Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods
In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with kno...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 18; číslo 5; s. 1199 - 1232 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is
1
2
. The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is
1
2
. This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with
ℓ
1
regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery. |
|---|---|
| AbstractList | In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is
1
2
. The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is
1
2
. This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with
ℓ
1
regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery. In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is 12. The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is 12. This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with ℓ1 regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery. |
| Author | Li, Guoyin Pong, Ting Kei |
| Author_xml | – sequence: 1 givenname: Guoyin surname: Li fullname: Li, Guoyin organization: Department of Applied Mathematics, University of New South Wales – sequence: 2 givenname: Ting Kei surname: Pong fullname: Pong, Ting Kei email: tk.pong@polyu.edu.hk organization: Department of Applied Mathematics, The Hong Kong Polytechnic University |
| BookMark | eNp9kEtOHDEQhi1EJF45ADtLWXfisvthL9EIwigTsYG15XFXgycdu7HdwLAJnCFnykVykvRkEJEiJauqkur7q_QdkF0fPBJyDOw9MNZ8SMA4kwWDplCirgu5Q_ahhqoQQord176p9shBSivGoFJQ7pNvM9PbsR8TDR3NN0hPH4Yp2efN_GmM7fqL-fn0_cdzWJnk8N7ZRzr3eDua3uU1Nb6l85zoyTD0zprsgk80B7pwHk2ks-DvMF6jt7jJO3Mx5eIithjpZ8w3oU1H5E1n-oRvX-ohuTo7vZydF4uLj_PZyaKwZaNkAV0pwWJbo6o5VMsWueLVkoNhopRcTW0LctnwcqmsxNqKRlTIu5ILNgloxSF5t80dYrgdMWW9CmP000nNAaCpFeNq2oLtlo0hpYidHqL7auJaA9Mbz3rrWU-e9cazlhPT_MVYl3-byNG4_r8k35JpuuKvMf756d_QL4Iilbw |
| CitedBy_id | crossref_primary_10_1007_s10957_019_01524_9 crossref_primary_10_1080_10618600_2020_1856118 crossref_primary_10_1007_s10107_018_1280_6 crossref_primary_10_1007_s00186_022_00790_0 crossref_primary_10_1109_ACCESS_2025_3589260 crossref_primary_10_1137_22M1469663 crossref_primary_10_1007_s10915_021_01547_3 crossref_primary_10_1016_j_ymssp_2024_111493 crossref_primary_10_1109_TNNLS_2023_3330017 crossref_primary_10_1007_s10957_024_02401_w crossref_primary_10_1007_s10444_022_10002_2 crossref_primary_10_1137_20M1387213 crossref_primary_10_1137_20M1314057 crossref_primary_10_3934_jimo_2024178 crossref_primary_10_1007_s10208_022_09586_4 crossref_primary_10_1109_ACCESS_2019_2937005 crossref_primary_10_1137_18M1186320 crossref_primary_10_1007_s10107_022_01867_8 crossref_primary_10_1137_19M1245001 crossref_primary_10_1007_s10957_020_01800_z crossref_primary_10_1137_18M1167498 crossref_primary_10_1007_s10915_024_02712_0 crossref_primary_10_1287_moor_2021_1243 crossref_primary_10_1007_s10589_024_00591_7 crossref_primary_10_1007_s10589_022_00364_0 crossref_primary_10_1007_s11590_022_01907_4 crossref_primary_10_1007_s11590_024_02132_x crossref_primary_10_1007_s10851_019_00916_w crossref_primary_10_1137_19M1237466 crossref_primary_10_1007_s10589_025_00680_1 crossref_primary_10_1007_s10957_023_02204_5 crossref_primary_10_1137_20M1325381 crossref_primary_10_1109_LCSYS_2020_2993983 crossref_primary_10_1007_s10107_018_1285_1 crossref_primary_10_1007_s10957_022_02013_2 crossref_primary_10_1137_20M1358669 crossref_primary_10_1007_s10589_024_00556_w