Enhancing Molecular n‐Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains
In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side cha...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 30; číslo 7 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.02.2018
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm−1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers.
Significantly enhanced molecularly doping of an n‐type donor–acceptor (D–A) copolymer by rationally tailoring its side chains without changing its donor–acceptor character is demonstrated. Polar triethylene‐glycol‐based side chains on the host greatly increase the solubility of dopant molecules in the host matrix with respect to the traditional alkyl side chains. The former gives a highest conductivity of 0.17 S cm−1 for D–A copolymers, representing a 200‐fold enhancement compared to the latter. |
|---|---|
| AbstractList | In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers. In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm−1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers. Significantly enhanced molecularly doping of an n‐type donor–acceptor (D–A) copolymer by rationally tailoring its side chains without changing its donor–acceptor character is demonstrated. Polar triethylene‐glycol‐based side chains on the host greatly increase the solubility of dopant molecules in the host matrix with respect to the traditional alkyl side chains. The former gives a highest conductivity of 0.17 S cm−1 for D–A copolymers, representing a 200‐fold enhancement compared to the latter. In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers. In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers. In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D–A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[ N , N ′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl](NDI)‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm −1 after doping with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine is achieved, which is the highest reported value for n‐type D–A copolymers. Coarse‐grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI‐based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n‐type D–A copolymers. |
| Author | Hummelen, Jan C. Qiu, Li Qiu, Xinkai Talsma, Wytse Ye, Gang Loi, Maria Antonietta Sengrian, Aprizal Akbar Alessandri, Riccardo Marrink, Siewert J. Souza, Paulo C. T. Liu, Jian Portale, Giuseppe Dong, JingJin Chiechi, Ryan C. Koster, L. Jan Anton |
| Author_xml | – sequence: 1 givenname: Jian surname: Liu fullname: Liu, Jian email: jian.liu@rug.nl organization: University of Groningen – sequence: 2 givenname: Li surname: Qiu fullname: Qiu, Li organization: University of Groningen – sequence: 3 givenname: Riccardo surname: Alessandri fullname: Alessandri, Riccardo organization: University of Groningen – sequence: 4 givenname: Xinkai surname: Qiu fullname: Qiu, Xinkai organization: University of Groningen – sequence: 5 givenname: Giuseppe surname: Portale fullname: Portale, Giuseppe organization: University of Groningen – sequence: 6 givenname: JingJin surname: Dong fullname: Dong, JingJin organization: University of Groningen – sequence: 7 givenname: Wytse surname: Talsma fullname: Talsma, Wytse organization: University of Groningen – sequence: 8 givenname: Gang surname: Ye fullname: Ye, Gang organization: University of Groningen – sequence: 9 givenname: Aprizal Akbar surname: Sengrian fullname: Sengrian, Aprizal Akbar organization: University of Groningen – sequence: 10 givenname: Paulo C. T. surname: Souza fullname: Souza, Paulo C. T. organization: University of Groningen – sequence: 11 givenname: Maria Antonietta surname: Loi fullname: Loi, Maria Antonietta organization: University of Groningen – sequence: 12 givenname: Ryan C. surname: Chiechi fullname: Chiechi, Ryan C. organization: University of Groningen – sequence: 13 givenname: Siewert J. surname: Marrink fullname: Marrink, Siewert J. organization: University of Groningen – sequence: 14 givenname: Jan C. surname: Hummelen fullname: Hummelen, Jan C. email: j.c.hummelen@rug.nl organization: University of Groningen – sequence: 15 givenname: L. Jan Anton surname: Koster fullname: Koster, L. Jan Anton email: l.j.a.koster@rug.nl organization: University of Groningen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29325212$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1LHTEUhkOx1Kvt1qUMuOlmbk_mI5MsL1drBaWL3q66CJl8aGQmGZMZyuz8CQX_ob-kuVy1IEhXOZDnOZxz3gO057zTCB1hWGKA4otQvVgWgBuoSAnv0ALXBc4rYPUeWgAr65yRiu6jgxhvAYARIB_QfsHKInHFAv06czfCSeuusyvfaTl1ImTu8f7PZh50duqH7Y83qXI-PN4_rKTUw-hDtvaD7-Zeh5i1c7YRtvNhy_6wSmfrG2Fd_IjeG9FF_enpPUQ_v55t1t_yy-_nF-vVZS6rhkHeUgJtS2ojGQViMNGmIoYWkhhRCkWUFk2rWEsZFiVtGJVKSRBYCY0Nw7o8RJ93fYfg7yYdR97bKHXXCaf9FDlmNO3NMMYJPXmF3vopuDQdLwAwNE1Z00QdP1FT22vFh2B7EWb-fLYEVDtABh9j0IZLO4rRejeGdAmOgW_T4dt0-Es6SVu-0p47vymwnfDbdnr-D81Xp1erf-5fTpyjpA |
| CitedBy_id | crossref_primary_10_1002_aenm_202002521 crossref_primary_10_1002_cjoc_202200679 crossref_primary_10_1063_5_0217725 crossref_primary_10_1088_1674_1056_ac22a4 crossref_primary_10_3390_su142416821 crossref_primary_10_1021_jacs_9b10107 crossref_primary_10_1063_5_0047637 crossref_primary_10_1002_anie_201814544 crossref_primary_10_1038_s41467_020_17063_1 crossref_primary_10_1002_advs_202500571 crossref_primary_10_1002_ange_202113078 crossref_primary_10_1002_anie_202219313 crossref_primary_10_1002_anie_202213737 crossref_primary_10_1002_adma_202300240 crossref_primary_10_1016_j_nanoen_2021_106774 crossref_primary_10_1146_annurev_matsci_080619_110405 crossref_primary_10_1002_adma_202300084 crossref_primary_10_1007_s13233_021_9099_z crossref_primary_10_1039_D5MH01079A crossref_primary_10_1002_adfm_202213911 crossref_primary_10_1016_j_cej_2019_122817 crossref_primary_10_1002_adfm_202212305 crossref_primary_10_1002_anie_202011537 crossref_primary_10_1002_anie_202015216 crossref_primary_10_1002_pol_20210604 crossref_primary_10_1002_advs_202203530 crossref_primary_10_1002_ange_202407273 crossref_primary_10_1016_j_cej_2020_126616 crossref_primary_10_1002_ange_202402375 crossref_primary_10_1002_adom_202002039 crossref_primary_10_1002_anie_201905835 crossref_primary_10_1038_s41467_020_19537_8 crossref_primary_10_1016_j_jcis_2020_12_063 crossref_primary_10_1021_acsapm_4c03287 crossref_primary_10_1002_aelm_202100407 crossref_primary_10_1002_aenm_202303494 crossref_primary_10_1016_j_cej_2020_126692 crossref_primary_10_1002_aelm_202001284 crossref_primary_10_1002_anie_202113078 crossref_primary_10_1038_s41467_019_08361_4 crossref_primary_10_1002_adma_202404397 crossref_primary_10_1002_advs_202401952 crossref_primary_10_1038_s41563_019_0556_4 crossref_primary_10_1002_adma_201804290 crossref_primary_10_1002_advs_202002778 crossref_primary_10_1002_ange_201814544 crossref_primary_10_1002_ifm2_33 crossref_primary_10_1002_advs_202402482 crossref_primary_10_1039_D5TC02396C crossref_primary_10_1002_ange_201905835 crossref_primary_10_1055_a_2191_6011 crossref_primary_10_1002_aelm_202400413 crossref_primary_10_1016_j_mtphys_2018_09_002 crossref_primary_10_1002_marc_201900082 crossref_primary_10_1016_j_scib_2020_07_036 crossref_primary_10_1039_D1MH01357B crossref_primary_10_1007_s13233_020_8116_y crossref_primary_10_1038_s41467_020_16648_0 crossref_primary_10_1002_adfm_202004799 crossref_primary_10_1039_C9PY01469A crossref_primary_10_1126_sciadv_adu8215 crossref_primary_10_1002_aelm_201800825 crossref_primary_10_1002_cssc_202102420 crossref_primary_10_1016_j_jechem_2021_03_020 crossref_primary_10_1002_adma_202002060 crossref_primary_10_1016_j_mtener_2021_100710 crossref_primary_10_1002_aelm_201800821 crossref_primary_10_1038_s41467_021_22528_y crossref_primary_10_1002_adma_202000273 crossref_primary_10_1002_marc_202100443 crossref_primary_10_1016_j_polymer_2022_125000 crossref_primary_10_1016_j_cej_2024_151650 crossref_primary_10_1016_j_orgel_2020_105921 crossref_primary_10_1002_ange_202219313 crossref_primary_10_1002_adfm_202006900 crossref_primary_10_1002_ange_202213737 crossref_primary_10_1002_adfm_202300809 crossref_primary_10_1002_adma_202403911 crossref_primary_10_1002_adfm_202211522 crossref_primary_10_1002_aelm_201800612 crossref_primary_10_1002_ange_202015216 crossref_primary_10_1002_anie_202214192 crossref_primary_10_1016_j_mtphys_2021_100402 crossref_primary_10_1063_5_0052474 crossref_primary_10_1002_smll_202206233 crossref_primary_10_1038_s41563_018_0263_6 crossref_primary_10_1002_adfm_202102768 crossref_primary_10_1002_anie_202200221 crossref_primary_10_1002_anie_202407273 crossref_primary_10_1063_5_0080820 crossref_primary_10_1016_j_polymer_2025_128079 crossref_primary_10_1002_adfm_202111351 crossref_primary_10_1002_wcms_1620 crossref_primary_10_1002_anie_202402375 crossref_primary_10_1002_adfm_202004378 crossref_primary_10_1021_acs_accounts_5c00121 crossref_primary_10_20517_energymater_2025_14 crossref_primary_10_1039_D5CP00828J crossref_primary_10_1002_ange_202011537 crossref_primary_10_1039_D5MH00067J crossref_primary_10_1038_s41592_021_01098_3 crossref_primary_10_1063_5_0129861 crossref_primary_10_1088_1674_4926_43_2_020202 crossref_primary_10_1002_adma_202412327 crossref_primary_10_1002_smll_202102813 crossref_primary_10_1021_jacs_9b12683 crossref_primary_10_1002_cplu_202300215 crossref_primary_10_1039_D5TC02503F crossref_primary_10_1039_D0SC06497A crossref_primary_10_1002_adma_202005946 crossref_primary_10_1002_pol_20210773 crossref_primary_10_1126_science_abq6235 crossref_primary_10_1002_aelm_202400767 crossref_primary_10_1016_j_cej_2023_147070 crossref_primary_10_1002_cjoc_202300650 crossref_primary_10_1002_aelm_201800959 crossref_primary_10_1038_s41467_024_52430_2 crossref_primary_10_1002_pol_20210493 crossref_primary_10_3390_polym11010107 crossref_primary_10_1002_adfm_202203080 crossref_primary_10_1063_5_0051166 crossref_primary_10_1038_s41467_021_26043_y crossref_primary_10_1002_adma_201801898 crossref_primary_10_1016_j_cej_2023_141366 crossref_primary_10_1002_pol_20240132 crossref_primary_10_1021_acsapm_5c01347 crossref_primary_10_1038_s41586_022_05295_8 crossref_primary_10_1002_adfm_202210770 crossref_primary_10_1002_aelm_201901414 crossref_primary_10_1002_adma_202508526 crossref_primary_10_1002_smll_202200679 crossref_primary_10_1002_adma_202504357 crossref_primary_10_1039_D5MH00005J crossref_primary_10_1146_annurev_matsci_082219_024716 crossref_primary_10_1002_aelm_202101324 crossref_primary_10_1002_adma_202309679 crossref_primary_10_1002_adfm_202110047 crossref_primary_10_1039_D4ME00192C crossref_primary_10_1002_aesr_202100084 crossref_primary_10_1002_ange_202200221 crossref_primary_10_1002_advs_202302629 crossref_primary_10_1002_adma_202008635 crossref_primary_10_1016_j_nanoen_2018_07_056 crossref_primary_10_1021_polymscitech_5c00042 crossref_primary_10_1002_slct_202204021 crossref_primary_10_1002_adfm_202106991 crossref_primary_10_1002_ange_202214192 crossref_primary_10_1016_j_chempr_2020_05_012 crossref_primary_10_1016_j_synthmet_2024_117678 crossref_primary_10_1002_eom2_12442 crossref_primary_10_1016_j_microc_2024_111737 crossref_primary_10_1002_adma_202101932 crossref_primary_10_1016_j_nanoms_2020_10_002 crossref_primary_10_1021_jacs_0c05699 crossref_primary_10_1021_jacs_2c13051 crossref_primary_10_1016_j_compscitech_2020_108359 crossref_primary_10_1002_aenm_201900817 crossref_primary_10_1002_adma_202006694 crossref_primary_10_1002_smll_202104922 crossref_primary_10_1002_aelm_202500287 crossref_primary_10_1002_adfm_202500631 crossref_primary_10_1002_adfm_202000449 crossref_primary_10_1002_adma_201802850 crossref_primary_10_1021_jacs_0c10365 |
| Cites_doi | 10.1002/aenm.201300864 10.1038/ncomms13066 10.1021/jacs.6b11717 10.1002/aenm.201401072 10.1002/adma.201401986 10.1002/adma.201701641 10.1103/PhysRevB.87.115209 10.1016/j.softx.2015.06.001 10.1002/pssa.201228310 10.1002/adfm.201504377 10.1016/j.cpc.2015.09.014 10.1103/PhysRevLett.50.1866 10.1021/acs.accounts.5b00438 10.1002/aelm.201600004 10.1039/C5TC04207K 10.1103/PhysRevB.86.085208 10.1021/acs.chemmater.6b01629 10.1038/nmat4784 10.1038/nature09996 10.1021/ja403906d 10.1038/nmat4785 10.1021/acs.macromol.6b02313 10.1103/PhysRevLett.94.206601 10.1021/acsnano.6b07628 10.1021/ma3016129 10.1063/1.367119 10.1038/nmat4634 10.1002/aenm.201200514 10.1021/am400786c 10.1038/srep03425 10.1038/ncomms3775 10.1002/adma.200290016 10.1021/ol801918y 10.1038/nmat3722 10.1021/ar2002446 10.1021/ma301864f 10.1103/PhysRevB.40.2806 10.1021/jp3095165 10.1038/nature07727 10.1126/sciadv.1700434 10.1002/adma.201400668 10.1002/adma.201304866 10.1021/ja306844f 10.1021/jacs.5b00945 10.1002/aenm.201500044 10.1002/smll.201202640 10.1021/acs.macromol.5b00702 10.1038/ncomms2587 10.1002/ange.200461324 10.1039/C5CP06704A 10.1143/JJAP.48.111203 10.1038/nmat3635 10.1002/adma.201506295 10.1021/ja108861q 10.1063/1.3701729 10.1002/adma.201402015 10.1002/adma.201001202 10.3390/ma7096701 10.1002/adma.201303586 10.1021/ct400219n 10.1002/adma.201603731 10.1002/adfm.201404549 10.1021/jacs.7b05344 10.1103/PhysRevB.82.115454 10.1002/adma.201700930 10.1038/nmat976 10.1039/C7TA06609K 10.1038/ncomms7460 10.1021/jp071097f 10.1021/ja103173m |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201704630 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 29325212 10_1002_adma_201704630 ADMA201704630 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: NWO funderid: 022.005.006 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4790-b860bb65fc9806f16ef46f82c6fa3ad6dea7bd9b891a38798cddc0a1dae1f91e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 271 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424891900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 13:19:36 EST 2025 Fri Jul 25 04:50:12 EDT 2025 Wed Feb 19 02:42:11 EST 2025 Tue Nov 18 22:42:27 EST 2025 Sat Nov 29 07:20:57 EST 2025 Wed Jan 22 16:24:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | solution processing donor-acceptor copolymer n-type doping electrical conductivity and doping level |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4790-b860bb65fc9806f16ef46f82c6fa3ad6dea7bd9b891a38798cddc0a1dae1f91e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704630 |
| PMID | 29325212 |
| PQID | 2001077358 |
| PQPubID | 2045203 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1989609111 proquest_journals_2001077358 pubmed_primary_29325212 crossref_citationtrail_10_1002_adma_201704630 crossref_primary_10_1002_adma_201704630 wiley_primary_10_1002_adma_201704630_ADMA201704630 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Feb |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1989; 40 2017; 5 2002; 14 2013; 3 2013; 4 2017; 3 2014; 26 1983; 50 1998; 83 2013; 5 2009; 48 2011; 473 2013; 9 2010; 22 2015; 48 2014; 4 2012; 134 2015; 137 2013; 12 2003; 2 2016; 199 2016; 49 2014; 7 2015; 1 2015; 6 2015; 5 2012; 100 2013; 87 2008; 10 2017; 29 2016; 18 2016; 16 2016; 15 2011; 133 2017; 139 2009; 457 2010; 82 2016; 4 2017; 50 2015; 25 2016; 7 2004; 116 2016; 2 2017; 16 2017; 11 2007; 111 2010; 132 2013; 210 2013; 135 2005; 94 2016; 28 2012; 45 2012; 116 2016; 26 2012; 86 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 Luzio A. (e_1_2_5_50_1) 2013; 3 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 |
| References_xml | – volume: 473 start-page: 66 year: 2011 publication-title: Nature – volume: 26 start-page: 768 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 13066 year: 2016 publication-title: Nat. Commun. – volume: 26 start-page: 6000 year: 2014 publication-title: Adv. Mater. – volume: 45 start-page: 723 year: 2012 publication-title: Acc. Chem. Res. – volume: 199 start-page: 1 year: 2016 publication-title: Comput. Phys. Commun. – volume: 83 start-page: 3111 year: 1998 publication-title: J. Appl. Phys. – volume: 2 start-page: 1600004 year: 2016 publication-title: Adv. Electron. Mater. – volume: 457 start-page: 679 year: 2009 publication-title: Nature – volume: 11 start-page: 1000 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 1588 year: 2013 publication-title: Nat. Commun. – volume: 26 start-page: 6069 year: 2014 publication-title: Adv. Mater. – volume: 3 start-page: e1700434 year: 2017 publication-title: Sci. Adv. – volume: 14 start-page: 1844 year: 2002 publication-title: Adv. Mater. – volume: 28 start-page: 6003 year: 2016 publication-title: Adv. Mater. – volume: 132 start-page: 8852 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 549 year: 2013 publication-title: Adv. Energy Mater. – volume: 139 start-page: 13013 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 8621 year: 2012 publication-title: Macromolecules – volume: 9 start-page: 3282 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 1300864 year: 2014 publication-title: Adv. Energy Mater. – volume: 1 start-page: 19 year: 2015 publication-title: SoftwareX – volume: 6 start-page: 6460 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 2825 year: 2014 publication-title: Adv. Mater. – volume: 50 start-page: 857 year: 2017 publication-title: Macromolecules – volume: 5 start-page: 1500044 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2775 year: 2013 publication-title: Nat. Commun. – volume: 137 start-page: 6979 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 7812 year: 2007 publication-title: J. Phys. Chem. B – volume: 48 start-page: 4357 year: 2015 publication-title: Macromolecules – volume: 5 start-page: 4417 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 85208 year: 2012 publication-title: Phys. Rev. B – volume: 4 start-page: 3454 year: 2016 publication-title: J. Mater. Chem. C – volume: 45 start-page: 8211 year: 2012 publication-title: Macromolecules – volume: 50 start-page: 1866 year: 1983 publication-title: Phys. Rev. Lett. – volume: 29 start-page: 1700930 year: 2017 publication-title: Adv. Mater. – volume: 133 start-page: 2605 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6701 year: 2014 publication-title: Materials – volume: 139 start-page: 3697 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 6217 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 471 year: 2014 publication-title: Adv. Mater. – volume: 87 start-page: 115209 year: 2013 publication-title: Phys. Rev. B – volume: 94 start-page: 206601 year: 2005 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 683 year: 2003 publication-title: Nat. Mater. – volume: 5 start-page: 21234 year: 2017 publication-title: J. Mater. Chem. A – volume: 15 start-page: 896 year: 2016 publication-title: Nat. Mater. – volume: 22 start-page: 4359 year: 2010 publication-title: Adv. Mater. – volume: 3 start-page: 125204 year: 2013 publication-title: Sci. Rep. – volume: 40 start-page: 2806 year: 1989 publication-title: Phys. Rev. B – volume: 26 start-page: 4268 year: 2014 publication-title: Adv. Mater. – volume: 29 start-page: 1701641 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 3639 year: 2013 publication-title: Small – volume: 100 start-page: 143303 year: 2012 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 2701 year: 2015 publication-title: Adv. Funct. Mater. – volume: 116 start-page: 6523 year: 2004 publication-title: Angew. Chem. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 134 start-page: 18303 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 252 year: 2017 publication-title: Nat. Mater. – volume: 16 start-page: 356 year: 2016 publication-title: Nat. Mater. – volume: 28 start-page: 4432 year: 2016 publication-title: Chem. Mater. – volume: 28 start-page: 10764 year: 2016 publication-title: Adv. Mater. – volume: 135 start-page: 15018 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5333 year: 2008 publication-title: Org. Lett. – volume: 82 start-page: 115454 year: 2010 publication-title: Phys. Rev. B – volume: 49 start-page: 370 year: 2016 publication-title: Acc. Chem. Res. – volume: 116 start-page: 14353 year: 2012 publication-title: J. Phys. Chem. B – volume: 210 start-page: 9 year: 2013 publication-title: Phys. Status Solidi – volume: 12 start-page: 1038 year: 2013 publication-title: Nat. Mater. – volume: 12 start-page: 719 year: 2013 publication-title: Nat. Mater. – volume: 48 start-page: 111203 year: 2009 publication-title: Jpn. J. Appl. Phys. – ident: e_1_2_5_43_1 doi: 10.1002/aenm.201300864 – ident: e_1_2_5_52_1 doi: 10.1038/ncomms13066 – ident: e_1_2_5_58_1 doi: 10.1021/jacs.6b11717 – ident: e_1_2_5_7_1 doi: 10.1002/aenm.201401072 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201401986 – ident: e_1_2_5_51_1 doi: 10.1002/adma.201701641 – ident: e_1_2_5_2_1 doi: 10.1103/PhysRevB.87.115209 – ident: e_1_2_5_68_1 doi: 10.1016/j.softx.2015.06.001 – ident: e_1_2_5_8_1 doi: 10.1002/pssa.201228310 – ident: e_1_2_5_13_1 doi: 10.1002/adfm.201504377 – ident: e_1_2_5_69_1 doi: 10.1016/j.cpc.2015.09.014 – ident: e_1_2_5_60_1 doi: 10.1103/PhysRevLett.50.1866 – ident: e_1_2_5_1_1 doi: 10.1021/acs.accounts.5b00438 – ident: e_1_2_5_35_1 doi: 10.1002/aelm.201600004 – ident: e_1_2_5_26_1 doi: 10.1039/C5TC04207K – ident: e_1_2_5_48_1 doi: 10.1103/PhysRevB.86.085208 – ident: e_1_2_5_27_1 doi: 10.1021/acs.chemmater.6b01629 – ident: e_1_2_5_62_1 doi: 10.1038/nmat4784 – ident: e_1_2_5_19_1 doi: 10.1038/nature09996 – ident: e_1_2_5_23_1 doi: 10.1021/ja403906d – ident: e_1_2_5_17_1 doi: 10.1038/nmat4785 – ident: e_1_2_5_37_1 doi: 10.1021/acs.macromol.6b02313 – ident: e_1_2_5_46_1 doi: 10.1103/PhysRevLett.94.206601 – ident: e_1_2_5_56_1 doi: 10.1021/acsnano.6b07628 – ident: e_1_2_5_40_1 doi: 10.1021/ma3016129 – ident: e_1_2_5_63_1 doi: 10.1063/1.367119 – ident: e_1_2_5_3_1 doi: 10.1038/nmat4634 – ident: e_1_2_5_10_1 doi: 10.1002/aenm.201200514 – ident: e_1_2_5_47_1 doi: 10.1021/am400786c – volume: 3 start-page: 125204 year: 2013 ident: e_1_2_5_50_1 publication-title: Sci. Rep. doi: 10.1038/srep03425 – ident: e_1_2_5_11_1 doi: 10.1038/ncomms3775 – ident: e_1_2_5_41_1 doi: 10.1002/adma.200290016 – ident: e_1_2_5_42_1 doi: 10.1021/ol801918y – ident: e_1_2_5_64_1 doi: 10.1038/nmat3722 – ident: e_1_2_5_31_1 doi: 10.1021/ar2002446 – ident: e_1_2_5_29_1 doi: 10.1021/ma301864f – ident: e_1_2_5_61_1 doi: 10.1103/PhysRevB.40.2806 – ident: e_1_2_5_66_1 doi: 10.1021/jp3095165 – ident: e_1_2_5_32_1 doi: 10.1038/nature07727 – ident: e_1_2_5_18_1 doi: 10.1126/sciadv.1700434 – ident: e_1_2_5_36_1 doi: 10.1002/adma.201400668 – ident: e_1_2_5_34_1 doi: 10.1002/adma.201304866 – ident: e_1_2_5_39_1 doi: 10.1021/ja306844f – ident: e_1_2_5_22_1 doi: 10.1021/jacs.5b00945 – ident: e_1_2_5_49_1 doi: 10.1002/aenm.201500044 – ident: e_1_2_5_55_1 doi: 10.1002/smll.201202640 – ident: e_1_2_5_45_1 doi: 10.1021/acs.macromol.5b00702 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms2587 – ident: e_1_2_5_14_1 doi: 10.1002/ange.200461324 – ident: e_1_2_5_57_1 doi: 10.1039/C5CP06704A – ident: e_1_2_5_59_1 doi: 10.1143/JJAP.48.111203 – ident: e_1_2_5_12_1 doi: 10.1038/nmat3635 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201506295 – ident: e_1_2_5_33_1 doi: 10.1021/ja108861q – ident: e_1_2_5_70_1 doi: 10.1063/1.3701729 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201402015 – ident: e_1_2_5_53_1 doi: 10.1002/adma.201001202 – ident: e_1_2_5_9_1 doi: 10.3390/ma7096701 – ident: e_1_2_5_30_1 doi: 10.1002/adma.201303586 – ident: e_1_2_5_67_1 doi: 10.1021/ct400219n – ident: e_1_2_5_38_1 doi: 10.1002/adma.201603731 – ident: e_1_2_5_4_1 doi: 10.1002/adfm.201404549 – ident: e_1_2_5_20_1 doi: 10.1021/jacs.7b05344 – ident: e_1_2_5_5_1 doi: 10.1103/PhysRevB.82.115454 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201700930 – ident: e_1_2_5_16_1 doi: 10.1038/nmat976 – ident: e_1_2_5_65_1 doi: 10.1039/C7TA06609K – ident: e_1_2_5_21_1 doi: 10.1038/ncomms7460 – ident: e_1_2_5_54_1 doi: 10.1021/jp071097f – ident: e_1_2_5_44_1 doi: 10.1021/ja103173m |
| SSID | ssj0009606 |
| Score | 2.6469767 |
| Snippet | In this contribution, for the first time, the molecular n‐doping of a donor–acceptor (D–A) copolymer achieving 200‐fold enhancement of electrical conductivity... In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Chains Clustering Computer simulation Copolymers Crystal structure Current carriers donor–acceptor copolymer Dopants Doping Electric contacts electrical conductivity and doping level Electrical resistivity Inspection Molecular dynamics Naphthalene Nondestructive testing n‐type doping solution processing Triethylene glycol |
| Title | Enhancing Molecular n‐Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704630 https://www.ncbi.nlm.nih.gov/pubmed/29325212 https://www.proquest.com/docview/2001077358 https://www.proquest.com/docview/1989609111 |
| Volume | 30 |
| WOSCitedRecordID | wos000424891900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTQ_toe-0TtKgQqEnE0t29Dguu1l6SEJpE1jowejlZqHIYZ0UcstPKPQf5pdUY3udLKUU2puMJVmMZjwz0sw3AO-8jVoomrZpJYRBB8WmxjGTRu4q8iiB2tl2pw_F8bGcz9XHO1n8HT7EcOCGktH-r1HAtWn2bkFDtWtxg6hAzKvotG-wyLzFCDamn2anh7fAu7ytr4n3fanihVwBN2Zsb32GdcX0m7W5bry22mf25P_X_RQe95YnGXes8gzu-fAcHt3BI3wBXw7CGeJvhK_kaFU2l4Sb6x_orZJpm1tF6iq2Qr28uf45thgUUy_JBEstXOERODFX5EQvurg-8nnhPJmc6UVoXsLp7OBk8iHtqy-kthAqS43kmTF8v7JKZryi3FcFrySzvNK5dtx5LYxTRiqqcymUtM7ZTFOnPa0U9fkmjEId_GsglnnnpKYFy4pCeSHjNOj8aV955ihNIF2RvrQ9NDlWyPhWdqDKrESilQPREng_9D_vQDn-2HNntZNlL5wNVt6MTq_I92UCb4fXUazwrkQHX182JYaS8Qw1QQKvOg4YPhUtJIYpzwmwdqP_soZyPD0aD09b_zJoGx7GtuyixXdgdLG89G_ggf1-sWiWu3BfzOVuz_i_AOECAxg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MdLD1Yfd1XrtNg8GeTC3ZkeTHkDR0LAljS6GwByPrsgaKXJJ20Lf-hMH-YX9JdWzHXRhjMPbkmywLnXN8Ljr6DsA7q4MWCqZt7IQo0UHRcWlYGQfuytIggcromtITMZvJ4-P8U5tNiHthGnyILuCGklH_r1HAMSC9f4saqkwNHEQFgl4Fr30rHGS_B1ujz-OjyS3yLq8LbOKCX5zzTK6RGxO2v9nDpmb6zdzctF5r9TN--B8G_ggetLYnGTTM8hjuWP8Etn9BJHwKXw_8CSJw-G9kui6cS_z11Q_0V8mo3l1FKhfOfLW8vvo50JgWUy3JEIstXGIQnJSXZK4WTWYf-bIwlgxP1MKvnsHR-GA-PIzb-guxzkSexKXkSVnyvtO5TLij3LqMO8k0dypVhhurRGnyUuZUpVLkUhujE0WNstTl1KbPoecrb18A0cwaIxXNWJJluRUydIPun7LOMkNpBPF67gvdgpNjjYzTooFVZgVOWtFNWgTvu_ZnDSzHH1vurUlZtOK5wtqbwe0VaV9G8LZ7HAQLV0uUt9XFqsBkMp6gLohgp2GB7lPBRmK46TkCVlP6L2MoBqPpoLt6-S8vvYF7h_PppJh8mH3chfvhvmxyx_egd768sK_grv5-vlgtX7f8fwNMcQYg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kFdEHv7XRqisIPoVmk9x-PB53PRSvR9EWCj6E_WwPZFPu2kLf-icI_of9S9xJcqmHiCC-5WOzu8zOZGZ2Z34D8M6ZqIWiaZt6zjU6KCbVNtdp5K6yiBKorGlWespnM3F0JPe7aELMhWnxIfoNN5SM5n-NAu5Ord-5QQ1VtgEOohxBr6LXvlkOJIuyuTn-PDmc3iDvsqbAJh74pZKVYoXcmOU76z2sa6bfzM1167VRP5MH_2HiD-F-Z3uSYcssj-CWC4_h3i-IhE_g6244QQSOcEz2VoVzSbi--o7-Khk32VWk9vEq1Ivrqx9Dg2Ex9YKMsNjCJW6CE31JDtS8jewjX-bWkdGJmoflUzic7B6MPqRd_YXUlFxmqRYs05oNvJEiY54y50vmRW6YV4WyzDrFtZVaSKoKwaUw1ppMUasc9ZK64hlshDq4LSAmd9YKRcs8K0vpuIjdoPunnHe5pTSBdEX7ynTg5Fgj41vVwirnFRKt6omWwPu-_WkLy_HHlturpaw68Vxi7c3o9vJiIBJ427-OgoWnJSq4-nxZYTAZy1AXJPC8ZYF-qGgj5Zj0nEDerPRf5lANx3vD_u7Fv3z0Bu7sjyfV9OPs00u4Gx-LNnR8GzbOFufuFdw2F2fz5eJ1x_4_Ac3QBZs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Molecular+n%E2%80%90Type+Doping+of+Donor%E2%80%93Acceptor+Copolymers+by+Tailoring+Side+Chains&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jian&rft.au=Qiu%2C+Li&rft.au=Alessandri%2C+Riccardo&rft.au=Qiu%2C+Xinkai&rft.date=2018-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadma.201704630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201704630 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |