Enhancing Molecular n‐Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains

In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side cha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 30; číslo 7
Hlavní autoři: Liu, Jian, Qiu, Li, Alessandri, Riccardo, Qiu, Xinkai, Portale, Giuseppe, Dong, JingJin, Talsma, Wytse, Ye, Gang, Sengrian, Aprizal Akbar, Souza, Paulo C. T., Loi, Maria Antonietta, Chiechi, Ryan C., Marrink, Siewert J., Hummelen, Jan C., Koster, L. Jan Anton
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.02.2018
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm−1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers. Significantly enhanced molecularly doping of an n‐type donor–acceptor (D–A) copolymer by rationally tailoring its side chains without changing its donor–acceptor character is demonstrated. Polar triethylene‐glycol‐based side chains on the host greatly increase the solubility of dopant molecules in the host matrix with respect to the traditional alkyl side chains. The former gives a highest conductivity of 0.17 S cm−1 for D–A copolymers, representing a 200‐fold enhancement compared to the latter.
AbstractList In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.
In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm−1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers. Significantly enhanced molecularly doping of an n‐type donor–acceptor (D–A) copolymer by rationally tailoring its side chains without changing its donor–acceptor character is demonstrated. Polar triethylene‐glycol‐based side chains on the host greatly increase the solubility of dopant molecules in the host matrix with respect to the traditional alkyl side chains. The former gives a highest conductivity of 0.17 S cm−1 for D–A copolymers, representing a 200‐fold enhancement compared to the latter.
In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.
In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.
In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[ N , N ′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm −1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers.
Author Hummelen, Jan C.
Qiu, Li
Qiu, Xinkai
Talsma, Wytse
Ye, Gang
Loi, Maria Antonietta
Sengrian, Aprizal Akbar
Alessandri, Riccardo
Marrink, Siewert J.
Souza, Paulo C. T.
Liu, Jian
Portale, Giuseppe
Dong, JingJin
Chiechi, Ryan C.
Koster, L. Jan Anton
Author_xml – sequence: 1
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  email: jian.liu@rug.nl
  organization: University of Groningen
– sequence: 2
  givenname: Li
  surname: Qiu
  fullname: Qiu, Li
  organization: University of Groningen
– sequence: 3
  givenname: Riccardo
  surname: Alessandri
  fullname: Alessandri, Riccardo
  organization: University of Groningen
– sequence: 4
  givenname: Xinkai
  surname: Qiu
  fullname: Qiu, Xinkai
  organization: University of Groningen
– sequence: 5
  givenname: Giuseppe
  surname: Portale
  fullname: Portale, Giuseppe
  organization: University of Groningen
– sequence: 6
  givenname: JingJin
  surname: Dong
  fullname: Dong, JingJin
  organization: University of Groningen
– sequence: 7
  givenname: Wytse
  surname: Talsma
  fullname: Talsma, Wytse
  organization: University of Groningen
– sequence: 8
  givenname: Gang
  surname: Ye
  fullname: Ye, Gang
  organization: University of Groningen
– sequence: 9
  givenname: Aprizal Akbar
  surname: Sengrian
  fullname: Sengrian, Aprizal Akbar
  organization: University of Groningen
– sequence: 10
  givenname: Paulo C. T.
  surname: Souza
  fullname: Souza, Paulo C. T.
  organization: University of Groningen
– sequence: 11
  givenname: Maria Antonietta
  surname: Loi
  fullname: Loi, Maria Antonietta
  organization: University of Groningen
– sequence: 12
  givenname: Ryan C.
  surname: Chiechi
  fullname: Chiechi, Ryan C.
  organization: University of Groningen
– sequence: 13
  givenname: Siewert J.
  surname: Marrink
  fullname: Marrink, Siewert J.
  organization: University of Groningen
– sequence: 14
  givenname: Jan C.
  surname: Hummelen
  fullname: Hummelen, Jan C.
  email: j.c.hummelen@rug.nl
  organization: University of Groningen
– sequence: 15
  givenname: L. Jan Anton
  surname: Koster
  fullname: Koster, L. Jan Anton
  email: l.j.a.koster@rug.nl
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29325212$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEUhkOx1Kvt1qUMuOlmbk_mI5MsL1drBaWL3q66CJl8aGQmGZMZyuz8CQX_ob-kuVy1IEhXOZDnOZxz3gO057zTCB1hWGKA4otQvVgWgBuoSAnv0ALXBc4rYPUeWgAr65yRiu6jgxhvAYARIB_QfsHKInHFAv06czfCSeuusyvfaTl1ImTu8f7PZh50duqH7Y83qXI-PN4_rKTUw-hDtvaD7-Zeh5i1c7YRtvNhy_6wSmfrG2Fd_IjeG9FF_enpPUQ_v55t1t_yy-_nF-vVZS6rhkHeUgJtS2ojGQViMNGmIoYWkhhRCkWUFk2rWEsZFiVtGJVKSRBYCY0Nw7o8RJ93fYfg7yYdR97bKHXXCaf9FDlmNO3NMMYJPXmF3vopuDQdLwAwNE1Z00QdP1FT22vFh2B7EWb-fLYEVDtABh9j0IZLO4rRejeGdAmOgW_T4dt0-Es6SVu-0p47vymwnfDbdnr-D81Xp1erf-5fTpyjpA
CitedBy_id crossref_primary_10_1002_aenm_202002521
crossref_primary_10_1002_cjoc_202200679
crossref_primary_10_1063_5_0217725
crossref_primary_10_1088_1674_1056_ac22a4
crossref_primary_10_3390_su142416821
crossref_primary_10_1021_jacs_9b10107
crossref_primary_10_1063_5_0047637
crossref_primary_10_1002_anie_201814544
crossref_primary_10_1038_s41467_020_17063_1
crossref_primary_10_1002_advs_202500571
crossref_primary_10_1002_ange_202113078
crossref_primary_10_1002_anie_202219313
crossref_primary_10_1002_anie_202213737
crossref_primary_10_1002_adma_202300240
crossref_primary_10_1016_j_nanoen_2021_106774
crossref_primary_10_1146_annurev_matsci_080619_110405
crossref_primary_10_1002_adma_202300084
crossref_primary_10_1007_s13233_021_9099_z
crossref_primary_10_1039_D5MH01079A
crossref_primary_10_1002_adfm_202213911
crossref_primary_10_1016_j_cej_2019_122817
crossref_primary_10_1002_adfm_202212305
crossref_primary_10_1002_anie_202011537
crossref_primary_10_1002_anie_202015216
crossref_primary_10_1002_pol_20210604
crossref_primary_10_1002_advs_202203530
crossref_primary_10_1002_ange_202407273
crossref_primary_10_1016_j_cej_2020_126616
crossref_primary_10_1002_ange_202402375
crossref_primary_10_1002_adom_202002039
crossref_primary_10_1002_anie_201905835
crossref_primary_10_1038_s41467_020_19537_8
crossref_primary_10_1016_j_jcis_2020_12_063
crossref_primary_10_1021_acsapm_4c03287
crossref_primary_10_1002_aelm_202100407
crossref_primary_10_1002_aenm_202303494
crossref_primary_10_1016_j_cej_2020_126692
crossref_primary_10_1002_aelm_202001284
crossref_primary_10_1002_anie_202113078
crossref_primary_10_1038_s41467_019_08361_4
crossref_primary_10_1002_adma_202404397
crossref_primary_10_1002_advs_202401952
crossref_primary_10_1038_s41563_019_0556_4
crossref_primary_10_1002_adma_201804290
crossref_primary_10_1002_advs_202002778
crossref_primary_10_1002_ange_201814544
crossref_primary_10_1002_ifm2_33
crossref_primary_10_1002_advs_202402482
crossref_primary_10_1039_D5TC02396C
crossref_primary_10_1002_ange_201905835
crossref_primary_10_1055_a_2191_6011
crossref_primary_10_1002_aelm_202400413
crossref_primary_10_1016_j_mtphys_2018_09_002
crossref_primary_10_1002_marc_201900082
crossref_primary_10_1016_j_scib_2020_07_036
crossref_primary_10_1039_D1MH01357B
crossref_primary_10_1007_s13233_020_8116_y
crossref_primary_10_1038_s41467_020_16648_0
crossref_primary_10_1002_adfm_202004799
crossref_primary_10_1039_C9PY01469A
crossref_primary_10_1126_sciadv_adu8215
crossref_primary_10_1002_aelm_201800825
crossref_primary_10_1002_cssc_202102420
crossref_primary_10_1016_j_jechem_2021_03_020
crossref_primary_10_1002_adma_202002060
crossref_primary_10_1016_j_mtener_2021_100710
crossref_primary_10_1002_aelm_201800821
crossref_primary_10_1038_s41467_021_22528_y
crossref_primary_10_1002_adma_202000273
crossref_primary_10_1002_marc_202100443
crossref_primary_10_1016_j_polymer_2022_125000
crossref_primary_10_1016_j_cej_2024_151650
crossref_primary_10_1016_j_orgel_2020_105921
crossref_primary_10_1002_ange_202219313
crossref_primary_10_1002_adfm_202006900
crossref_primary_10_1002_ange_202213737
crossref_primary_10_1002_adfm_202300809
crossref_primary_10_1002_adma_202403911
crossref_primary_10_1002_adfm_202211522
crossref_primary_10_1002_aelm_201800612
crossref_primary_10_1002_ange_202015216
crossref_primary_10_1002_anie_202214192
crossref_primary_10_1016_j_mtphys_2021_100402
crossref_primary_10_1063_5_0052474
crossref_primary_10_1002_smll_202206233
crossref_primary_10_1038_s41563_018_0263_6
crossref_primary_10_1002_adfm_202102768
crossref_primary_10_1002_anie_202200221
crossref_primary_10_1002_anie_202407273
crossref_primary_10_1063_5_0080820
crossref_primary_10_1016_j_polymer_2025_128079
crossref_primary_10_1002_adfm_202111351
crossref_primary_10_1002_wcms_1620
crossref_primary_10_1002_anie_202402375
crossref_primary_10_1002_adfm_202004378
crossref_primary_10_1021_acs_accounts_5c00121
crossref_primary_10_20517_energymater_2025_14
crossref_primary_10_1039_D5CP00828J
crossref_primary_10_1002_ange_202011537
crossref_primary_10_1039_D5MH00067J
crossref_primary_10_1038_s41592_021_01098_3
crossref_primary_10_1063_5_0129861
crossref_primary_10_1088_1674_4926_43_2_020202
crossref_primary_10_1002_adma_202412327
crossref_primary_10_1002_smll_202102813
crossref_primary_10_1021_jacs_9b12683
crossref_primary_10_1002_cplu_202300215
crossref_primary_10_1039_D5TC02503F
crossref_primary_10_1039_D0SC06497A
crossref_primary_10_1002_adma_202005946
crossref_primary_10_1002_pol_20210773
crossref_primary_10_1126_science_abq6235
crossref_primary_10_1002_aelm_202400767
crossref_primary_10_1016_j_cej_2023_147070
crossref_primary_10_1002_cjoc_202300650
crossref_primary_10_1002_aelm_201800959
crossref_primary_10_1038_s41467_024_52430_2
crossref_primary_10_1002_pol_20210493
crossref_primary_10_3390_polym11010107
crossref_primary_10_1002_adfm_202203080
crossref_primary_10_1063_5_0051166
crossref_primary_10_1038_s41467_021_26043_y
crossref_primary_10_1002_adma_201801898
crossref_primary_10_1016_j_cej_2023_141366
crossref_primary_10_1002_pol_20240132
crossref_primary_10_1021_acsapm_5c01347
crossref_primary_10_1038_s41586_022_05295_8
crossref_primary_10_1002_adfm_202210770
crossref_primary_10_1002_aelm_201901414
crossref_primary_10_1002_adma_202508526
crossref_primary_10_1002_smll_202200679
crossref_primary_10_1002_adma_202504357
crossref_primary_10_1039_D5MH00005J
crossref_primary_10_1146_annurev_matsci_082219_024716
crossref_primary_10_1002_aelm_202101324
crossref_primary_10_1002_adma_202309679
crossref_primary_10_1002_adfm_202110047
crossref_primary_10_1039_D4ME00192C
crossref_primary_10_1002_aesr_202100084
crossref_primary_10_1002_ange_202200221
crossref_primary_10_1002_advs_202302629
crossref_primary_10_1002_adma_202008635
crossref_primary_10_1016_j_nanoen_2018_07_056
crossref_primary_10_1021_polymscitech_5c00042
crossref_primary_10_1002_slct_202204021
crossref_primary_10_1002_adfm_202106991
crossref_primary_10_1002_ange_202214192
crossref_primary_10_1016_j_chempr_2020_05_012
crossref_primary_10_1016_j_synthmet_2024_117678
crossref_primary_10_1002_eom2_12442
crossref_primary_10_1016_j_microc_2024_111737
crossref_primary_10_1002_adma_202101932
crossref_primary_10_1016_j_nanoms_2020_10_002
crossref_primary_10_1021_jacs_0c05699
crossref_primary_10_1021_jacs_2c13051
crossref_primary_10_1016_j_compscitech_2020_108359
crossref_primary_10_1002_aenm_201900817
crossref_primary_10_1002_adma_202006694
crossref_primary_10_1002_smll_202104922
crossref_primary_10_1002_aelm_202500287
crossref_primary_10_1002_adfm_202500631
crossref_primary_10_1002_adfm_202000449
crossref_primary_10_1002_adma_201802850
crossref_primary_10_1021_jacs_0c10365
Cites_doi 10.1002/aenm.201300864
10.1038/ncomms13066
10.1021/jacs.6b11717
10.1002/aenm.201401072
10.1002/adma.201401986
10.1002/adma.201701641
10.1103/PhysRevB.87.115209
10.1016/j.softx.2015.06.001
10.1002/pssa.201228310
10.1002/adfm.201504377
10.1016/j.cpc.2015.09.014
10.1103/PhysRevLett.50.1866
10.1021/acs.accounts.5b00438
10.1002/aelm.201600004
10.1039/C5TC04207K
10.1103/PhysRevB.86.085208
10.1021/acs.chemmater.6b01629
10.1038/nmat4784
10.1038/nature09996
10.1021/ja403906d
10.1038/nmat4785
10.1021/acs.macromol.6b02313
10.1103/PhysRevLett.94.206601
10.1021/acsnano.6b07628
10.1021/ma3016129
10.1063/1.367119
10.1038/nmat4634
10.1002/aenm.201200514
10.1021/am400786c
10.1038/srep03425
10.1038/ncomms3775
10.1002/adma.200290016
10.1021/ol801918y
10.1038/nmat3722
10.1021/ar2002446
10.1021/ma301864f
10.1103/PhysRevB.40.2806
10.1021/jp3095165
10.1038/nature07727
10.1126/sciadv.1700434
10.1002/adma.201400668
10.1002/adma.201304866
10.1021/ja306844f
10.1021/jacs.5b00945
10.1002/aenm.201500044
10.1002/smll.201202640
10.1021/acs.macromol.5b00702
10.1038/ncomms2587
10.1002/ange.200461324
10.1039/C5CP06704A
10.1143/JJAP.48.111203
10.1038/nmat3635
10.1002/adma.201506295
10.1021/ja108861q
10.1063/1.3701729
10.1002/adma.201402015
10.1002/adma.201001202
10.3390/ma7096701
10.1002/adma.201303586
10.1021/ct400219n
10.1002/adma.201603731
10.1002/adfm.201404549
10.1021/jacs.7b05344
10.1103/PhysRevB.82.115454
10.1002/adma.201700930
10.1038/nmat976
10.1039/C7TA06609K
10.1038/ncomms7460
10.1021/jp071097f
10.1021/ja103173m
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201704630
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29325212
10_1002_adma_201704630
ADMA201704630
Genre article
Journal Article
GrantInformation_xml – fundername: NWO
  funderid: 022.005.006
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4790-b860bb65fc9806f16ef46f82c6fa3ad6dea7bd9b891a38798cddc0a1dae1f91e3
IEDL.DBID DRFUL
ISICitedReferencesCount 271
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424891900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 13:19:36 EST 2025
Fri Jul 25 04:50:12 EDT 2025
Wed Feb 19 02:42:11 EST 2025
Tue Nov 18 22:42:27 EST 2025
Sat Nov 29 07:20:57 EST 2025
Wed Jan 22 16:24:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords solution processing
donor-acceptor copolymer
n-type doping
electrical conductivity and doping level
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-b860bb65fc9806f16ef46f82c6fa3ad6dea7bd9b891a38798cddc0a1dae1f91e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704630
PMID 29325212
PQID 2001077358
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_1989609111
proquest_journals_2001077358
pubmed_primary_29325212
crossref_citationtrail_10_1002_adma_201704630
crossref_primary_10_1002_adma_201704630
wiley_primary_10_1002_adma_201704630_ADMA201704630
PublicationCentury 2000
PublicationDate 2018-Feb
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 40
2017; 5
2002; 14
2013; 3
2013; 4
2017; 3
2014; 26
1983; 50
1998; 83
2013; 5
2009; 48
2011; 473
2013; 9
2010; 22
2015; 48
2014; 4
2012; 134
2015; 137
2013; 12
2003; 2
2016; 199
2016; 49
2014; 7
2015; 1
2015; 6
2015; 5
2012; 100
2013; 87
2008; 10
2017; 29
2016; 18
2016; 16
2016; 15
2011; 133
2017; 139
2009; 457
2010; 82
2016; 4
2017; 50
2015; 25
2016; 7
2004; 116
2016; 2
2017; 16
2017; 11
2007; 111
2010; 132
2013; 210
2013; 135
2005; 94
2016; 28
2012; 45
2012; 116
2016; 26
2012; 86
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
Luzio A. (e_1_2_5_50_1) 2013; 3
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
References_xml – volume: 473
  start-page: 66
  year: 2011
  publication-title: Nature
– volume: 26
  start-page: 768
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 13066
  year: 2016
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6000
  year: 2014
  publication-title: Adv. Mater.
– volume: 45
  start-page: 723
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 199
  start-page: 1
  year: 2016
  publication-title: Comput. Phys. Commun.
– volume: 83
  start-page: 3111
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 1600004
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 457
  start-page: 679
  year: 2009
  publication-title: Nature
– volume: 11
  start-page: 1000
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 1588
  year: 2013
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6069
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: e1700434
  year: 2017
  publication-title: Sci. Adv.
– volume: 14
  start-page: 1844
  year: 2002
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6003
  year: 2016
  publication-title: Adv. Mater.
– volume: 132
  start-page: 8852
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 549
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 13013
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 8621
  year: 2012
  publication-title: Macromolecules
– volume: 9
  start-page: 3282
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 1300864
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 19
  year: 2015
  publication-title: SoftwareX
– volume: 6
  start-page: 6460
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 2825
  year: 2014
  publication-title: Adv. Mater.
– volume: 50
  start-page: 857
  year: 2017
  publication-title: Macromolecules
– volume: 5
  start-page: 1500044
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2775
  year: 2013
  publication-title: Nat. Commun.
– volume: 137
  start-page: 6979
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 7812
  year: 2007
  publication-title: J. Phys. Chem. B
– volume: 48
  start-page: 4357
  year: 2015
  publication-title: Macromolecules
– volume: 5
  start-page: 4417
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 86
  start-page: 85208
  year: 2012
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 3454
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 45
  start-page: 8211
  year: 2012
  publication-title: Macromolecules
– volume: 50
  start-page: 1866
  year: 1983
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 1700930
  year: 2017
  publication-title: Adv. Mater.
– volume: 133
  start-page: 2605
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6701
  year: 2014
  publication-title: Materials
– volume: 139
  start-page: 3697
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 6217
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 471
  year: 2014
  publication-title: Adv. Mater.
– volume: 87
  start-page: 115209
  year: 2013
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 206601
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 683
  year: 2003
  publication-title: Nat. Mater.
– volume: 5
  start-page: 21234
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 896
  year: 2016
  publication-title: Nat. Mater.
– volume: 22
  start-page: 4359
  year: 2010
  publication-title: Adv. Mater.
– volume: 3
  start-page: 125204
  year: 2013
  publication-title: Sci. Rep.
– volume: 40
  start-page: 2806
  year: 1989
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 4268
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1701641
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3639
  year: 2013
  publication-title: Small
– volume: 100
  start-page: 143303
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 2701
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 116
  start-page: 6523
  year: 2004
  publication-title: Angew. Chem.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 18303
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 252
  year: 2017
  publication-title: Nat. Mater.
– volume: 16
  start-page: 356
  year: 2016
  publication-title: Nat. Mater.
– volume: 28
  start-page: 4432
  year: 2016
  publication-title: Chem. Mater.
– volume: 28
  start-page: 10764
  year: 2016
  publication-title: Adv. Mater.
– volume: 135
  start-page: 15018
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5333
  year: 2008
  publication-title: Org. Lett.
– volume: 82
  start-page: 115454
  year: 2010
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 370
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 116
  start-page: 14353
  year: 2012
  publication-title: J. Phys. Chem. B
– volume: 210
  start-page: 9
  year: 2013
  publication-title: Phys. Status Solidi
– volume: 12
  start-page: 1038
  year: 2013
  publication-title: Nat. Mater.
– volume: 12
  start-page: 719
  year: 2013
  publication-title: Nat. Mater.
– volume: 48
  start-page: 111203
  year: 2009
  publication-title: Jpn. J. Appl. Phys.
– ident: e_1_2_5_43_1
  doi: 10.1002/aenm.201300864
– ident: e_1_2_5_52_1
  doi: 10.1038/ncomms13066
– ident: e_1_2_5_58_1
  doi: 10.1021/jacs.6b11717
– ident: e_1_2_5_7_1
  doi: 10.1002/aenm.201401072
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201401986
– ident: e_1_2_5_51_1
  doi: 10.1002/adma.201701641
– ident: e_1_2_5_2_1
  doi: 10.1103/PhysRevB.87.115209
– ident: e_1_2_5_68_1
  doi: 10.1016/j.softx.2015.06.001
– ident: e_1_2_5_8_1
  doi: 10.1002/pssa.201228310
– ident: e_1_2_5_13_1
  doi: 10.1002/adfm.201504377
– ident: e_1_2_5_69_1
  doi: 10.1016/j.cpc.2015.09.014
– ident: e_1_2_5_60_1
  doi: 10.1103/PhysRevLett.50.1866
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.accounts.5b00438
– ident: e_1_2_5_35_1
  doi: 10.1002/aelm.201600004
– ident: e_1_2_5_26_1
  doi: 10.1039/C5TC04207K
– ident: e_1_2_5_48_1
  doi: 10.1103/PhysRevB.86.085208
– ident: e_1_2_5_27_1
  doi: 10.1021/acs.chemmater.6b01629
– ident: e_1_2_5_62_1
  doi: 10.1038/nmat4784
– ident: e_1_2_5_19_1
  doi: 10.1038/nature09996
– ident: e_1_2_5_23_1
  doi: 10.1021/ja403906d
– ident: e_1_2_5_17_1
  doi: 10.1038/nmat4785
– ident: e_1_2_5_37_1
  doi: 10.1021/acs.macromol.6b02313
– ident: e_1_2_5_46_1
  doi: 10.1103/PhysRevLett.94.206601
– ident: e_1_2_5_56_1
  doi: 10.1021/acsnano.6b07628
– ident: e_1_2_5_40_1
  doi: 10.1021/ma3016129
– ident: e_1_2_5_63_1
  doi: 10.1063/1.367119
– ident: e_1_2_5_3_1
  doi: 10.1038/nmat4634
– ident: e_1_2_5_10_1
  doi: 10.1002/aenm.201200514
– ident: e_1_2_5_47_1
  doi: 10.1021/am400786c
– volume: 3
  start-page: 125204
  year: 2013
  ident: e_1_2_5_50_1
  publication-title: Sci. Rep.
  doi: 10.1038/srep03425
– ident: e_1_2_5_11_1
  doi: 10.1038/ncomms3775
– ident: e_1_2_5_41_1
  doi: 10.1002/adma.200290016
– ident: e_1_2_5_42_1
  doi: 10.1021/ol801918y
– ident: e_1_2_5_64_1
  doi: 10.1038/nmat3722
– ident: e_1_2_5_31_1
  doi: 10.1021/ar2002446
– ident: e_1_2_5_29_1
  doi: 10.1021/ma301864f
– ident: e_1_2_5_61_1
  doi: 10.1103/PhysRevB.40.2806
– ident: e_1_2_5_66_1
  doi: 10.1021/jp3095165
– ident: e_1_2_5_32_1
  doi: 10.1038/nature07727
– ident: e_1_2_5_18_1
  doi: 10.1126/sciadv.1700434
– ident: e_1_2_5_36_1
  doi: 10.1002/adma.201400668
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201304866
– ident: e_1_2_5_39_1
  doi: 10.1021/ja306844f
– ident: e_1_2_5_22_1
  doi: 10.1021/jacs.5b00945
– ident: e_1_2_5_49_1
  doi: 10.1002/aenm.201500044
– ident: e_1_2_5_55_1
  doi: 10.1002/smll.201202640
– ident: e_1_2_5_45_1
  doi: 10.1021/acs.macromol.5b00702
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms2587
– ident: e_1_2_5_14_1
  doi: 10.1002/ange.200461324
– ident: e_1_2_5_57_1
  doi: 10.1039/C5CP06704A
– ident: e_1_2_5_59_1
  doi: 10.1143/JJAP.48.111203
– ident: e_1_2_5_12_1
  doi: 10.1038/nmat3635
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201506295
– ident: e_1_2_5_33_1
  doi: 10.1021/ja108861q
– ident: e_1_2_5_70_1
  doi: 10.1063/1.3701729
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201402015
– ident: e_1_2_5_53_1
  doi: 10.1002/adma.201001202
– ident: e_1_2_5_9_1
  doi: 10.3390/ma7096701
– ident: e_1_2_5_30_1
  doi: 10.1002/adma.201303586
– ident: e_1_2_5_67_1
  doi: 10.1021/ct400219n
– ident: e_1_2_5_38_1
  doi: 10.1002/adma.201603731
– ident: e_1_2_5_4_1
  doi: 10.1002/adfm.201404549
– ident: e_1_2_5_20_1
  doi: 10.1021/jacs.7b05344
– ident: e_1_2_5_5_1
  doi: 10.1103/PhysRevB.82.115454
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201700930
– ident: e_1_2_5_16_1
  doi: 10.1038/nmat976
– ident: e_1_2_5_65_1
  doi: 10.1039/C7TA06609K
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms7460
– ident: e_1_2_5_54_1
  doi: 10.1021/jp071097f
– ident: e_1_2_5_44_1
  doi: 10.1021/ja103173m
SSID ssj0009606
Score 2.6469767
Snippet In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity...
In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Chains
Clustering
Computer simulation
Copolymers
Crystal structure
Current carriers
donor–acceptor copolymer
Dopants
Doping
Electric contacts
electrical conductivity and doping level
Electrical resistivity
Inspection
Molecular dynamics
Naphthalene
Nondestructive testing
n‐type doping
solution processing
Triethylene glycol
Title Enhancing Molecular n‐Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704630
https://www.ncbi.nlm.nih.gov/pubmed/29325212
https://www.proquest.com/docview/2001077358
https://www.proquest.com/docview/1989609111
Volume 30
WOSCitedRecordID wos000424891900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTQ_Noe-kbtOgQqEnEVuW9Tguu1l6SEJpE1jowejlZqHIYZ0UcstPKPQf5pdUsr1OllIC6U3Gsi1GM54ZafR9AB9ySoJqKIEVrQSmwaVhTa3BpCBcWpMr2uHMHvCjIzGfy8-3TvF3-BDDglu0jPZ_HQ1c6WbvBjRU2RY3KOMR8yok7RskKC8dwcb0y-zk4AZ4l7X8mnG_D0tGxQq4MSV7629Yd0x_RZvrwWvrfWZP_3_cz-BJH3micacqz-GB8y9g8xYe4Uv4tu9PI_6G_44OV7S5yF9f_YrZKpq2Z6tQXYWWr5fXV7_HJhbF1Es0iVQLl3EJHOlLdKwWXV0f-rqwDk1O1cI3r-Bktn88-YR79gVsKJcp1oKlWrOiMlKkrMqYqyirBDGsUrmyzDrFtZVayEzlgkthrDWpyqxyWSUzl2_ByNfevQakrS3SXAnCVRECIBU8YOEyJ52rMs5MmgBeib40PTR5ZMj4UXagyqSMQisHoSXwceh_1oFy_LPnzmomy944m8i8GZJenhcigffD7WBWca9EeVdfNGUsJWNp9AQJbHcaMHwqREgkHnlOgLQTfccYyvH0cDxcvbnPQ2_hcWiLrlp8B0bnywv3Dh6Zn-eLZrkLD_lc7PaK_wf2MgLe
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9kT9B78PujemoEwadwbdrm43HZveXE3UV0Dw58KGmSeguSHrt3wr3dnyD4H95fYqbt9lxEBPGpX2kaJjOdyWTmNwBv0owF1tCS6qySNAsqjZaZNZTlTChrUp21OLNTMZ_L42P1oYsmxFyYFh-id7ihZDT_axRwdEjvX6OGatsAByUCQa_Cqn0nHGQ-gJ3xx8nR9Bp5lzcFNnHDjyqeyQ1yY8z2t3vY1ky_mZvb1mujfiZ3_8PA78GdzvYkw5ZZ7sMN5x_A7i-IhA_h84E_QQQO_4XMNoVzib-6_I7rVTJusqtIXYUzX6-uLn8MDYbF1CsywmILF-gEJ-UFWehlG9lHPi2tI6MTvfTrR3A0OViMDmlXf4GaTKiYlpLHZcnzyigZ8yrhrsp4JZnhlU615dZpUVpVSpXoVAoljbUm1onVLqlU4tLHMPC1d0-BlNbmcaolEzoPJpAOOjB3iVPOVYngJo6AbmhfmA6cHGtkfC1aWGVWINGKnmgRvO3bn7awHH9subeZyqITzzXW3gzLXpHmMoLX_eMgWLhbor2rz9cFBpPxGHVBBE9aFug_FWwkhknPEbBmpv8yhmI4ng37q2f_8tIruHW4mE2L6bv5--dwO9yXbez4HgzOVufuBdw0386W69XLjv9_Al-zBeY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KEkp7aNNn3CatCoWeRGxZ1uO47GZJ6WYJbQKBHoysR7JQ5LCbBHLLTyj0H-aXVLK9TpdSCqU3P2RbjGY8I2nm-wDe55QE1VACK-oEpsGl4YoajUlBuDQ6V7TFmZ3w6VScnMjDLpsw1sK0-BD9glu0jOZ_HQ3cnhu3e4caqkwDHJTxCHoVZu3rtJAs2Ob66PP4eHKHvMsags244Yclo2KJ3JiS3dU3rHqm38LN1ei1cT_jx_-h45vwqIs90aBVlidwz_qn8PAXRMJn8HXPn0UEDn-KDpbEucjf3nyP81U0aqqrUO3Cka_ntzc_BjqmxdRzNIxkC9dxERxV1-hIzdrMPvRlZiwanqmZXzyH4_He0XAfd_wLWFMuU1wJllYVK5yWImUuY9ZR5gTRzKlcGWas4pWRlZCZygWXQhujU5UZZTMnM5u_gDVfe7sFqDKmSHMlCFdFCIFU8IGFzay01mWc6TQBvJR9qTtw8siR8a1sYZVJGYVW9kJL4EPf_ryF5fhjy-3lUJadeS4i92aY9vK8EAm8628Hw4q7Jcrb-nJRxmQylkZfkMDLVgX6T4UYicSi5wRIM9J_6UM5GB0M-rNX__LQW7h_OBqXk4_TT6_hQbgs2tTxbVi7mF_aHdjQVxezxfxNp_4_AeFMBWE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Molecular+n%E2%80%90Type+Doping+of+Donor%E2%80%93Acceptor+Copolymers+by+Tailoring+Side+Chains&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jian&rft.au=Qiu%2C+Li&rft.au=Alessandri%2C+Riccardo&rft.au=Qiu%2C+Xinkai&rft.date=2018-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadma.201704630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201704630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon