ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation

Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF. We trained...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) Vol. 145; no. 2; p. 122
Main Authors: Khurshid, Shaan, Friedman, Samuel, Reeder, Christopher, Di Achille, Paolo, Diamant, Nathaniel, Singh, Pulkit, Harrington, Lia X, Wang, Xin, Al-Alusi, Mostafa A, Sarma, Gopal, Foulkes, Andrea S, Ellinor, Patrick T, Anderson, Christopher D, Ho, Jennifer E, Philippakis, Anthony A, Batra, Puneet, Lubitz, Steven A
Format: Journal Article
Language:English
Published: United States 11.01.2022
Subjects:
ISSN:1524-4539, 1524-4539
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF. We trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit 3 Cox proportional hazards models, composed of ECG-AI 5-year AF probability, CHARGE-AF clinical risk score (Cohorts for Heart and Aging in Genomic Epidemiology-Atrial Fibrillation), and terms for both ECG-AI and CHARGE-AF (CH-AI), respectively. We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve) and calibration in an internal test set and 2 external test sets (Brigham and Women's Hospital [BWH] and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors. The training set comprised 45 770 individuals (age 55±17 years, 53% women, 2171 AF events) and the test sets comprised 83 162 individuals (age 59±13 years, 56% women, 2424 AF events). Area under the receiver operating characteristic curve was comparable using CHARGE-AF (MGH, 0.802 [95% CI, 0.767-0.836]; BWH, 0.752 [95% CI, 0.741-0.763]; UK Biobank, 0.732 [95% CI, 0.704-0.759]) and ECG-AI (MGH, 0.823 [95% CI, 0.790-0.856]; BWH, 0.747 [95% CI, 0.736-0.759]; UK Biobank, 0.705 [95% CI, 0.673-0.737]). Area under the receiver operating characteristic curve was highest using CH-AI (MGH, 0.838 [95% CI, 0.807 to 0.869]; BWH, 0.777 [95% CI, 0.766 to 0.788]; UK Biobank, 0.746 [95% CI, 0.716 to 0.776]). Calibration error was low using ECG-AI (MGH, 0.0212; BWH, 0.0129; UK Biobank, 0.0035) and CH-AI (MGH, 0.012; BWH, 0.0108; UK Biobank, 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson : MGH, 0.61; BWH, 0.66; UK Biobank, 0.41). AI-based analysis of 12-lead ECGs has similar predictive usefulness to a clinical risk factor model for incident AF and the approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.
AbstractList Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF.BACKGROUNDArtificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF.We trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit 3 Cox proportional hazards models, composed of ECG-AI 5-year AF probability, CHARGE-AF clinical risk score (Cohorts for Heart and Aging in Genomic Epidemiology-Atrial Fibrillation), and terms for both ECG-AI and CHARGE-AF (CH-AI), respectively. We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve) and calibration in an internal test set and 2 external test sets (Brigham and Women's Hospital [BWH] and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors.METHODSWe trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit 3 Cox proportional hazards models, composed of ECG-AI 5-year AF probability, CHARGE-AF clinical risk score (Cohorts for Heart and Aging in Genomic Epidemiology-Atrial Fibrillation), and terms for both ECG-AI and CHARGE-AF (CH-AI), respectively. We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve) and calibration in an internal test set and 2 external test sets (Brigham and Women's Hospital [BWH] and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors.The training set comprised 45 770 individuals (age 55±17 years, 53% women, 2171 AF events) and the test sets comprised 83 162 individuals (age 59±13 years, 56% women, 2424 AF events). Area under the receiver operating characteristic curve was comparable using CHARGE-AF (MGH, 0.802 [95% CI, 0.767-0.836]; BWH, 0.752 [95% CI, 0.741-0.763]; UK Biobank, 0.732 [95% CI, 0.704-0.759]) and ECG-AI (MGH, 0.823 [95% CI, 0.790-0.856]; BWH, 0.747 [95% CI, 0.736-0.759]; UK Biobank, 0.705 [95% CI, 0.673-0.737]). Area under the receiver operating characteristic curve was highest using CH-AI (MGH, 0.838 [95% CI, 0.807 to 0.869]; BWH, 0.777 [95% CI, 0.766 to 0.788]; UK Biobank, 0.746 [95% CI, 0.716 to 0.776]). Calibration error was low using ECG-AI (MGH, 0.0212; BWH, 0.0129; UK Biobank, 0.0035) and CH-AI (MGH, 0.012; BWH, 0.0108; UK Biobank, 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson r: MGH, 0.61; BWH, 0.66; UK Biobank, 0.41).RESULTSThe training set comprised 45 770 individuals (age 55±17 years, 53% women, 2171 AF events) and the test sets comprised 83 162 individuals (age 59±13 years, 56% women, 2424 AF events). Area under the receiver operating characteristic curve was comparable using CHARGE-AF (MGH, 0.802 [95% CI, 0.767-0.836]; BWH, 0.752 [95% CI, 0.741-0.763]; UK Biobank, 0.732 [95% CI, 0.704-0.759]) and ECG-AI (MGH, 0.823 [95% CI, 0.790-0.856]; BWH, 0.747 [95% CI, 0.736-0.759]; UK Biobank, 0.705 [95% CI, 0.673-0.737]). Area under the receiver operating characteristic curve was highest using CH-AI (MGH, 0.838 [95% CI, 0.807 to 0.869]; BWH, 0.777 [95% CI, 0.766 to 0.788]; UK Biobank, 0.746 [95% CI, 0.716 to 0.776]). Calibration error was low using ECG-AI (MGH, 0.0212; BWH, 0.0129; UK Biobank, 0.0035) and CH-AI (MGH, 0.012; BWH, 0.0108; UK Biobank, 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson r: MGH, 0.61; BWH, 0.66; UK Biobank, 0.41).AI-based analysis of 12-lead ECGs has similar predictive usefulness to a clinical risk factor model for incident AF and the approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.CONCLUSIONSAI-based analysis of 12-lead ECGs has similar predictive usefulness to a clinical risk factor model for incident AF and the approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.
Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF. We trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit 3 Cox proportional hazards models, composed of ECG-AI 5-year AF probability, CHARGE-AF clinical risk score (Cohorts for Heart and Aging in Genomic Epidemiology-Atrial Fibrillation), and terms for both ECG-AI and CHARGE-AF (CH-AI), respectively. We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve) and calibration in an internal test set and 2 external test sets (Brigham and Women's Hospital [BWH] and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors. The training set comprised 45 770 individuals (age 55±17 years, 53% women, 2171 AF events) and the test sets comprised 83 162 individuals (age 59±13 years, 56% women, 2424 AF events). Area under the receiver operating characteristic curve was comparable using CHARGE-AF (MGH, 0.802 [95% CI, 0.767-0.836]; BWH, 0.752 [95% CI, 0.741-0.763]; UK Biobank, 0.732 [95% CI, 0.704-0.759]) and ECG-AI (MGH, 0.823 [95% CI, 0.790-0.856]; BWH, 0.747 [95% CI, 0.736-0.759]; UK Biobank, 0.705 [95% CI, 0.673-0.737]). Area under the receiver operating characteristic curve was highest using CH-AI (MGH, 0.838 [95% CI, 0.807 to 0.869]; BWH, 0.777 [95% CI, 0.766 to 0.788]; UK Biobank, 0.746 [95% CI, 0.716 to 0.776]). Calibration error was low using ECG-AI (MGH, 0.0212; BWH, 0.0129; UK Biobank, 0.0035) and CH-AI (MGH, 0.012; BWH, 0.0108; UK Biobank, 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson : MGH, 0.61; BWH, 0.66; UK Biobank, 0.41). AI-based analysis of 12-lead ECGs has similar predictive usefulness to a clinical risk factor model for incident AF and the approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.