crossref_primary_10_1007_s00211_022_01335_7 crossref_primary_10_1007_s10589_017_9954_1 crossref_primary_10_1137_23M1545781 crossref_primary_10_1007_s10107_024_02136_6 crossref_primary_10_1007_s10208_021_09528_6 crossref_primary_10_1007_s10957_023_02348_4 crossref_primary_10_1287_moor_2022_1350 crossref_primary_10_1109_TNNLS_2019_2935001 crossref_primary_10_1007_s10957_020_01779_7 crossref_primary_10_1007_s10107_025_02197_1 crossref_primary_10_1007_s10957_023_02178_4 crossref_primary_10_1007_s10957_023_02171_x crossref_primary_10_1007_s10898_021_01114_y crossref_primary_10_1007_s10957_021_01919_7 crossref_primary_10_1007_s00211_018_0981_3 crossref_primary_10_1007_s10589_022_00416_5 crossref_primary_10_1007_s10107_021_01702_6 crossref_primary_10_1088_1361_6420_ac0966 crossref_primary_10_1007_s10589_017_9900_2 crossref_primary_10_1109_TPAMI_2024_3385920 crossref_primary_10_1287_moor_2024_0457 crossref_primary_10_1007_s10107_022_01809_4 crossref_primary_10_1137_23M1618697 crossref_primary_10_1360_SSM_2024_0024 crossref_primary_10_1007_s10915_022_01815_w crossref_primary_10_1007_s10957_021_01865_4 crossref_primary_10_1007_s10589_019_00067_z crossref_primary_10_1287_ijoc_2023_0247 crossref_primary_10_1080_02331934_2024_2345395 crossref_primary_10_1109_TIT_2022_3229765 crossref_primary_10_1137_23M1545720 crossref_primary_10_1137_21M1443455 crossref_primary_10_1007_s00521_024_10883_y crossref_primary_10_1007_s40305_025_00600_4 crossref_primary_10_1007_s10107_022_01797_5 crossref_primary_10_1137_21M1434507 crossref_primary_10_3934_jimo_2025077 crossref_primary_10_1287_ijoc_2024_0648 crossref_primary_10_1287_moor_2021_1214 crossref_primary_10_1016_j_amc_2020_125822 crossref_primary_10_1002_nla_2391 crossref_primary_10_1137_18M1174313 crossref_primary_10_1109_TSP_2025_3553355 crossref_primary_10_1007_s10957_025_02816_z crossref_primary_10_1007_s11228_021_00591_3 crossref_primary_10_1007_s40305_019_00271_y crossref_primary_10_1137_20M1355380 crossref_primary_10_1007_s10898_025_01495_4 crossref_primary_10_3934_fods_2025016 crossref_primary_10_1007_s10898_020_00899_8 crossref_primary_10_1007_s10915_024_02715_x crossref_primary_10_1287_moor_2022_0135 crossref_primary_10_1007_s11228_020_00570_0 crossref_primary_10_1007_s11590_018_1280_8 crossref_primary_10_1007_s11425_020_1863_5 crossref_primary_10_1007_s11590_023_02026_4 crossref_primary_10_1016_j_jiixd_2025_03_003 crossref_primary_10_1007_s10589_022_00434_3 crossref_primary_10_1007_s10898_019_00789_8 crossref_primary_10_1137_22M1543653 crossref_primary_10_1186_s13660_019_2078_7 crossref_primary_10_1080_10556788_2019_1702661 crossref_primary_10_1287_moor_2021_1203 crossref_primary_10_1109_TSP_2023_3339232 crossref_primary_10_1007_s10589_024_00646_9 crossref_primary_10_1137_24M1636186 crossref_primary_10_1109_LCSYS_2019_2921838 crossref_primary_10_1007_s10957_020_01787_7 crossref_primary_10_1007_s10957_023_02219_y crossref_primary_10_1007_s10589_024_00618_z crossref_primary_10_1007_s10957_022_02016_z crossref_primary_10_1007_s11075_023_01554_5 crossref_primary_10_1007_s10957_024_02536_w crossref_primary_10_1007_s11075_024_01965_y crossref_primary_10_1007_s10957_021_01827_w crossref_primary_10_1088_1361_6420_ad2c31 crossref_primary_10_1146_annurev_control_042920_020021 crossref_primary_10_1137_22M1482822 crossref_primary_10_1007_s10957_024_02551_x crossref_primary_10_1137_20M136801X crossref_primary_10_1007_s10957_021_01989_7 crossref_primary_10_1007_s10589_024_00560_0 crossref_primary_10_1007_s10915_024_02689_w crossref_primary_10_1109_TSP_2023_3306824 crossref_primary_10_1007_s10107_023_01937_5 crossref_primary_10_1007_s10107_020_01534_w crossref_primary_10_1016_j_automatica_2024_111954 crossref_primary_10_3934_jimo_2025128 crossref_primary_10_1007_s10444_023_10040_4 crossref_primary_10_1007_s10915_017_0376_0 crossref_primary_10_1007_s11075_023_01607_9 crossref_primary_10_1080_02331934_2024_2411430 crossref_primary_10_1088_1361_6420_adef74 crossref_primary_10_1007_s00180_022_01249_w crossref_primary_10_1007_s10957_018_1272_y crossref_primary_10_1137_22M1472000 crossref_primary_10_1287_moor_2021_1227 crossref_primary_10_1137_22M1530173 crossref_primary_10_1007_s10589_023_00496_x crossref_primary_10_1137_22M151546X crossref_primary_10_1007_s10107_022_01883_8 crossref_primary_10_1137_23M159439X crossref_primary_10_1007_s10444_023_10014_6 crossref_primary_10_1007_s11590_025_02227_z crossref_primary_10_1137_22M1532354 |
| Cites_doi | 10.1007/s10107-014-0806-9 10.1214/09-AOS729 10.1137/070692285 10.1515/9781400873173 10.1007/s10107-010-0394-2 10.1007/3-540-31247-1 10.1007/978-0-387-87821-8 10.1137/S0363012993243022 10.1137/0802004 10.1017/CBO9780511983658 10.1007/s10107-016-1091-6 10.1111/j.1467-9868.2005.00532.x 10.1137/S0036144593251710 10.1137/140990309 10.1137/130942954 10.1137/120887795 10.1007/s10957-014-0642-3 10.1007/s10589-016-9828-y 10.1137/140998135 10.1137/S1052623401387623 10.1007/s10107-016-1100-9 10.1007/BF03178906 10.1007/s10107-015-0963-5 10.1137/0330025 10.1007/s10957-015-0746-4 10.1080/02331930600815884 10.1287/moor.1100.0449 10.1109/34.120331 10.1007/s10107-007-0170-0 10.1007/978-0-387-31256-9 10.1007/s00041-008-9035-z 10.1007/BF02096261 10.1007/978-3-642-02431-3 10.1007/s10107-011-0484-9 10.1007/s10957-015-0730-z 10.1109/TNN.2006.879775 10.13140/RG.2.1.3256.3369 10.1007/BFb0120929 |
| ContentType | Journal Article |
| Copyright | SFoCM 2017 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: SFoCM 2017 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-017-9366-8 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 1232 |
| ExternalDocumentID | 10_1007_s10208_017_9366_8 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4798-1f481ced6e96215bde2925b21a0348295b2d18b724b9c8e6c3735e2f4230383d3 |
| IEDL.DBID | RSV |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:18:58 EDT 2025 Sat Nov 29 06:41:14 EST 2025 Tue Nov 18 22:24:15 EST 2025 Fri Feb 21 02:36:09 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Sparse optimization Linear convergence Luo–Tseng error bound 90C25 Convergence rate 90C26 90C05 First-order methods Kurdyka–Łojasiewicz inequality |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4798-1f481ced6e96215bde2925b21a0348295b2d18b724b9c8e6c3735e2f4230383d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://handle.unsw.edu.au/1959.4/unsworks_46957 |
| PQID | 2111769029 |
| PQPubID | 43692 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2111769029 crossref_primary_10_1007_s10208_017_9366_8 crossref_citationtrail_10_1007_s10208_017_9366_8 springer_journals_10_1007_s10208_017_9366_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20181000 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Bolte, Nguyen, Peypouquet, Suter (CR7) 2016; 165 Hare, Lewis (CR18) 2004; 11 Dontchev, Rockafellar (CR12) 2009 Zhang (CR45) 2010; 38 Zhou, So (CR46) 2017; 165 Borwein, Lewis (CR8) 2006 Fachinei, Pang (CR13) 2003 Luo, Tseng (CR28) 1992; 30 Blumensath, Davies (CR6) 2008; 14 CR39 Attouch, Bolte, Svaiter (CR3) 2013; 137 Bauschke, Borwein (CR5) 1996; 38 Daniilidis, Hare, Malick (CR11) 2006; 55 Li, Mordukhovich, Pham (CR23) 2015; 153 Bauschke, Combettes (CR4) 2010 Luo, Tseng (CR29) 1992; 1 Tseng, Yun (CR41) 2009; 117 Nikolova, Ng, Zhang, Ching (CR34) 2008; 1 Chambolle, Dossal (CR10) 2015; 166 Attouch, Bolte, Redont, Soubeyran (CR2) 2010; 35 Ochs, Chen, Brox, Pock (CR35) 2014; 7 Boţ, Csetnek (CR9) 2016; 171 Forti, Nistri, Quincampoix (CR15) 2006; 17 Hong, Luo, Razaviyayn (CR19) 2016; 26 Mordukhovich, Shao (CR32) 1995; 2 Mordukhovich (CR33) 2006 Lewis (CR22) 2002; 13 Xu, Yin (CR43) 2013; 6 Luo, Tseng (CR30) 1993; 46 CR27 CR47 Ames, Hong (CR1) 2016; 64 Geman, Reynolds (CR17) 1992; 14 CR21 CR20 Rockafellar (CR36) 1970 Robinson (CR37) 1981 Rockafellar, Wets (CR38) 1998 CR42 Fan (CR14) 1997; 6 Li (CR26) 1995; 33 Li, Pong (CR25) 2015; 25 Yuan, Lin (CR44) 2006; 68 Tseng (CR40) 2010; 125 Li, Pong (CR24) 2016; 159 Frankel, Garrigos, Peypouquet (CR16) 2015; 165 Luo, Pang, Ralph (CR31) 1996 G Li (9366_CR23) 2015; 153 Y Xu (9366_CR43) 2013; 6 AS Lewis (9366_CR22) 2002; 13 HH Bauschke (9366_CR4) 2010 9366_CR7 M Forti (9366_CR15) 2006; 17 BS Mordukhovich (9366_CR33) 2006 RI Boţ (9366_CR9) 2016; 171 F Fachinei (9366_CR13) 2003 M Yuan (9366_CR44) 2006; 68 9366_CR27 RT Rockafellar (9366_CR38) 1998 M Nikolova (9366_CR34) 2008; 1 P Tseng (9366_CR41) 2009; 117 HH Bauschke (9366_CR5) 1996; 38 M Hong (9366_CR19) 2016; 26 D Geman (9366_CR17) 1992; 14 9366_CR21 9366_CR20 G Li (9366_CR25) 2015; 25 9366_CR42 H Attouch (9366_CR3) 2013; 137 G Li (9366_CR24) 2016; 159 9366_CR47 9366_CR46 WL Hare (9366_CR18) 2004; 11 H Attouch (9366_CR2) 2010; 35 W Li (9366_CR26) 1995; 33 P Tseng (9366_CR40) 2010; 125 J Borwein (9366_CR8) 2006 AL Dontchev (9366_CR12) 2009 P Frankel (9366_CR16) 2015; 165 ZQ Luo (9366_CR29) 1992; 1 ZQ Luo (9366_CR28) 1992; 30 BS Mordukhovich (9366_CR32) 1995; 2 P Ochs (9366_CR35) 2014; 7 BPW Ames (9366_CR1) 2016; 64 ZQ Luo (9366_CR30) 1993; 46 9366_CR37 9366_CR39 J Fan (9366_CR14) 1997; 6 A Chambolle (9366_CR10) 2015; 166 C-H Zhang (9366_CR45) 2010; 38 T Blumensath (9366_CR6) 2008; 14 ZQ Luo (9366_CR31) 1996 RT Rockafellar (9366_CR36) 1970 A Daniilidis (9366_CR11) 2006; 55 |
| References_xml | – volume: 153 start-page: 333 year: 2015 end-page: 362 ident: CR23 article-title: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors publication-title: Math. Program. doi: 10.1007/s10107-014-0806-9 – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: CR45 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – ident: CR47 – volume: 1 start-page: 2 year: 2008 end-page: 25 ident: CR34 article-title: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization publication-title: SIAM J. Imaging Sci. doi: 10.1137/070692285 – ident: CR39 – year: 1970 ident: CR36 publication-title: Convex Analysis doi: 10.1515/9781400873173 – volume: 125 start-page: 263 year: 2010 end-page: 295 ident: CR40 article-title: Approximation accuracy, gradient methods, and error bound for structured convex optimization publication-title: Math. Program doi: 10.1007/s10107-010-0394-2 – year: 2006 ident: CR33 publication-title: Variational Analysis and Generalized differentiation, I: Basic Theory, II: Applications doi: 10.1007/3-540-31247-1 – year: 2009 ident: CR12 publication-title: Implicit Functions and Solution Mappings doi: 10.1007/978-0-387-87821-8 – volume: 33 start-page: 1510 year: 1995 end-page: 1529 ident: CR26 article-title: Error bounds for piecewise convex quadratic programs and applications publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012993243022 – volume: 1 start-page: 43 year: 1992 end-page: 54 ident: CR29 article-title: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem publication-title: SIAM J. Optim. doi: 10.1137/0802004 – year: 1996 ident: CR31 publication-title: Mathematical Programs with Equilibrium Constraints doi: 10.1017/CBO9780511983658 – volume: 165 start-page: 471 issue: 2 year: 2016 end-page: 507 ident: CR7 article-title: From error bounds to the complexity of first-order descent methods for convex functions publication-title: Mathematical Programming doi: 10.1007/s10107-016-1091-6 – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: CR44 article-title: Model selection and estimation in regression with grouped variables publication-title: J. Royal Stat. Soc. B. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 38 start-page: 367 year: 1996 end-page: 426 ident: CR5 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – ident: CR27 – ident: CR42 – volume: 26 start-page: 337 year: 2016 end-page: 364 ident: CR19 article-title: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems publication-title: SIAM J. Optim. doi: 10.1137/140990309 – ident: CR21 – volume: 7 start-page: 1388 year: 2014 end-page: 1419 ident: CR35 article-title: iPiano: inertial proximal algorithm for non-convex optimization publication-title: SIAM J. Imaging Sci. doi: 10.1137/130942954 – volume: 6 start-page: 1758 year: 2013 end-page: 1789 ident: CR43 article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume: 165 start-page: 874 year: 2015 end-page: 900 ident: CR16 article-title: Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0642-3 – volume: 2 start-page: 211 year: 1995 end-page: 227 ident: CR32 article-title: On nonconvex subdifferential calculus in Banach spaces publication-title: J. Convex Anal. – volume: 64 start-page: 725 year: 2016 end-page: 754 ident: CR1 article-title: Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9828-y – volume: 25 start-page: 2434 year: 2015 end-page: 2460 ident: CR25 article-title: Global convergence of splitting methods for nonconvex composite optimization publication-title: SIAM J. Optim. doi: 10.1137/140998135 – volume: 13 start-page: 702 year: 2002 end-page: 725 ident: CR22 article-title: Active sets, nonsmoothness, and sensitivity publication-title: SIAM J. Optim. doi: 10.1137/S1052623401387623 – volume: 165 start-page: 689 issue: 2 year: 2017 end-page: 728 ident: CR46 article-title: A unified approach to error bounds for structured convex optimization problems publication-title: Mathematical Programming doi: 10.1007/s10107-016-1100-9 – volume: 6 start-page: 131 year: 1997 end-page: 138 ident: CR14 article-title: Comments on “wavelets in statistics: a review” by A. Antoniadis publication-title: J. Ital. Stat. Soc doi: 10.1007/BF03178906 – volume: 159 start-page: 371 year: 2016 end-page: 401 ident: CR24 article-title: Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems publication-title: Math. Program. doi: 10.1007/s10107-015-0963-5 – volume: 30 start-page: 408 year: 1992 end-page: 425 ident: CR28 article-title: On the linear convergence of descent methods for convex essentially smooth minimization publication-title: SIAM J. Control Optim. doi: 10.1137/0330025 – volume: 11 start-page: 251 year: 2004 end-page: 266 ident: CR18 article-title: Identifying active constraints via partial smoothness and prox-regularity publication-title: J. Convex Anal. – volume: 166 start-page: 968 year: 2015 end-page: 982 ident: CR10 article-title: On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm" publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0746-4 – volume: 55 start-page: 481 year: 2006 end-page: 503 ident: CR11 article-title: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems publication-title: Optim. doi: 10.1080/02331930600815884 – volume: 35 start-page: 438 year: 2010 end-page: 457 ident: CR2 article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 14 start-page: 367 year: 1992 end-page: 383 ident: CR17 article-title: Constrained restoration and the recovery of discontinuities publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.120331 – volume: 117 start-page: 387 year: 2009 end-page: 423 ident: CR41 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – year: 2010 ident: CR4 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – year: 2006 ident: CR8 publication-title: Convex Analysis and Nonlinear Optimization doi: 10.1007/978-0-387-31256-9 – volume: 14 start-page: 629 year: 2008 end-page: 654 ident: CR6 article-title: Iterative thresholding for sparse approximations publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9035-z – volume: 46 start-page: 157 year: 1993 end-page: 178 ident: CR30 article-title: Error bounds and convergence analysis of feasible descent methods: A general approach publication-title: Ann. Oper. Res. doi: 10.1007/BF02096261 – year: 1998 ident: CR38 publication-title: Variational Analysis doi: 10.1007/978-3-642-02431-3 – volume: 137 start-page: 91 year: 2013 end-page: 129 ident: CR3 article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – volume: 171 start-page: 600 year: 2016 end-page: 616 ident: CR9 article-title: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0730-z – ident: CR20 – year: 2003 ident: CR13 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems I and II – volume: 17 start-page: 1471 year: 2006 end-page: 1486 ident: CR15 article-title: Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.879775 – start-page: 206 year: 1981 end-page: 214 ident: CR37 article-title: Some continuity properties of polyhedral multifunctions publication-title: Mathematical Programming Studies – volume: 171 start-page: 600 year: 2016 ident: 9366_CR9 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0730-z – volume: 7 start-page: 1388 year: 2014 ident: 9366_CR35 publication-title: SIAM J. Imaging Sci. doi: 10.1137/130942954 – volume: 137 start-page: 91 year: 2013 ident: 9366_CR3 publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – volume: 25 start-page: 2434 year: 2015 ident: 9366_CR25 publication-title: SIAM J. Optim. doi: 10.1137/140998135 – volume: 38 start-page: 367 year: 1996 ident: 9366_CR5 publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – volume-title: Implicit Functions and Solution Mappings year: 2009 ident: 9366_CR12 doi: 10.1007/978-0-387-87821-8 – ident: 9366_CR21 – volume-title: Convex Analysis year: 1970 ident: 9366_CR36 doi: 10.1515/9781400873173 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2010 ident: 9366_CR4 – volume: 6 start-page: 131 year: 1997 ident: 9366_CR14 publication-title: J. Ital. Stat. Soc doi: 10.1007/BF03178906 – volume: 165 start-page: 874 year: 2015 ident: 9366_CR16 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0642-3 – volume: 159 start-page: 371 year: 2016 ident: 9366_CR24 publication-title: Math. Program. doi: 10.1007/s10107-015-0963-5 – volume: 14 start-page: 629 year: 2008 ident: 9366_CR6 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9035-z – volume: 26 start-page: 337 year: 2016 ident: 9366_CR19 publication-title: SIAM J. Optim. doi: 10.1137/140990309 – volume: 33 start-page: 1510 year: 1995 ident: 9366_CR26 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012993243022 – volume-title: Variational Analysis year: 1998 ident: 9366_CR38 doi: 10.1007/978-3-642-02431-3 – volume: 68 start-page: 49 year: 2006 ident: 9366_CR44 publication-title: J. Royal Stat. Soc. B. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 46 start-page: 157 year: 1993 ident: 9366_CR30 publication-title: Ann. Oper. Res. – ident: 9366_CR47 – volume: 125 start-page: 263 year: 2010 ident: 9366_CR40 publication-title: Math. Program doi: 10.1007/s10107-010-0394-2 – volume: 6 start-page: 1758 year: 2013 ident: 9366_CR43 publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems I and II year: 2003 ident: 9366_CR13 – ident: 9366_CR46 doi: 10.1007/s10107-016-1100-9 – ident: 9366_CR20 – volume-title: Convex Analysis and Nonlinear Optimization year: 2006 ident: 9366_CR8 doi: 10.1007/978-0-387-31256-9 – volume: 14 start-page: 367 year: 1992 ident: 9366_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.120331 – volume: 35 start-page: 438 year: 2010 ident: 9366_CR2 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 2 start-page: 211 year: 1995 ident: 9366_CR32 publication-title: J. Convex Anal. – ident: 9366_CR39 – volume: 55 start-page: 481 year: 2006 ident: 9366_CR11 publication-title: Optim. doi: 10.1080/02331930600815884 – ident: 9366_CR42 doi: 10.13140/RG.2.1.3256.3369 – volume: 64 start-page: 725 year: 2016 ident: 9366_CR1 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9828-y – volume: 11 start-page: 251 year: 2004 ident: 9366_CR18 publication-title: J. Convex Anal. – ident: 9366_CR27 – volume: 30 start-page: 408 year: 1992 ident: 9366_CR28 publication-title: SIAM J. Control Optim. doi: 10.1137/0330025 – volume-title: Variational Analysis and Generalized differentiation, I: Basic Theory, II: Applications year: 2006 ident: 9366_CR33 doi: 10.1007/3-540-31247-1 – volume: 38 start-page: 894 year: 2010 ident: 9366_CR45 publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 166 start-page: 968 year: 2015 ident: 9366_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0746-4 – ident: 9366_CR37 doi: 10.1007/BFb0120929 – volume: 153 start-page: 333 year: 2015 ident: 9366_CR23 publication-title: Math. Program. doi: 10.1007/s10107-014-0806-9 – volume: 1 start-page: 2 year: 2008 ident: 9366_CR34 publication-title: SIAM J. Imaging Sci. doi: 10.1137/070692285 – volume: 1 start-page: 43 year: 1992 ident: 9366_CR29 publication-title: SIAM J. Optim. – volume: 17 start-page: 1471 year: 2006 ident: 9366_CR15 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.879775 – volume: 13 start-page: 702 year: 2002 ident: 9366_CR22 publication-title: SIAM J. Optim. doi: 10.1137/S1052623401387623 – volume-title: Mathematical Programs with Equilibrium Constraints year: 1996 ident: 9366_CR31 – ident: 9366_CR7 doi: 10.1007/s10107-016-1091-6 – volume: 117 start-page: 387 year: 2009 ident: 9366_CR41 publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.6085165 |
| Snippet | In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1199 |
| SubjectTerms | Algorithms Applications of Mathematics Calculus Computer Science Convergence Economics Error analysis Exponents Least squares method Linear and Multilinear Algebras Math Applications in Computer Science Mathematical models Mathematics Mathematics and Statistics Matrix Theory Minimax technique Nonlinear programming Numerical Analysis Optimization Recovery Regression analysis Regularization |
| Title | Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods |
| URI | https://link.springer.com/article/10.1007/s10208-017-9366-8 https://www.proquest.com/docview/2111769029 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BgkQ5FEpbdSkgH3pqZSlxEjs-ohWrIsSPoK24RYntSAurLFovLcsFeAaeqS_SJ-k4G-9SVCqVW2I7VqIZZ77xeL4B-KC0FJrHhrIC3dUY_R6ai4LTUjPj2NYZl6ouNiEODtLTU3nU5HFbf9rdhyTrP_WDZDdWH7wSVEac03QeFtDapa5ew_HJt2noIJE1obdDMjSKROJDmX-b4k9jNEOYj4Kita3prjzrLVfhZQMtyfZEF17BnKnWYKWBmaRZxBabfCUH37YGSz4_GbuX96dMrvY13HTyvtshtGRQEmwnO1cXgwotlbvfuxzq8Xn-6_b-593gLLc986OnrsluZSa5mmOSV5rsjizZfhAnJ6MBQRcYlxjpuDPvdfqncfN1e4hF6aFjAyX7dWlr-wa-dne-dD7TpmgDVbGQ6JGWcRoqo7mRHOFEoQ2TLClYmAeOR0fipQ7TQrC4kCo1XEUiSgwrEdYF6C3r6C20KvyOd0AkYmkjIlEo4XCHlkGudFKiOUUphzJpQ-Cll6mG0dwV1uhnMy5mJ40MpZE5aWRpGz5OH7mY0Hn8a_CGV4msWdk2Q4c5FFwGTLbhk1eBWfeTk63_1-j38AKR2YR4N9yA1mh4aTZhUX0f9exwq1b43-MM-m4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB61UIlyAEpbsfy0PvTUylLiJHZ8RCtWrGC3qKUVtyixHWkpyqL1QgsX4Bl4Jl6EJ2GcjXdp1VZqb4ntWIlmnPnG4_kG4J3SUmgeG8oKdFdj9HtoLgpOS82MY1tnXKq62ITo99OjI3nQ5HFbf9rdhyTrP_WjZDdWH7wSVEac0_QpzMdosBxh_qfPX6ehg0TWhN4OydAoEokPZf5uip-N0Qxh_hIUrW1NZ_m_3nIFlhpoSbYnuvACnphqFZYbmEmaRWyxyVdy8G2rsODzk7F7sTdlcrUv4aqdn7gdQkuGJcF2svPjdFihpXL3e2cjffEtv7--vbsZHud2YL4P1CXpVmaSq3lB8kqT7tiS7UdxcjIeEnSBcYmRtjvzXqd_GjdfZ4BYlH50bKCkV5e2tq_gS2fnsL1Lm6INVMVCokdaxmmojOZGcpROoQ2TLClYmAeOR0fipQ7TQrC4kCo1XEUiSgwrEdYF6C3r6DXMVfgda0AkYmkjIlEo4XCHlkGudFKiOUUphzJpQeCll6mG0dwV1jjJZlzMThoZSiNz0sjSFryfPnI6ofP42-BNrxJZs7Jthg5zKLgMmGzBB68Cs-4_Trb-T6PfwsLuYW8_2-_29zbgOaK0CQlvuAlz49GZ2YJn6nw8sKM3tfI_AKcb_VI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BQdAeKLSgbingAyeQ1cRJ7PhYLV2xKl0q8aPeosR2pIUqu1qntOVC-wx9pr4IT8I4iXcLAiTELbEdy9F45G88M98APFdaCs1jQ1mB5mqMdg_NRcFpqZlxbOuMS9UUmxCjUXp4KA-6OqfWR7t7l2Sb0-BYmqp6e6rL7WuJb6wJwhJURpzT9Cbcil0cvTPX332cuxES2ZB7O1RDo0gk3q35uyl-PpgWaPMXB2lz7gxW_3vF9-FeBznJTrtHHsANU63Bagc_SafcFpt8hQfftgZ3fd4ydq_szxle7Tp86-dH7ubQkklJsJ3snk4nFa7Hve8dz_TZ5_z7-eXVxeRTbsfmZKy-kmFl2hzOM5JXmgxrS3au-c9JPSFoGqPqkb6LhW_SQo2bbzBGjErfOpZQst-UvLYP4cNg933_Ne2KOVAVC4mWahmnoTKaG8kRZhTaMMmSgoV54Ph1JD7qMC0EiwupUsNVJKLEsBLhXoBWtI4ewVKF_7EBRCLGNiIShRIOj2gZ5EonJR6zKPFQJj0IvCQz1TGdu4IbR9mCo9lJI0NpZE4aWdqDF_NPpi3Nx98Gb_ntkXUabzM0pEPBZcBkD1767bDo_uNkm_80-hncOXg1yN4MR3uPYRnBW8vNG27BUj07Nk_gtvpSj-3saaMHPwAIqQZF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculus+of+the+Exponent+of+Kurdyka%E2%80%93%C5%81ojasiewicz+Inequality+and+Its+Applications+to+Linear+Convergence+of+First-Order+Methods&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Li%2C+Guoyin&rft.au=Pong%2C+Ting+Kei&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=18&rft.issue=5&rft.spage=1199&rft.epage=1232&rft_id=info:doi/10.1007%2Fs10208-017-9366-8&rft.externalDocID=10_1007_s10208_017_9366_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |