Disentangled representational learning for anomaly detection in single-lead electrocardiogram signals using variational autoencoder
Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disenta...
Uloženo v:
| Vydáno v: | Computers in biology and medicine Ročník 184; s. 109422 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.01.2025
Elsevier Limited |
| Témata: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%–99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation.
•β total correlation variational autoencoder encode atomic electrocardiogram features.•Anomalies arise as linear combinations of outliers along interpretable axis encodings.•Fine-tuning ECG models per subject personalizes and mitigates data heterogeneity.•Performance remains competitive, despite the model being unsupervised and explainable. |
|---|---|
| AbstractList | Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%–99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation.
•β total correlation variational autoencoder encode atomic electrocardiogram features.•Anomalies arise as linear combinations of outliers along interpretable axis encodings.•Fine-tuning ECG models per subject personalizes and mitigates data heterogeneity.•Performance remains competitive, despite the model being unsupervised and explainable. Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%-99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation. AbstractWearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%–99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation. Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%-99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation.Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%-99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation. |
| ArticleNumber | 109422 |
| Author | Jonas, Stephan M. Möller, Matthias C. Kapsecker, Maximilian |
| Author_xml | – sequence: 1 givenname: Maximilian orcidid: 0000-0002-3907-0749 surname: Kapsecker fullname: Kapsecker, Maximilian email: max.kapsecker@tum.de organization: TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching bei München, 85748, Bavaria, Germany – sequence: 2 givenname: Matthias C. surname: Möller fullname: Möller, Matthias C. organization: Department of Paediatric Cardiology and Paediatric Cardiac Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, North Rhine-Westphalia, Germany – sequence: 3 givenname: Stephan M. orcidid: 0000-0002-3687-6165 surname: Jonas fullname: Jonas, Stephan M. organization: Institute for Digital Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, North Rhine-Westphalia, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39581125$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkuLFDEUhYOMOD2jf0ECbtxUm1dVpTaDOj5hwIW6DunkVpM2lbRJ1UCv_eOmrGmFBqFXITffPUnOuVfoIsQACGFK1pTQ5tVubeKw37g4gF0zwkQpd4KxR2hFZdtVpObiAq0IoaQSktWX6CrnHSFEEE6eoEve1ZJSVq_Qr3cuQxh12HqwOME-wZ_96GLQHnvQKbiwxX1MWIc4aH_AFkYwM4BdwNnNrVUBLQZf6ikanayL26SHcrotMhlPM4bvdXJHZT2NEYKJFtJT9LgvEDx7WK_R9w_vv91-qu6-fPx8--auMqLtWGVI32kqKPRcNpIb2wqjhaUNM12nDTMWusa2hvANF8LWLdMWaq1123cWZMev0ctFd5_izwnyqAaXDXivA8QpK045a4iULS_oixN0F6c0f6VQohF1LVlTqOcP1LQpSah9coNOB3W0twA3C2BSzDlBr4xbvB2Tdl5RouY81U79y1PNeaolzyIgTwSOd5zR-nZphWLpvYOksnHFcbAulZiUje4ckZsTEeNdcEb7H3CA_NcUqjJTRH2dJ24eOCYIrUk7O_D6_wLnveE3XfzupQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_06680_9 crossref_primary_10_3390_app15147975 crossref_primary_10_1371_journal_pdig_0000793 crossref_primary_10_1038_s41598_025_07781_1 crossref_primary_10_1007_s13534_025_00473_9 |
| Cites_doi | 10.1109/TBME.2021.3108164 10.1093/ehjdh/ztac038 10.1161/01.CIR.101.23.e215 10.1016/j.jelectrocard.2021.02.011 10.1093/ehjdh/ztad007 10.1186/s12872-022-02746-y 10.1038/s41598-024-51258-6 10.3389/fgene.2021.638191 10.1016/j.gheart.2019.07.004 10.1109/TBME.2003.808805 10.1007/s44196-023-00186-w 10.3758/s13428-020-01516-y 10.1038/s41597-020-0386-x 10.1161/01.CIR.92.10.2929 10.1186/s40537-020-00320-x 10.1016/j.bspc.2020.102054 10.1109/RBME.2022.3154893 10.1016/j.asoc.2023.110176 10.1038/s41597-023-02416-4 10.1109/51.932724 10.3390/s20051461 10.3390/electronics9010135 10.1145/3534678.3539140 10.1371/journal.pone.0260612 10.3390/app13084964 10.1038/s41598-019-56927-5 10.1038/s41597-020-0495-6 10.1007/s00521-022-07366-3 10.1007/BF02764938 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. 2024. The Authors |
| Copyright_xml | – notice: 2024 The Authors – notice: The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2024. The Authors |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 |
| DOI | 10.1016/j.compbiomed.2024.109422 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Nursing & Allied Health Premium MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 109422 |
| ExternalDocumentID | 39581125 10_1016_j_compbiomed_2024_109422 S0010482524015075 1_s2_0_S0010482524015075 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AACTN AFCTW ALIPV RIG 6I. AAFTH 9DU AAYXX AFFHD CITATION 3V. AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF M0N NPM 8FD FR3 JQ2 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c4792-c0f9a141ef38683cd74ca4d162c99ac2cde96d7c03b344d572ade5aaa7f9de893 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Wed Oct 01 09:58:09 EDT 2025 Tue Oct 07 06:18:25 EDT 2025 Wed Feb 19 01:58:15 EST 2025 Sat Nov 29 08:18:33 EST 2025 Tue Nov 18 22:23:51 EST 2025 Sat Mar 08 15:48:41 EST 2025 Fri Mar 14 01:54:07 EDT 2025 Tue Oct 14 19:38:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Representational learning Electrocardiography Personalization Explainable anomaly detection |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c4792-c0f9a141ef38683cd74ca4d162c99ac2cde96d7c03b344d572ade5aaa7f9de893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3687-6165 0000-0002-3907-0749 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.compbiomed.2024.109422 |
| PMID | 39581125 |
| PQID | 3146455826 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3132608873 proquest_journals_3146455826 pubmed_primary_39581125 crossref_citationtrail_10_1016_j_compbiomed_2024_109422 crossref_primary_10_1016_j_compbiomed_2024_109422 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_109422 elsevier_clinicalkeyesjournals_1_s2_0_S0010482524015075 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_109422 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Li, Boulanger (b56) 2020; 20 Gayathiri (b16) 2023 Jiang, Zheng, Lai (b14) 2023 Soydaner (b58) 2022; 34 Gyawali, Li, Knight, Ghimire, Horacek, Sapp, Wang (b20) 2019 Tan, Androz, Ortiz-Gagné, Chamseddine, Fecteau, Courville, Bengio, Cohen (b32) 2022 Johnson, Lindenstrauss, Schechtman (b42) 1986; 54 Y. Li, Z. Chen, D. Zha, M. Du, J. Ni, D. Zhang, H. Chen, X. Hu, Towards Learning Disentangled Representations for Time Series, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3270–3278. Li, Pei, Li (b6) 2023; 138 Esmaeili, Wu, Jain, Bozkurt, Siddharth, Paige, Brooks, Dy, Meent (b46) 2019 Ebrahimi, Loni, Daneshtalab, Gharehbaghi (b47) 2020; 7 Van Steenkiste, Deschrijver, Dhaene (b22) 2019 van de Leur, Bos, Taha, Sammani, Yeung, van Duijvenboden, Lambiase, Hassink, van der Harst, Doevendans (b23) 2022; 3 He, Spokoyny, Neubig, Berg-Kirkpatrick (b52) 2019 Kuznetsov, Moskalenko, Gribanov, Zolotykh (b8) 2021; 12 Locatello, Bauer, Lucic, Raetsch, Gelly, Schölkopf, Bachem (b57) 2019 Wagner, Strodthoff, Bousseljot, Kreiseler, Lunze, Samek, Schaeffter (b35) 2020; 7 M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A System for Large-Scale Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283. Thudumu, Branch, Jin, Singh (b3) 2020; 7 van der Valk, Atsma, Scherptong, Staring (b26) 2023 Zhao, Zhang (b48) 2024; 14 Lucas, Tucker, Grosse, Norouzi (b51) 2019 Witvliet, Karregat, Himmelreich, de Jong, Lucassen, Harskamp (b54) 2021; 66 . Jolliffe, Cadima (b43) 2016; 374 Tan, Androz, Ortiz-Gagné, Chamseddine, Fecteau, Courville, Bengio, Cohen (b38) 2021 Porumb, Stranges, Pescapè, Pecchia (b12) 2020; 10 Ferreira, Kraus, Mitchell, Perel, Piñeiro, Chioncel, Colque, De Boer, Gomez-Mesa, Grancelli (b2) 2019; 14 Gyawali, Murkute, Toloubidokhti, Jiang, Horacek, Sapp, Wang (b19) 2021; 69 Jang, Kim, Lim, Yoon (b9) 2021; 16 Rubel, Pani, Schloegl, Fayn, Badilini, Macfarlane, Varri (b25) 2016 Moss, Zareba, Benhorin, Locati, Hall, Robinson, Schwartz, Towbin, Vincent, Lehmann (b18) 1995; 92 Maas, Hannun, Ng (b50) 2013 McSharry, Clifford, Tarassenko, Smith (b34) 2003; 50 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b36) 2000; 101 Nezamabadi, Sardaripour, Haghi, Forouzanfar (b7) 2022; 16 Todo, Selmani, Laurent, Loubes (b27) 2023 I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner Nithya, Rani (b10) 2022 TensorFlow Datasets, A collection of ready-to-use datasets VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, in: International Conference on Learning Representations, 2016. Porumb, Griffen, Hattersley, Pecchia (b13) 2020; 62 J.-Y. Franceschi, A. Dieuleveut, M. Jaggi, Unsupervised Scalable Representation Learning for Multivariate Time Series, in: Advances in Neural Information Processing Systems, 32, 2019. Wagner, Strodthoff, Bousseljot, Samek, Schaeffter (b30) 2022 World Heart Federation (b1) 2023 Kingma, Welling (b4) 2013 Saki, Karandish, Cheraghian, Heybar, Hashemi, Azhdari (b37) 2022; 22 Xiao, Lee, Mokhtar, Ismail, Pauzi, Zhang, Lim (b28) 2023; 13 Orini, van Duijvenboden, Young, Ramírez, Jones, Tinker, Munroe, Lambiase (b55) 2023; 4 P.K. Gyawali, B.M. Horacek, J.L. Sapp, L. Wang, Learning Disentangled Representation from 12-lead Electrograms: Application in Localizing the Origin of Ventricular Tachycardia, in: Workshops At the Thirty-Second AAAI Conference on Artificial Intelligence, 2018. Zheng, Zhang, Danioko, Yao, Guo, Rakovski (b31) 2020; 7 Bank, Koenigstein, Giryes (b5) 2023 Gillette, Gsell, Nagel, Bender, Winkler, Williams, Bär, Schäffter, Dössel, Plank (b33) 2023; 10 Yang, Ngoc, Shin, Hwang (b49) 2023; 16 Nurmaini, Darmawahyuni, Sakti Mukti, Rachmatullah, Firdaus, Tutuko (b15) 2020; 9 Moody, Mark (b11) 2001; 20 Van der Maaten, Hinton (b44) 2008; 9 R.T. Chen, X. Li, R.B. Grosse, D.K. Duvenaud, Isolating Sources of Disentanglement in Variational Autoencoders, in: Advances in Neural Information Processing Systems, 31, 2018. Hinton (b53) 2012 Makowski, Pham, Lau, Brammer, Lespinasse, Pham, Schölzel, Chen (b39) 2021; 53 Tan (10.1016/j.compbiomed.2024.109422_b38) 2021 Nithya (10.1016/j.compbiomed.2024.109422_b10) 2022 Van Steenkiste (10.1016/j.compbiomed.2024.109422_b22) 2019 Esmaeili (10.1016/j.compbiomed.2024.109422_b46) 2019 van der Valk (10.1016/j.compbiomed.2024.109422_b26) 2023 World Heart Federation (10.1016/j.compbiomed.2024.109422_b1) 2023 van de Leur (10.1016/j.compbiomed.2024.109422_b23) 2022; 3 Li (10.1016/j.compbiomed.2024.109422_b6) 2023; 138 Jiang (10.1016/j.compbiomed.2024.109422_b14) 2023 Jang (10.1016/j.compbiomed.2024.109422_b9) 2021; 16 Jolliffe (10.1016/j.compbiomed.2024.109422_b43) 2016; 374 Nezamabadi (10.1016/j.compbiomed.2024.109422_b7) 2022; 16 10.1016/j.compbiomed.2024.109422_b17 Zhao (10.1016/j.compbiomed.2024.109422_b48) 2024; 14 Gayathiri (10.1016/j.compbiomed.2024.109422_b16) 2023 Tan (10.1016/j.compbiomed.2024.109422_b32) 2022 Porumb (10.1016/j.compbiomed.2024.109422_b13) 2020; 62 Gyawali (10.1016/j.compbiomed.2024.109422_b20) 2019 Nurmaini (10.1016/j.compbiomed.2024.109422_b15) 2020; 9 10.1016/j.compbiomed.2024.109422_b40 10.1016/j.compbiomed.2024.109422_b41 Xiao (10.1016/j.compbiomed.2024.109422_b28) 2023; 13 Gyawali (10.1016/j.compbiomed.2024.109422_b19) 2021; 69 Yang (10.1016/j.compbiomed.2024.109422_b49) 2023; 16 Wagner (10.1016/j.compbiomed.2024.109422_b30) 2022 Johnson (10.1016/j.compbiomed.2024.109422_b42) 1986; 54 Gillette (10.1016/j.compbiomed.2024.109422_b33) 2023; 10 Lucas (10.1016/j.compbiomed.2024.109422_b51) 2019 Ebrahimi (10.1016/j.compbiomed.2024.109422_b47) 2020; 7 10.1016/j.compbiomed.2024.109422_b45 Goldberger (10.1016/j.compbiomed.2024.109422_b36) 2000; 101 Li (10.1016/j.compbiomed.2024.109422_b56) 2020; 20 Wagner (10.1016/j.compbiomed.2024.109422_b35) 2020; 7 He (10.1016/j.compbiomed.2024.109422_b52) 2019 Orini (10.1016/j.compbiomed.2024.109422_b55) 2023; 4 McSharry (10.1016/j.compbiomed.2024.109422_b34) 2003; 50 Moss (10.1016/j.compbiomed.2024.109422_b18) 1995; 92 Witvliet (10.1016/j.compbiomed.2024.109422_b54) 2021; 66 Rubel (10.1016/j.compbiomed.2024.109422_b25) 2016 Porumb (10.1016/j.compbiomed.2024.109422_b12) 2020; 10 10.1016/j.compbiomed.2024.109422_b21 Saki (10.1016/j.compbiomed.2024.109422_b37) 2022; 22 Todo (10.1016/j.compbiomed.2024.109422_b27) 2023 Locatello (10.1016/j.compbiomed.2024.109422_b57) 2019 Thudumu (10.1016/j.compbiomed.2024.109422_b3) 2020; 7 Van der Maaten (10.1016/j.compbiomed.2024.109422_b44) 2008; 9 Moody (10.1016/j.compbiomed.2024.109422_b11) 2001; 20 Hinton (10.1016/j.compbiomed.2024.109422_b53) 2012 Kingma (10.1016/j.compbiomed.2024.109422_b4) 2013 Kuznetsov (10.1016/j.compbiomed.2024.109422_b8) 2021; 12 10.1016/j.compbiomed.2024.109422_b24 Zheng (10.1016/j.compbiomed.2024.109422_b31) 2020; 7 Soydaner (10.1016/j.compbiomed.2024.109422_b58) 2022; 34 Makowski (10.1016/j.compbiomed.2024.109422_b39) 2021; 53 Bank (10.1016/j.compbiomed.2024.109422_b5) 2023 10.1016/j.compbiomed.2024.109422_b29 Maas (10.1016/j.compbiomed.2024.109422_b50) 2013 Ferreira (10.1016/j.compbiomed.2024.109422_b2) 2019; 14 |
| References_xml | – volume: 53 start-page: 1689 year: 2021 end-page: 1696 ident: b39 article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing publication-title: Behav. Res. Methods – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b36 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation – volume: 92 start-page: 2929 year: 1995 end-page: 2934 ident: b18 article-title: ECG T-wave Patterns in Genetically Distinct Forms of the Hereditary Long QT Syndrome publication-title: Circulation – volume: 50 start-page: 289 year: 2003 end-page: 294 ident: b34 article-title: A dynamical model for generating synthetic electrocardiogram signals publication-title: IEEE Trans. Biomed. Eng. – start-page: 353 year: 2023 end-page: 374 ident: b5 article-title: Autoencoders publication-title: Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook – year: 2022 ident: b30 article-title: PTB-XL, a large publicly available electrocardiography dataset (version 1.0.3) – volume: 374 year: 2016 ident: b43 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Trans. Royal Soc.a: Math. Phys. Eng. Sci. – volume: 4 start-page: 112 year: 2023 end-page: 118 ident: b55 article-title: Premature atrial and ventricular contractions detected on wearable-format electrocardiograms and prediction of cardiovascular events publication-title: Eur. Heart J.-Dig. Health – year: 2019 ident: b51 article-title: Understanding Posterior Collapse in Generative Latent Variable Models – start-page: 1 year: 2023 end-page: 5 ident: b27 article-title: Counterfactual Explanation for Multivariate Times Series Using A Contrastive Variational Autoencoder publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2012 ident: b53 article-title: Mini-batch Gradient Descent – volume: 138 year: 2023 ident: b6 article-title: A comprehensive survey on design and application of autoencoder in deep learning publication-title: Appl. Soft Comput. – volume: 7 start-page: 1 year: 2020 end-page: 15 ident: b35 article-title: PTB-XL, a large publicly available electrocardiography dataset publication-title: Sci. Data – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b11 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 22 start-page: 1 year: 2022 end-page: 10 ident: b37 article-title: Prevalence of cardiovascular diseases and associated factors among adults from southwest Iran: Baseline data from hoveyzeh cohort study publication-title: BMC Cardiovasc. Disorders – volume: 12 year: 2021 ident: b8 article-title: Interpretable Feature Generation in ECG Using a Variational Autoencoder publication-title: Front. Genet. – reference: J.-Y. Franceschi, A. Dieuleveut, M. Jaggi, Unsupervised Scalable Representation Learning for Multivariate Time Series, in: Advances in Neural Information Processing Systems, 32, 2019. – volume: 20 start-page: 1461 year: 2020 ident: b56 article-title: A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG) publication-title: Sensors – volume: 7 start-page: 1 year: 2020 end-page: 30 ident: b3 article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data publication-title: J. Big Data – start-page: 1 year: 2023 end-page: 4 ident: b14 article-title: A Semi-supervised Algorithm for Atrial Fibrillation Attack Prediction Using Convolution Auto-encoder of Time Series Signal publication-title: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society – start-page: 222 year: 2022 end-page: 226 ident: b10 article-title: Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images publication-title: 2022 International Conference on Intelligent Innovations in Engineering and Technology – reference: TensorFlow Datasets, A collection of ready-to-use datasets, – volume: 7 year: 2020 ident: b47 article-title: A review on deep learning methods for ECG arrhythmia classification publication-title: Expert Syst. Appl. X – start-page: 2525 year: 2019 end-page: 2534 ident: b46 article-title: Structured Disentangled Representations publication-title: The 22nd International Conference on Artificial Intelligence and Statistics – volume: 16 start-page: 11 year: 2023 ident: b49 article-title: DPReLU: Dynamic Parametric Rectified Linear Unit and Its Proper Weight Initialization Method publication-title: Int. J. Comput. Intell. Syst. – volume: 10 start-page: 531 year: 2023 ident: b33 article-title: MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations publication-title: Sci. Data – year: 2023 ident: b1 article-title: World Heart Report 2023 – start-page: 263 year: 2023 end-page: 268 ident: b16 article-title: Unsupervised Anomaly Detection to handle Imbalanced Datasets using Auto encoders for ECG signal Classification publication-title: 2023 Third International Conference on Secure Cyber Computing and Communication – reference: R.T. Chen, X. Li, R.B. Grosse, D.K. Duvenaud, Isolating Sources of Disentanglement in Variational Autoencoders, in: Advances in Neural Information Processing Systems, 31, 2018. – year: 2022 ident: b32 article-title: Icentia11k Single Lead Continuous Raw Electrocardiogram Dataset (version 1.0) – start-page: 3 year: 2013 ident: b50 article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models publication-title: Proc. Icml, Vol. 30, No. 1 – volume: 14 start-page: 1589 year: 2024 ident: b48 article-title: A improved pooling method for convolutional neural networks publication-title: Sci. Rep. – year: 2013 ident: b4 article-title: Auto-Encoding Variational Bayes – year: 2023 ident: b26 article-title: Joint Optimization of a – volume: 14 start-page: 197 year: 2019 end-page: 214 ident: b2 article-title: World Heart Federation Roadmap for Heart Failure publication-title: Global Heart – volume: 62 year: 2020 ident: b13 article-title: Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders publication-title: Biomed. Signal Process. Control – reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A System for Large-Scale Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283. – volume: 66 start-page: 33 year: 2021 end-page: 37 ident: b54 article-title: Usefulness, pitfalls and interpretation of handheld single-lead electrocardiograms publication-title: J. Electrocardiol. – volume: 3 start-page: 390 year: 2022 end-page: 404 ident: b23 article-title: Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders publication-title: Eur. Heart J.-Dig. Health – volume: 9 start-page: 135 year: 2020 ident: b15 article-title: Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification publication-title: Electronics – volume: 69 start-page: 860 year: 2021 end-page: 870 ident: b19 article-title: Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data publication-title: IEEE Trans. Biomed. Eng. – reference: I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, – volume: 9 year: 2008 ident: b44 article-title: Visualizing Data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 373 year: 2019 end-page: 378 ident: b22 article-title: Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders publication-title: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS) – volume: 54 start-page: 129 year: 1986 end-page: 138 ident: b42 article-title: Extensions of lipschitz maps into Banach spaces publication-title: Israel J. Math. – reference: -VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, in: International Conference on Learning Representations, 2016. – volume: 34 start-page: 13371 year: 2022 end-page: 13385 ident: b58 article-title: Attention mechanism in neural networks: where it comes and where it goes publication-title: Neural Comput. Appl. – volume: 7 start-page: 1 year: 2020 end-page: 8 ident: b31 article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients publication-title: Sci. Data – reference: . – start-page: 309 year: 2016 end-page: 312 ident: b25 article-title: SCP-ECG V3.0: An enhanced standard communication protocol for computer-assisted electrocardiography publication-title: 2016 Computing in Cardiology Conference – reference: Y. Li, Z. Chen, D. Zha, M. Du, J. Ni, D. Zhang, H. Chen, X. Hu, Towards Learning Disentangled Representations for Time Series, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3270–3278. – start-page: 4114 year: 2019 end-page: 4124 ident: b57 article-title: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations publication-title: International Conference on Machine Learning – volume: 13 start-page: 4964 year: 2023 ident: b28 article-title: Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review publication-title: Appl. Sci. – volume: 16 year: 2021 ident: b9 article-title: Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder publication-title: PLoS One – start-page: 1078 year: 2019 end-page: 1083 ident: b20 article-title: Improving Disentangled Representation Learning with the Beta Bernoulli Process publication-title: 2019 IEEE International Conference on Data Mining (ICDM) – year: 2021 ident: b38 article-title: Icentia11k: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery publication-title: Computing in Cardiology Conference (CinC) – reference: P.K. Gyawali, B.M. Horacek, J.L. Sapp, L. Wang, Learning Disentangled Representation from 12-lead Electrograms: Application in Localizing the Origin of Ventricular Tachycardia, in: Workshops At the Thirty-Second AAAI Conference on Artificial Intelligence, 2018. – volume: 16 start-page: 208 year: 2022 end-page: 224 ident: b7 article-title: Unsupervised ECG Analysis: A Review publication-title: IEEE Rev. Biomed. Eng. – volume: 10 start-page: 170 year: 2020 ident: b12 article-title: Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG publication-title: Sci. Rep. – year: 2019 ident: b52 article-title: Lagging Inference Networks and Posterior Collapse in Variational Autoencoders – year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b26 – volume: 69 start-page: 860 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b19 article-title: Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3108164 – start-page: 3 year: 2013 ident: 10.1016/j.compbiomed.2024.109422_b50 article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models – volume: 3 start-page: 390 issue: 3 year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b23 article-title: Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders publication-title: Eur. Heart J.-Dig. Health doi: 10.1093/ehjdh/ztac038 – ident: 10.1016/j.compbiomed.2024.109422_b40 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.compbiomed.2024.109422_b36 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b27 article-title: Counterfactual Explanation for Multivariate Times Series Using A Contrastive Variational Autoencoder – volume: 7 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b47 article-title: A review on deep learning methods for ECG arrhythmia classification publication-title: Expert Syst. Appl. X – volume: 66 start-page: 33 year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b54 article-title: Usefulness, pitfalls and interpretation of handheld single-lead electrocardiograms publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2021.02.011 – volume: 4 start-page: 112 issue: 2 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b55 article-title: Premature atrial and ventricular contractions detected on wearable-format electrocardiograms and prediction of cardiovascular events publication-title: Eur. Heart J.-Dig. Health doi: 10.1093/ehjdh/ztad007 – volume: 22 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b37 article-title: Prevalence of cardiovascular diseases and associated factors among adults from southwest Iran: Baseline data from hoveyzeh cohort study publication-title: BMC Cardiovasc. Disorders doi: 10.1186/s12872-022-02746-y – volume: 14 start-page: 1589 issue: 1 year: 2024 ident: 10.1016/j.compbiomed.2024.109422_b48 article-title: A improved pooling method for convolutional neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-024-51258-6 – ident: 10.1016/j.compbiomed.2024.109422_b24 – volume: 12 year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b8 article-title: Interpretable Feature Generation in ECG Using a Variational Autoencoder publication-title: Front. Genet. doi: 10.3389/fgene.2021.638191 – volume: 14 start-page: 197 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b2 article-title: World Heart Federation Roadmap for Heart Failure publication-title: Global Heart doi: 10.1016/j.gheart.2019.07.004 – volume: 50 start-page: 289 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2024.109422_b34 article-title: A dynamical model for generating synthetic electrocardiogram signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.808805 – year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b38 article-title: Icentia11k: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery – volume: 16 start-page: 11 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b49 article-title: DPReLU: Dynamic Parametric Rectified Linear Unit and Its Proper Weight Initialization Method publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-023-00186-w – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.compbiomed.2024.109422_b44 article-title: Visualizing Data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 1689 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b39 article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing publication-title: Behav. Res. Methods doi: 10.3758/s13428-020-01516-y – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b31 article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients publication-title: Sci. Data doi: 10.1038/s41597-020-0386-x – start-page: 1078 year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b20 article-title: Improving Disentangled Representation Learning with the Beta Bernoulli Process – ident: 10.1016/j.compbiomed.2024.109422_b41 – start-page: 353 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b5 article-title: Autoencoders – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b14 article-title: A Semi-supervised Algorithm for Atrial Fibrillation Attack Prediction Using Convolution Auto-encoder of Time Series Signal – volume: 92 start-page: 2929 issue: 10 year: 1995 ident: 10.1016/j.compbiomed.2024.109422_b18 article-title: ECG T-wave Patterns in Genetically Distinct Forms of the Hereditary Long QT Syndrome publication-title: Circulation doi: 10.1161/01.CIR.92.10.2929 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b3 article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data publication-title: J. Big Data doi: 10.1186/s40537-020-00320-x – volume: 62 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b13 article-title: Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102054 – volume: 16 start-page: 208 year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b7 article-title: Unsupervised ECG Analysis: A Review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2022.3154893 – volume: 138 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b6 article-title: A comprehensive survey on design and application of autoencoder in deep learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110176 – volume: 10 start-page: 531 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b33 article-title: MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations publication-title: Sci. Data doi: 10.1038/s41597-023-02416-4 – year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b52 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2024.109422_b11 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – start-page: 373 year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b22 article-title: Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders – year: 2012 ident: 10.1016/j.compbiomed.2024.109422_b53 – year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b1 – start-page: 222 year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b10 article-title: Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images – ident: 10.1016/j.compbiomed.2024.109422_b45 – year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b32 – year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b51 – volume: 374 issue: 2065 year: 2016 ident: 10.1016/j.compbiomed.2024.109422_b43 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Trans. Royal Soc.a: Math. Phys. Eng. Sci. – year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b30 – volume: 20 start-page: 1461 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b56 article-title: A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG) publication-title: Sensors doi: 10.3390/s20051461 – year: 2013 ident: 10.1016/j.compbiomed.2024.109422_b4 – volume: 9 start-page: 135 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b15 article-title: Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification publication-title: Electronics doi: 10.3390/electronics9010135 – ident: 10.1016/j.compbiomed.2024.109422_b29 – ident: 10.1016/j.compbiomed.2024.109422_b17 doi: 10.1145/3534678.3539140 – volume: 16 issue: 12 year: 2021 ident: 10.1016/j.compbiomed.2024.109422_b9 article-title: Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder publication-title: PLoS One doi: 10.1371/journal.pone.0260612 – ident: 10.1016/j.compbiomed.2024.109422_b21 – start-page: 2525 year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b46 article-title: Structured Disentangled Representations – volume: 13 start-page: 4964 issue: 8 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b28 article-title: Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review publication-title: Appl. Sci. doi: 10.3390/app13084964 – start-page: 309 year: 2016 ident: 10.1016/j.compbiomed.2024.109422_b25 article-title: SCP-ECG V3.0: An enhanced standard communication protocol for computer-assisted electrocardiography – volume: 10 start-page: 170 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b12 article-title: Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG publication-title: Sci. Rep. doi: 10.1038/s41598-019-56927-5 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2024.109422_b35 article-title: PTB-XL, a large publicly available electrocardiography dataset publication-title: Sci. Data doi: 10.1038/s41597-020-0495-6 – start-page: 4114 year: 2019 ident: 10.1016/j.compbiomed.2024.109422_b57 article-title: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations – volume: 34 start-page: 13371 issue: 16 year: 2022 ident: 10.1016/j.compbiomed.2024.109422_b58 article-title: Attention mechanism in neural networks: where it comes and where it goes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07366-3 – start-page: 263 year: 2023 ident: 10.1016/j.compbiomed.2024.109422_b16 article-title: Unsupervised Anomaly Detection to handle Imbalanced Datasets using Auto encoders for ECG signal Classification – volume: 54 start-page: 129 issue: 2 year: 1986 ident: 10.1016/j.compbiomed.2024.109422_b42 article-title: Extensions of lipschitz maps into Banach spaces publication-title: Israel J. Math. doi: 10.1007/BF02764938 |
| SSID | ssj0004030 |
| Score | 2.4445198 |
| Snippet | Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding... AbstractWearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109422 |
| SubjectTerms | Anomalies Datasets Dimensional analysis EKG Electrocardiography Electrocardiography - methods Embedding Explainable anomaly detection Heart Humans Internal Medicine Learning Myocardial infarction Other Parameterization Personalization Representational learning Signal Processing, Computer-Assisted Ventricle Wearable technology |
| Title | Disentangled representational learning for anomaly detection in single-lead electrocardiogram signals using variational autoencoder |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524015075 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524015075 https://dx.doi.org/10.1016/j.compbiomed.2024.109422 https://www.ncbi.nlm.nih.gov/pubmed/39581125 https://www.proquest.com/docview/3146455826 https://www.proquest.com/docview/3132608873 |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpO0pfxr6XrSsa7C24xPKHJPbUbR37IGWwDvJmFEkuLo4T6iRkz_tP9pfuZEu21zSQPezFGMuSwPfz6e70uxNCb2CR0AwWQi9WUoODIobehMJdzERKSRpLHteHTdCLCzYe82-93m-XC7PKaVGw9ZrP_6uo4RkI26TO_oO4m0HhAdyD0OEKYofrToL_kFX5RMVVrk1myrzNLzKGZ-5CITV7cjYV-c-B0gstHevRBA9y7cGLamAPyZEVadXwuAaG72EqLi-rGMMKPG03slguZqYqprJ8X1f-wB4bUfFuuyWfbu_qfxXzUjuSx0iss2mWd7A7Mlv672KXuVidU56Jso3ymn2AsiGumT2obkSDRJ2Ihq61MKPcA-0Q_q2mw46i9cEtrROaN9aAOhxxbUQ4r2sYnMIs4elmFxDcfFrBIOARA8szalfFhqvomvbQAaERB815cPb5fPylzb4FPWk5YjVz8O6Jj9ChG2qbDbTNx6lsncsH6L51UvBZDa6HqKeLR-hwZAX2GP3qYgzfxhh2GMOAMWwxhhuM4azAHYzhDYxhizFcYQx3MIY7GHuCfnw8v3z_ybOneXgypJx4cphy4Ye-TgMWs0AqGkoRKj8mknMhiVSax4rKYTAJwlBFlAilIyEETbnSYFY_RfvFrNDPEWYsMjnfwtcTEiqwrlRMZUDSVJniRTTsI-q-byJtqXtz4kqeOE7jddIKKTFCSmoh9ZHf9JzX5V526MOdCBOXzgwLcAJ43KEvvauvLq1CKRM_KUkyTL5XhbQYiUC5Gh8u6qO3TU9rLNdG8I7zHjusJc1UgW9oDhEjcR-9bpphuTF7iKLQs6V5B_w9Y5kEffSsxmjzoRy8X2xteYmO2h_-GO0vbpb6FbonV4usvDlBe3TMTuzv9QfGUQQP |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+representational+learning+for+anomaly+detection+in+single-lead+electrocardiogram+signals+using+variational+autoencoder&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Kapsecker%2C+Maximilian&rft.au=M%C3%B6ller%2C+Matthias+C&rft.au=Jonas%2C+Stephan+M&rft.date=2025-01-01&rft.eissn=1879-0534&rft.volume=184&rft.spage=109422&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.109422&rft_id=info%3Apmid%2F39581125&rft.externalDocID=39581125 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482524X00165%2Fcov150h.gif |