Author Reeder, Christopher
Diamant, Nathaniel
Harrington, Lia X
Singh, Pulkit
Friedman, Samuel
Wang, Xin
Philippakis, Anthony A
Ellinor, Patrick T
Di Achille, Paolo
Khurshid, Shaan
Sarma, Gopal
Foulkes, Andrea S
Ho, Jennifer E
Lubitz, Steven A
Anderson, Christopher D
Al-Alusi, Mostafa A
Batra, Puneet
Author_xml – sequence: 1
  givenname: Shaan
  orcidid: 0000-0002-2840-4539
  surname: Khurshid
  fullname: Khurshid, Shaan
  organization: Cardiovascular Disease Initiative (S.K., L.X.H., X.W., M.A.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 2
  givenname: Samuel
  surname: Friedman
  fullname: Friedman, Samuel
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 3
  givenname: Christopher
  orcidid: 0000-0002-3893-2423
  surname: Reeder
  fullname: Reeder, Christopher
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 4
  givenname: Paolo
  orcidid: 0000-0001-9256-0678
  surname: Di Achille
  fullname: Di Achille, Paolo
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 5
  givenname: Nathaniel
  surname: Diamant
  fullname: Diamant, Nathaniel
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 6
  givenname: Pulkit
  surname: Singh
  fullname: Singh, Pulkit
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 7
  givenname: Lia X
  surname: Harrington
  fullname: Harrington, Lia X
  organization: Cardiovascular Disease Initiative (S.K., L.X.H., X.W., M.A.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 8
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Cardiovascular Disease Initiative (S.K., L.X.H., X.W., M.A.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 9
  givenname: Mostafa A
  surname: Al-Alusi
  fullname: Al-Alusi, Mostafa A
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 10
  givenname: Gopal
  surname: Sarma
  fullname: Sarma, Gopal
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 11
  givenname: Andrea S
  orcidid: 0000-0002-9520-0501
  surname: Foulkes
  fullname: Foulkes, Andrea S
  organization: Biostatistics Center (A.S.F.), Massachusetts General Hospital, Boston
– sequence: 12
  givenname: Patrick T
  orcidid: 0000-0002-2067-0533
  surname: Ellinor
  fullname: Ellinor, Patrick T
  organization: Cardiovascular Disease Initiative (S.K., L.X.H., X.W., M.A.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 13
  givenname: Christopher D
  orcidid: 0000-0002-0053-2002
  surname: Anderson
  fullname: Anderson, Christopher D
  organization: Department of Neurology, Brigham and Women's Hospital, Boston, MA (C.D.A.)
– sequence: 14
  givenname: Jennifer E
  orcidid: 0000-0002-7987-4768
  surname: Ho
  fullname: Ho, Jennifer E
  organization: Harvard Medical School, Boston, MA (A.S.F., P.T.E., C.D.A., J.E.H., S.A.L.)
– sequence: 15
  givenname: Anthony A
  surname: Philippakis
  fullname: Philippakis, Anthony A
  organization: Eric and Wendy Schmidt Center (A.A.P.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 16
  givenname: Puneet
  orcidid: 0000-0001-6822-0593
  surname: Batra
  fullname: Batra, Puneet
  organization: Data Sciences Platform (S.F., C.R., P.D.A., N.D., P.S., G.S., A.A.P., P.B.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge
– sequence: 17
  givenname: Steven A
  orcidid: 0000-0002-9599-4866
  surname: Lubitz
  fullname: Lubitz, Steven A
  organization: Harvard Medical School, Boston, MA (A.S.F., P.T.E., C.D.A., J.E.H., S.A.L.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34743566$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAAhIOsuA_9CxJvXromaZI2x1r3BcVdlvVc8qpEu-madA_-ewuu4GkG5mMYZgpGvvMWgAeM5hhz_FRu9uVbVRw229diXcwxwXPEMpqjKzDBjNCEslSM_vkxmMb4gRDiacZuwDilGU0Z5xOwW5Sr5FlGa-CLtSdYWRm88-9QegPL1nmnZQv3Ln7CpdR9FyLsO7gL1jjdw6IPboiXTgXXtrJ3nb8F141so7276AwclotDuU6q7WpTFlWiaSZ4oixOLTEME9Ew00hrtVY55pqoXGmis8YKJagWFBskDDU5ppQPDOUNUimZgcff2lPovs429vXRRW2HEd5251gTJhjGmDE6oPcX9KyO1tSn4I4yfNd_J5Afv19ifw
CitedBy_id crossref_primary_10_1038_s41746_025_01491_8
crossref_primary_10_1016_j_jacadv_2025_102041
crossref_primary_10_1161_JAHA_122_026974
crossref_primary_10_3389_fcvm_2023_1212837
crossref_primary_10_1016_j_mayocp_2022_11_020
crossref_primary_10_1093_eurheartj_ehad431
crossref_primary_10_1136_fmch_2023_002625
crossref_primary_10_1515_cclm_2023_0743
crossref_primary_10_1016_j_bspc_2024_107028
crossref_primary_10_1093_eurheartj_ehad670
crossref_primary_10_1186_s40001_023_01065_y
crossref_primary_10_1016_j_cmet_2024_02_002
crossref_primary_10_1002_widm_1530
crossref_primary_10_1007_s11042_025_21044_1
crossref_primary_10_1016_j_jelectrocard_2023_07_002
crossref_primary_10_1016_j_medj_2025_100668
crossref_primary_10_1055_a_2566_7244
crossref_primary_10_1038_s41598_022_25284_1
crossref_primary_10_3390_s24154787
crossref_primary_10_1007_s00059_025_05298_x
crossref_primary_10_1016_j_compbiomed_2024_109088
crossref_primary_10_1007_s12170_024_00747_4
crossref_primary_10_1053_j_akdh_2022_11_009
crossref_primary_10_1097_HCO_0000000000001031
crossref_primary_10_1016_j_anclin_2025_05_005
crossref_primary_10_1161_CIRCULATIONAHA_121_058678
crossref_primary_10_14309_ctg_0000000000000771
crossref_primary_10_1038_s41746_023_00806_x
crossref_primary_10_1093_eurheartj_ehae595
crossref_primary_10_1007_s11831_023_09935_8
crossref_primary_10_3390_s24092705
crossref_primary_10_1007_s10916_025_02177_0
crossref_primary_10_1055_a_2559_9994
crossref_primary_10_1016_j_cpcardiol_2022_101482
crossref_primary_10_1016_j_medj_2024_02_006
crossref_primary_10_2174_011573403X334095241205041550
crossref_primary_10_1161_CIRCGEN_122_003808
crossref_primary_10_1016_j_media_2024_103451
crossref_primary_10_3390_jpm13020347
crossref_primary_10_3390_cancers16010208
crossref_primary_10_3390_jcm13103003
crossref_primary_10_1038_s41467_025_58283_7
crossref_primary_10_1371_journal_pone_0299932
crossref_primary_10_3389_fcvm_2024_1473482
crossref_primary_10_1002_anse_202200062
crossref_primary_10_1088_1361_6579_ad55a1
crossref_primary_10_1093_europace_euae201
crossref_primary_10_1007_s11886_024_02136_0
crossref_primary_10_1007_s00399_022_00839_x
crossref_primary_10_1016_j_ijcha_2025_101783
crossref_primary_10_1038_s44385_024_00001_x
crossref_primary_10_1186_s12911_024_02620_1
crossref_primary_10_1038_s41746_023_00966_w
crossref_primary_10_1097_CD9_0000000000000155
crossref_primary_10_3390_math13172872
crossref_primary_10_3389_fcvm_2023_1160091
crossref_primary_10_3390_jcm13051313
crossref_primary_10_1038_s41598_024_60219_y
crossref_primary_10_1016_j_bspc_2024_107255
crossref_primary_10_1016_j_clnu_2024_07_046
crossref_primary_10_1177_17474930241302272
crossref_primary_10_1016_j_irbm_2023_100811
crossref_primary_10_1038_s41746_024_01234_1
crossref_primary_10_3748_wjg_v30_i10_1270
crossref_primary_10_1016_j_cvdhj_2022_06_001
crossref_primary_10_1371_journal_pone_0305339
crossref_primary_10_3390_jcm12134484
crossref_primary_10_1109_ACCESS_2022_3231743
crossref_primary_10_1016_j_artmed_2023_102548
crossref_primary_10_1038_s41598_022_27254_z
crossref_primary_10_4103_jpbs_jpbs_557_25
crossref_primary_10_1016_j_hrthm_2024_08_001
crossref_primary_10_1016_j_hrthm_2025_08_024
crossref_primary_10_1093_eurheartj_ehae651
crossref_primary_10_1016_j_ajpc_2025_100951
crossref_primary_10_1016_j_semnephrol_2024_151518
crossref_primary_10_3390_jpm12101608
crossref_primary_10_3389_fpubh_2021_818439
crossref_primary_10_1136_heartjnl_2024_324177
crossref_primary_10_3390_bioengineering12090961
crossref_primary_10_3390_s24154978
crossref_primary_10_1161_CIRCEP_124_012959
crossref_primary_10_3390_healthcare12141380
crossref_primary_10_1159_000539837
crossref_primary_10_1186_s13321_022_00590_y
crossref_primary_10_1016_j_jelectrocard_2023_08_011
crossref_primary_10_1016_j_cvdhj_2022_09_001
crossref_primary_10_1016_j_hlc_2024_08_008
crossref_primary_10_1016_j_jacep_2024_01_022
crossref_primary_10_1016_j_cmpb_2024_108164
crossref_primary_10_1186_s12874_023_01989_3
crossref_primary_10_1007_s00395_024_01038_0
crossref_primary_10_1093_eurheartj_ehae691
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1161_CIRCOUTCOMES_123_010602
crossref_primary_10_1161_CIRCGEN_124_004943
crossref_primary_10_3390_biomedicines13071685
crossref_primary_10_1016_j_jacep_2023_04_008
crossref_primary_10_3390_jpm12071150
crossref_primary_10_1016_j_acvd_2024_02_001
crossref_primary_10_3390_jcm12155066
crossref_primary_10_1016_j_cell_2025_05_018
crossref_primary_10_1161_CIR_0000000000001201
crossref_primary_10_1016_j_jacc_2025_07_031
crossref_primary_10_1016_j_sigpro_2025_110068
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1136_heartjnl_2024_324954
crossref_primary_10_3390_jcm14082627
crossref_primary_10_1093_ehjdh_ztaf100
crossref_primary_10_1016_j_jacadv_2023_100686
crossref_primary_10_1016_j_rccl_2025_07_001
crossref_primary_10_1093_ehjdh_ztae095
crossref_primary_10_1213_ANE_0000000000006789
crossref_primary_10_1016_j_ahj_2025_08_019
crossref_primary_10_1007_s00500_023_08680_1
crossref_primary_10_3390_jcm11144004
crossref_primary_10_1016_j_cvdhj_2023_11_003
crossref_primary_10_1097_MD_0000000000038264
crossref_primary_10_1016_j_cpcardiol_2023_102181
crossref_primary_10_1016_j_jare_2025_08_036
crossref_primary_10_1016_j_jacep_2024_02_011
crossref_primary_10_1093_ehjdh_ztaf054
crossref_primary_10_1002_hup_2889
crossref_primary_10_1016_j_gerinurse_2023_02_007
crossref_primary_10_1161_CIRCOUTCOMES_122_009821
crossref_primary_10_1016_j_jacadv_2024_100998
crossref_primary_10_1109_TBME_2023_3321792
crossref_primary_10_1016_j_compbiomed_2024_108097
crossref_primary_10_3389_fdgth_2025_1547208
crossref_primary_10_1007_s00399_024_00997_0
crossref_primary_10_1038_s41569_025_01130_5
crossref_primary_10_1161_CIRCULATIONAHA_123_067750
crossref_primary_10_1007_s10462_024_10852_w
crossref_primary_10_2196_51375
crossref_primary_10_1055_a_2566_7133
crossref_primary_10_3390_diagnostics14232675
crossref_primary_10_1080_17434440_2025_2514008
crossref_primary_10_3389_fcvm_2024_1401143
crossref_primary_10_1016_j_jelectrocard_2022_11_001
crossref_primary_10_1016_j_neunet_2025_107835
crossref_primary_10_1093_eurjpc_zwad321
crossref_primary_10_1038_s41598_025_14579_8
crossref_primary_10_1007_s11886_023_01859_w
crossref_primary_10_1038_s41467_023_39472_8
crossref_primary_10_1016_j_artmed_2024_103065
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.121.057480
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
ExternalDocumentID 34743566
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL134893
– fundername: British Heart Foundation
  grantid: CH/1996001/9454
– fundername: NHLBI NIH HHS
  grantid: K24 HL153669
– fundername: NHLBI NIH HHS
  grantid: R01 HL092577
– fundername: American Heart Association-American Stroke Association
  grantid: 18SFRN34250007
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: NHLBI NIH HHS
  grantid: T32 HL007208
– fundername: NHLBI NIH HHS
  grantid: R01 HL139731
– fundername: NHLBI NIH HHS
  grantid: R01 HL157635
– fundername: NHLBI NIH HHS
  grantid: R01 HL140224
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DU5
E3Z
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
7X8
ADKSD
ADSXY
ID FETCH-LOGICAL-c4796-be13e2d5129f5dfaeeccb816c2b8bc2c7fe9b94c941d09d4d81446ccb46f0b32
IEDL.DBID 7X8
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00003017-202201110-00006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-4539
IngestDate Sat Sep 27 19:04:53 EDT 2025
Mon Jul 21 06:03:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
atrial fibrillation
electronic health records
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4796-be13e2d5129f5dfaeeccb816c2b8bc2c7fe9b94c941d09d4d81446ccb46f0b32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6822-0593
0000-0002-2067-0533
0000-0002-7987-4768
0000-0002-3893-2423
0000-0002-2840-4539
0000-0002-0053-2002
0000-0002-9520-0501
0000-0001-9256-0678
0000-0002-9599-4866
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.057480
PMID 34743566
PQID 2595111554
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2595111554
pubmed_primary_34743566
PublicationCentury 2000
PublicationDate 2022-01-11
20220111
PublicationDateYYYYMMDD 2022-01-11
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2022
SSID ssj0006375
Score 2.6986325
Snippet Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 122
SubjectTerms Atrial Fibrillation - diagnosis
Atrial Fibrillation - pathology
Deep Learning - standards
Electrocardiography - methods
Female
Humans
Male
Middle Aged
Risk Factors
Title ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation
URI https://www.ncbi.nlm.nih.gov/pubmed/34743566
https://www.proquest.com/docview/2595111554
Volume 145
WOSCitedRecordID wos00003017-202201110-00006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV58vx-sIN5Ws8k2mz1JrUaFtpRSobeS7ENETaqtgv_e2U3EkyB4ySkJy-7szDevbwBOGkqZILMBNYZzyrmIqWxkObVMC3TkdKaYbxRui243GQ5lrw64Teqyym-d6BW1LpWLkZ8jTEds4KzfxfiVuqlRLrtaj9CYhfkIoYwr6RLDH7bwOPJEu2iicBmNSC7CsVcSMTtv3fVb9-2KcPbWRQTZGSIXngS_I01vcdKV_651FZZrrEmalXCswYwp1mGjWaCf_fJJTomv_vRh9XVY7NRJ9g3oXbdu6CVaN02ujBmTmoL1gWSFJjWP6DPpP06eSFpN6yHTkvTe3A-mpOnngJDUtRI8V4V2mzBIrwetW1oPXqCKCxnT3LDIhNphAdvQNjN4znnCYhXmSa5CJayRueRKcqYDqblOnFeJ7_DYBnkUbsFcURZmB0gsEL9okUVoIbm1WvLIxqEMbJgJxJZ2F46_d3CEcu2SFVlhyvfJ6GcPd2G7OobRuCLgGEUccQ_i0L0_fL0PS6HrWAgYZewA5i3eanMIC-pj-jh5O_ICg89ur_MFZNbJfA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG-Based+Deep+Learning+and+Clinical+Risk+Factors+to+Predict+Atrial+Fibrillation&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Khurshid%2C+Shaan&rft.au=Friedman%2C+Samuel&rft.au=Reeder%2C+Christopher&rft.au=Di+Achille%2C+Paolo&rft.date=2022-01-11&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=145&rft.issue=2&rft.spage=122&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.121.057480&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon