 2004
  end-page: 266
  ident: CR18
  article-title: Identifying active constraints via partial smoothness and prox-regularity
  publication-title: J. Convex Anal.
– volume: 166
  start-page: 968
  year: 2015
  end-page: 982
  ident: CR10
  article-title: On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm"
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0746-4
– volume: 55
  start-page: 481
  year: 2006
  end-page: 503
  ident: CR11
  article-title: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems
  publication-title: Optim.
  doi: 10.1080/02331930600815884
– volume: 35
  start-page: 438
  year: 2010
  end-page: 457
  ident: CR2
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 14
  start-page: 367
  year: 1992
  end-page: 383
  ident: CR17
  article-title: Constrained restoration and the recovery of discontinuities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120331
– volume: 117
  start-page: 387
  year: 2009
  end-page: 423
  ident: CR41
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– year: 2010
  ident: CR4
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– year: 2006
  ident: CR8
  publication-title: Convex Analysis and Nonlinear Optimization
  doi: 10.1007/978-0-387-31256-9
– volume: 14
  start-page: 629
  year: 2008
  end-page: 654
  ident: CR6
  article-title: Iterative thresholding for sparse approximations
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9035-z
– volume: 46
  start-page: 157
  year: 1993
  end-page: 178
  ident: CR30
  article-title: Error bounds and convergence analysis of feasible descent methods: A general approach
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02096261
– year: 1998
  ident: CR38
  publication-title: Variational Analysis
  doi: 10.1007/978-3-642-02431-3
– volume: 137
  start-page: 91
  year: 2013
  end-page: 129
  ident: CR3
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 171
  start-page: 600
  year: 2016
  end-page: 616
  ident: CR9
  article-title: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0730-z
– ident: CR20
– year: 2003
  ident: CR13
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems I and II
– volume: 17
  start-page: 1471
  year: 2006
  end-page: 1486
  ident: CR15
  article-title: Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.879775
– start-page: 206
  year: 1981
  end-page: 214
  ident: CR37
  article-title: Some continuity properties of polyhedral multifunctions
  publication-title: Mathematical Programming Studies
– volume: 171
  start-page: 600
  year: 2016
  ident: 9366_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0730-z
– volume: 7
  start-page: 1388
  year: 2014
  ident: 9366_CR35
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130942954
– volume: 137
  start-page: 91
  year: 2013
  ident: 9366_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 25
  start-page: 2434
  year: 2015
  ident: 9366_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– volume: 38
  start-page: 367
  year: 1996
  ident: 9366_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume-title: Implicit Functions and Solution Mappings
  year: 2009
  ident: 9366_CR12
  doi: 10.1007/978-0-387-87821-8
– ident: 9366_CR21
– volume-title: Convex Analysis
  year: 1970
  ident: 9366_CR36
  doi: 10.1515/9781400873173
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2010
  ident: 9366_CR4
– volume: 6
  start-page: 131
  year: 1997
  ident: 9366_CR14
  publication-title: J. Ital. Stat. Soc
  doi: 10.1007/BF03178906
– volume: 165
  start-page: 874
  year: 2015
  ident: 9366_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0642-3
– volume: 159
  start-page: 371
  year: 2016
  ident: 9366_CR24
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0963-5
– volume: 14
  start-page: 629
  year: 2008
  ident: 9366_CR6
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9035-z
– volume: 26
  start-page: 337
  year: 2016
  ident: 9366_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/140990309
– volume: 33
  start-page: 1510
  year: 1995
  ident: 9366_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012993243022
– volume-title: Variational Analysis
  year: 1998
  ident: 9366_CR38
  doi: 10.1007/978-3-642-02431-3
– volume: 68
  start-page: 49
  year: 2006
  ident: 9366_CR44
  publication-title: J. Royal Stat. Soc. B.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 46
  start-page: 157
  year: 1993
  ident: 9366_CR30
  publication-title: Ann. Oper. Res.
– ident: 9366_CR47
– volume: 125
  start-page: 263
  year: 2010
  ident: 9366_CR40
  publication-title: Math. Program
  doi: 10.1007/s10107-010-0394-2
– volume: 6
  start-page: 1758
  year: 2013
  ident: 9366_CR43
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems I and II
  year: 2003
  ident: 9366_CR13
– ident: 9366_CR46
  doi: 10.1007/s10107-016-1100-9
– ident: 9366_CR20
– volume-title: Convex Analysis and Nonlinear Optimization
  year: 2006
  ident: 9366_CR8
  doi: 10.1007/978-0-387-31256-9
– volume: 14
  start-page: 367
  year: 1992
  ident: 9366_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120331
– volume: 35
  start-page: 438
  year: 2010
  ident: 9366_CR2
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 2
  start-page: 211
  year: 1995
  ident: 9366_CR32
  publication-title: J. Convex Anal.
– ident: 9366_CR39
– volume: 55
  start-page: 481
  year: 2006
  ident: 9366_CR11
  publication-title: Optim.
  doi: 10.1080/02331930600815884
– ident: 9366_CR42
  doi: 10.13140/RG.2.1.3256.3369
– volume: 64
  start-page: 725
  year: 2016
  ident: 9366_CR1
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-016-9828-y
– volume: 11
  start-page: 251
  year: 2004
  ident: 9366_CR18
  publication-title: J. Convex Anal.
– ident: 9366_CR27
– volume: 30
  start-page: 408
  year: 1992
  ident: 9366_CR28
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0330025
– volume-title: Variational Analysis and Generalized differentiation, I: Basic Theory, II: Applications
  year: 2006
  ident: 9366_CR33
  doi: 10.1007/3-540-31247-1
– volume: 38
  start-page: 894
  year: 2010
  ident: 9366_CR45
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 166
  start-page: 968
  year: 2015
  ident: 9366_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0746-4
– ident: 9366_CR37
  doi: 10.1007/BFb0120929
– volume: 153
  start-page: 333
  year: 2015
  ident: 9366_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0806-9
– volume: 1
  start-page: 2
  year: 2008
  ident: 9366_CR34
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070692285
– volume: 1
  start-page: 43
  year: 1992
  ident: 9366_CR29
  publication-title: SIAM J. Optim.
– volume: 17
  start-page: 1471
  year: 2006
  ident: 9366_CR15
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.879775
– volume: 13
  start-page: 702
  year: 2002
  ident: 9366_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401387623
– volume-title: Mathematical Programs with Equilibrium Constraints
  year: 1996
  ident: 9366_CR31
– ident: 9366_CR7
  doi: 10.1007/s10107-016-1091-6
– volume: 117
  start-page: 387
  year: 2009
  ident: 9366_CR41
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
SSID ssj0015914
ssib031263371
Score 2.6085165
Snippet In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1199
SubjectTerms Algorithms
Applications of Mathematics
Calculus
Computer Science
Convergence
Economics
Error analysis
Exponents
Least squares method
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical models
Mathematics
Mathematics and Statistics
Matrix Theory
Minimax technique
Nonlinear programming
Numerical Analysis
Optimization
Recovery
Regression analysis
Regularization
Title Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods
URI https://link.springer.com/article/10.1007/s10208-017-9366-8
https://www.proquest.com/docview/2111769029
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BgkQ5FEpbdSkgH3pqZSlxEjs-ohWrIsSPoK24RYntSAurLFovLcsFeAaeqS_SJ-k4G-9SVCqVW2I7VqIZZ77xeL4B-KC0FJrHhrIC3dUY_R6ai4LTUjPj2NYZl6ouNiEODtLTU3nU5HFbf9rdhyTrP_WDZDdWH7wSVEac03QeFtDapa5ew_HJt2noIJE1obdDMjSKROJDmX-b4k9jNEOYj4Kita3prjzrLVfhZQMtyfZEF17BnKnWYKWBmaRZxBabfCUH37YGSz4_GbuX96dMrvY13HTyvtshtGRQEmwnO1cXgwotlbvfuxzq8Xn-6_b-593gLLc986OnrsluZSa5mmOSV5rsjizZfhAnJ6MBQRcYlxjpuDPvdfqncfN1e4hF6aFjAyX7dWlr-wa-dne-dD7TpmgDVbGQ6JGWcRoqo7mRHOFEoQ2TLClYmAeOR0fipQ7TQrC4kCo1XEUiSgwrEdYF6C3r6C20KvyOd0AkYmkjIlEo4XCHlkGudFKiOUUphzJpQ-Cll6mG0dwV1uhnMy5mJ40MpZE5aWRpGz5OH7mY0Hn8a_CGV4msWdk2Q4c5FFwGTLbhk1eBWfeTk63_1-j38AKR2YR4N9yA1mh4aTZhUX0f9exwq1b43-MM-m4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB61UIlyAEpbsfy0PvTUylLiJHZ8RCtWrGC3qKUVtyixHWkpyqL1QgsX4Bl4Jl6EJ2GcjXdp1VZqb4ntWIlmnPnG4_kG4J3SUmgeG8oKdFdj9HtoLgpOS82MY1tnXKq62ITo99OjI3nQ5HFbf9rdhyTrP_WjZDdWH7wSVEac0_QpzMdosBxh_qfPX6ehg0TWhN4OydAoEokPZf5uip-N0Qxh_hIUrW1NZ_m_3nIFlhpoSbYnuvACnphqFZYbmEmaRWyxyVdy8G2rsODzk7F7sTdlcrUv4aqdn7gdQkuGJcF2svPjdFihpXL3e2cjffEtv7--vbsZHud2YL4P1CXpVmaSq3lB8kqT7tiS7UdxcjIeEnSBcYmRtjvzXqd_GjdfZ4BYlH50bKCkV5e2tq_gS2fnsL1Lm6INVMVCokdaxmmojOZGcpROoQ2TLClYmAeOR0fipQ7TQrC4kCo1XEUiSgwrEdYF6C3r6DXMVfgda0AkYmkjIlEo4XCHlkGudFKiOUUphzJpQeCll6mG0dwV1jjJZlzMThoZSiNz0sjSFryfPnI6ofP42-BNrxJZs7Jthg5zKLgMmGzBB68Cs-4_Trb-T6PfwsLuYW8_2-_29zbgOaK0CQlvuAlz49GZ2YJn6nw8sKM3tfI_AKcb_VI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BQdAeKLSgbingAyeQ1cRJ7PhYLV2xKl0q8aPeosR2pIUqu1qntOVC-wx9pr4IT8I4iXcLAiTELbEdy9F45G88M98APFdaCs1jQ1mB5mqMdg_NRcFpqZlxbOuMS9UUmxCjUXp4KA-6OqfWR7t7l2Sb0-BYmqp6e6rL7WuJb6wJwhJURpzT9Cbcil0cvTPX332cuxES2ZB7O1RDo0gk3q35uyl-PpgWaPMXB2lz7gxW_3vF9-FeBznJTrtHHsANU63Bagc_SafcFpt8hQfftgZ3fd4ydq_szxle7Tp86-dH7ubQkklJsJ3snk4nFa7Hve8dz_TZ5_z7-eXVxeRTbsfmZKy-kmFl2hzOM5JXmgxrS3au-c9JPSFoGqPqkb6LhW_SQo2bbzBGjErfOpZQst-UvLYP4cNg933_Ne2KOVAVC4mWahmnoTKaG8kRZhTaMMmSgoV54Ph1JD7qMC0EiwupUsNVJKLEsBLhXoBWtI4ewVKF_7EBRCLGNiIShRIOj2gZ5EonJR6zKPFQJj0IvCQz1TGdu4IbR9mCo9lJI0NpZE4aWdqDF_NPpi3Nx98Gb_ntkXUabzM0pEPBZcBkD1767bDo_uNkm_80-hncOXg1yN4MR3uPYRnBW8vNG27BUj07Nk_gtvpSj-3saaMHPwAIqQZF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculus+of+the+Exponent+of+Kurdyka%E2%80%93%C5%81ojasiewicz+Inequality+and+Its+Applications+to+Linear+Convergence+of+First-Order+Methods&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Li%2C+Guoyin&rft.au=Pong%2C+Ting+Kei&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=18&rft.issue=5&rft.spage=1199&rft.epage=1232&rft_id=info:doi/10.1007%2Fs10208-017-9366-8&rft.externalDocID=10_1007_s10208_017_9366_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon