BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics

Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Systematic biology Ročník 61; číslo 1; s. 170 - 173
Hlavní autoři: Ayres, Daniel L., Darling, Aaron, Zwickl, Derrick J., Beerli, Peter, Holder, Mark T., Lewis, Paul O., Huelsenbeck, John P., Ronquist, Fredrik, Swofford, David L., Cummings, Michael P., Rambaut, Andrew, Suchard, Marc A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 01.01.2012
Témata:
ISSN:1063-5157, 1076-836X, 1076-836X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.
AbstractList Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.
Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.
Author Beerli, Peter
Swofford, David L.
Huelsenbeck, John P.
Suchard, Marc A.
Zwickl, Derrick J.
Cummings, Michael P.
Darling, Aaron
Lewis, Paul O.
Rambaut, Andrew
Ronquist, Fredrik
Holder, Mark T.
Ayres, Daniel L.
Author_xml – sequence: 1
  givenname: Daniel L.
  surname: Ayres
  fullname: Ayres, Daniel L.
  email: ayres@umiacs.umd.edu
  organization: 1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
– sequence: 2
  givenname: Aaron
  surname: Darling
  fullname: Darling, Aaron
  email: a.rambaut@ed.ac.uk
  organization: 2Genome Center, University of California, Davis, CA 95616, USA
– sequence: 3
  givenname: Derrick J.
  surname: Zwickl
  fullname: Zwickl, Derrick J.
  email: a.rambaut@ed.ac.uk
  organization: 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
– sequence: 4
  givenname: Peter
  surname: Beerli
  fullname: Beerli, Peter
  email: a.rambaut@ed.ac.uk
  organization: 4Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
– sequence: 5
  givenname: Mark T.
  surname: Holder
  fullname: Holder, Mark T.
  email: a.rambaut@ed.ac.uk
  organization: 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
– sequence: 6
  givenname: Paul O.
  surname: Lewis
  fullname: Lewis, Paul O.
  email: a.rambaut@ed.ac.uk
  organization: 5Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
– sequence: 7
  givenname: John P.
  surname: Huelsenbeck
  fullname: Huelsenbeck, John P.
  email: a.rambaut@ed.ac.uk
  organization: 6Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
– sequence: 8
  givenname: Fredrik
  surname: Ronquist
  fullname: Ronquist, Fredrik
  email: a.rambaut@ed.ac.uk
  organization: 7Swedish Museum of Natural History, 114 18 Stockholm, Sweden
– sequence: 9
  givenname: David L.
  surname: Swofford
  fullname: Swofford, David L.
  email: a.rambaut@ed.ac.uk
  organization: 8Center for Evolutionary Genomics, Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
– sequence: 10
  givenname: Michael P.
  surname: Cummings
  fullname: Cummings, Michael P.
  email: a.rambaut@ed.ac.uk
  organization: 1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
– sequence: 11
  givenname: Andrew
  surname: Rambaut
  fullname: Rambaut, Andrew
  email: a.rambaut@ed.ac.uk
  organization: 9Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK; E-mail: a.rambaut@ed.ac.uk
– sequence: 12
  givenname: Marc A.
  surname: Suchard
  fullname: Suchard, Marc A.
  email: a.rambaut@ed.ac.uk
  organization: 11Department of Biomathematics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21963610$$D View this record in MEDLINE/PubMed
BookMark eNo9kc1LwzAYxoNM3IcevUpueqkmzdK03uqYc1BwoIK3kjZpF2mTLmkP--_N6PT0fjw_HnjfZw4m2mgJwC1Gjxgl5MkdXaGMLxYjdAFmGLEoiEn0PTn1EQkopmwK5s79IIRxRPEVmIY4iUiE0QwcXtbpJls_w1TDtOsaVfJeGQ131tSWt63SNdzqXtqKlxJyLeCbqvfBzi-Mbbn2y5Vpu6E_gZkqLLdH6CX40Xsj13u_Bu72x8bUUks_umtwWfHGyZtzXYCv1_Xn6i3I3jfbVZoF5ZIlKKAkLlDMCi6Z5IxKGhYoKpaUYy6IEDIkIi4R9YLgRKCy4mEpCMWspEkhKkIW4H707aw5DNL1eatcKZuGa2kGlyc4jJaIIObJuzM5FK0UeWdV68_I_77kgYcRMEP3r2KUnwLIxwDyMQDyCxoJe_s
CitedBy_id crossref_primary_10_1073_pnas_2010714118
crossref_primary_10_1093_sysbio_sys029
crossref_primary_10_1093_molbev_msad019
crossref_primary_10_1016_j_epidem_2019_100346
crossref_primary_10_1111_1365_2656_12457
crossref_primary_10_1038_nature13272
crossref_primary_10_3390_pathogens5040061
crossref_primary_10_1016_j_ijpara_2018_03_006
crossref_primary_10_1093_molbev_msac034
crossref_primary_10_1111_jfb_14220
crossref_primary_10_1002_ece3_4768
crossref_primary_10_1007_s13313_021_00814_z
crossref_primary_10_1016_j_aquaculture_2024_741335
crossref_primary_10_1111_tbed_12733
crossref_primary_10_1016_j_virusres_2021_198551
crossref_primary_10_1016_j_virusres_2025_199566
crossref_primary_10_1111_bor_12570
crossref_primary_10_3389_fcell_2020_580291
crossref_primary_10_1038_s41467_024_45462_1
crossref_primary_10_1016_j_fgb_2019_103291
crossref_primary_10_1073_pnas_2301926120
crossref_primary_10_1186_s12862_020_01609_4
crossref_primary_10_1093_sysbio_syt014
crossref_primary_10_1016_j_meegid_2021_104885
crossref_primary_10_1038_hortres_2016_56
crossref_primary_10_1038_s41564_021_01000_z
crossref_primary_10_1073_pnas_2410934122
crossref_primary_10_1111_age_13286
crossref_primary_10_1186_s12864_016_3067_6
crossref_primary_10_1111_jse_13136
crossref_primary_10_1101_gr_168997_113
crossref_primary_10_7554_eLife_102253_4
crossref_primary_10_1016_j_cell_2020_04_023
crossref_primary_10_3389_fmicb_2019_02778
crossref_primary_10_3390_life14070808
crossref_primary_10_3897_mycokeys_40_26025
crossref_primary_10_1038_s41597_025_04940_x
crossref_primary_10_1038_s41598_025_95140_5
crossref_primary_10_3390_v16111690
crossref_primary_10_1093_hr_uhaf115
crossref_primary_10_1080_01621459_2015_1054487
crossref_primary_10_1111_mec_12728
crossref_primary_10_1080_10618600_2015_1037883
crossref_primary_10_1016_j_virusres_2021_198532
crossref_primary_10_1016_j_coviro_2018_08_009
crossref_primary_10_1186_s40249_022_01024_5
crossref_primary_10_1038_s41467_023_39950_z
crossref_primary_10_1093_botlinnean_boad025
crossref_primary_10_1016_j_tplants_2024_12_009
crossref_primary_10_1093_molbev_mss216
crossref_primary_10_1016_j_jcv_2015_06_079
crossref_primary_10_1016_j_cell_2015_10_009
crossref_primary_10_1111_jbi_14509
crossref_primary_10_1126_science_1240578
crossref_primary_10_1186_s12864_021_07708_w
crossref_primary_10_1128_JVI_02954_12
crossref_primary_10_1038_s41598_018_36592_w
crossref_primary_10_3390_biology10111165
crossref_primary_10_1038_s41559_018_0617_0
crossref_primary_10_1111_evo_12663
crossref_primary_10_3389_fgene_2019_01064
crossref_primary_10_3390_insects15040220
crossref_primary_10_1016_j_jip_2023_107939
crossref_primary_10_1371_journal_ppat_1009786
crossref_primary_10_1093_molbev_msae134
crossref_primary_10_1128_spectrum_04218_23
crossref_primary_10_1371_journal_ppat_1008699
crossref_primary_10_1038_s41467_024_51490_8
crossref_primary_10_1038_s41467_023_36449_5
crossref_primary_10_3389_fmicb_2017_01063
crossref_primary_10_1038_s41467_024_52819_z
crossref_primary_10_1128_spectrum_05257_22
crossref_primary_10_1016_j_meegid_2019_103977
crossref_primary_10_1016_j_ympev_2014_11_010
crossref_primary_10_1080_14772000_2021_1884622
crossref_primary_10_1098_rsob_170142
crossref_primary_10_3897_asp_81_e104772
crossref_primary_10_1093_molbev_msad052
crossref_primary_10_3389_fnmol_2017_00011
crossref_primary_10_1186_1756_0500_7_582
crossref_primary_10_3897_zookeys_1237_141007
crossref_primary_10_1126_science_aaa4339
crossref_primary_10_1007_s11032_023_01426_9
crossref_primary_10_1016_j_tree_2014_07_004
crossref_primary_10_1038_s41598_019_47209_1
crossref_primary_10_1093_zoolinnean_zly079
crossref_primary_10_1016_j_epidem_2014_09_001
crossref_primary_10_1038_s41598_020_66761_9
crossref_primary_10_1128_jvi_01145_24
crossref_primary_10_1093_bib_bbab349
crossref_primary_10_1093_biolinnean_bly103
crossref_primary_10_1007_s00335_025_10155_7
crossref_primary_10_1038_s41467_023_44085_2
crossref_primary_10_1111_2041_210X_13136
crossref_primary_10_1007_s10750_024_05613_3
crossref_primary_10_1093_molbev_msaf007
crossref_primary_10_1016_j_gene_2023_147315
crossref_primary_10_1017_S0025315419000894
crossref_primary_10_1186_s40246_023_00508_1
crossref_primary_10_7717_peerj_16693
crossref_primary_10_1371_journal_pone_0234133
crossref_primary_10_1186_s12864_022_08645_y
crossref_primary_10_1371_journal_pcbi_1003537
crossref_primary_10_1093_bib_bby063
crossref_primary_10_1111_syen_12284
crossref_primary_10_1111_zoj_12088
crossref_primary_10_1128_spectrum_04776_22
crossref_primary_10_1038_s42003_025_08687_4
crossref_primary_10_3389_fnmol_2017_00351
crossref_primary_10_2108_zs160062
crossref_primary_10_1016_j_meegid_2016_03_029
crossref_primary_10_1016_j_virol_2016_08_033
crossref_primary_10_1073_pnas_2215610120
crossref_primary_10_1007_s10750_014_2011_5
crossref_primary_10_1155_2024_2862053
crossref_primary_10_1099_jgv_0_000885
crossref_primary_10_1186_s12859_021_04048_0
crossref_primary_10_1111_geb_13717
crossref_primary_10_1111_mec_12369
crossref_primary_10_1099_mgen_0_000057
crossref_primary_10_1093_ve_vead018
crossref_primary_10_1093_ve_vev016
crossref_primary_10_1007_s11557_021_01712_w
crossref_primary_10_1093_ve_vev011
crossref_primary_10_3201_eid2309_170325
crossref_primary_10_1093_iob_obz023
crossref_primary_10_1371_journal_pntd_0007699
crossref_primary_10_1371_journal_pone_0221678
crossref_primary_10_3201_eid3103_240996
crossref_primary_10_1016_j_ympev_2016_10_014
crossref_primary_10_1093_ve_vead010
crossref_primary_10_1093_ve_veab072
crossref_primary_10_1093_ve_veac039
crossref_primary_10_1038_s41564_019_0531_5
crossref_primary_10_1007_s10531_021_02221_8
crossref_primary_10_1371_journal_pone_0127377
crossref_primary_10_1186_s40657_017_0088_z
crossref_primary_10_1016_j_csbj_2019_07_014
crossref_primary_10_3389_fvets_2023_1086001
crossref_primary_10_1126_science_1256739
crossref_primary_10_3390_v14112399
crossref_primary_10_1371_journal_pone_0201933
crossref_primary_10_1038_srep35822
crossref_primary_10_1016_j_ebiom_2022_103989
crossref_primary_10_1093_ve_veac075
crossref_primary_10_1186_s12862_015_0347_8
crossref_primary_10_1016_j_tmaid_2025_102877
crossref_primary_10_1093_ve_veac073
crossref_primary_10_1038_s41467_018_03763_2
crossref_primary_10_1111_tbed_14168
crossref_primary_10_1016_j_ympev_2015_08_026
crossref_primary_10_1525_auk_2012_12102
crossref_primary_10_1186_s40529_023_00372_1
crossref_primary_10_7554_eLife_102253
crossref_primary_10_1186_s12870_022_03920_2
crossref_primary_10_1145_3588033
crossref_primary_10_1080_03079457_2023_2236568
crossref_primary_10_1093_ve_veab090
crossref_primary_10_1016_j_ympev_2013_11_014
crossref_primary_10_1111_1755_0998_13591
crossref_primary_10_1007_s11692_023_09609_0
crossref_primary_10_1038_s41598_023_50856_0
crossref_primary_10_1371_journal_ppat_1009966
crossref_primary_10_3389_fepid_2025_1601976
crossref_primary_10_1016_j_psj_2022_102342
crossref_primary_10_1126_science_aan8433
crossref_primary_10_1371_journal_pone_0317705
crossref_primary_10_1371_journal_pone_0151478
crossref_primary_10_1038_s41598_020_59944_x
crossref_primary_10_1111_febs_15094
crossref_primary_10_1016_j_aquaculture_2024_742043
crossref_primary_10_1016_j_ympev_2022_107584
crossref_primary_10_1016_j_ympev_2018_06_001
crossref_primary_10_1038_s41591_020_0997_y
crossref_primary_10_1093_ve_veac011
crossref_primary_10_1093_sysbio_syt039
crossref_primary_10_1016_j_ympev_2018_06_008
crossref_primary_10_1186_s12862_017_0989_9
crossref_primary_10_1111_mec_13656
crossref_primary_10_3201_eid3009_240530
crossref_primary_10_18016_ksutarimdoga_vi_1590418
crossref_primary_10_1007_s13127_020_00458_9
crossref_primary_10_1093_molbev_msy153
crossref_primary_10_1186_s13071_022_05199_6
crossref_primary_10_1186_s12918_017_0476_3
crossref_primary_10_1093_sysbio_syu015
crossref_primary_10_2989_00306525_2022_2066215
crossref_primary_10_1093_ve_veac112
crossref_primary_10_1111_ens_12222
crossref_primary_10_1093_molbev_msaf197
crossref_primary_10_1093_molbev_msz131
crossref_primary_10_1371_journal_pone_0036865
crossref_primary_10_1080_22221751_2023_2217942
crossref_primary_10_1038_s41559_018_0489_3
crossref_primary_10_3390_v14081762
crossref_primary_10_1038_s41559_021_01458_4
crossref_primary_10_1111_jpy_70063
crossref_primary_10_1093_ve_veac025
crossref_primary_10_1111_age_13364
crossref_primary_10_3390_v12020182
crossref_primary_10_1016_j_chom_2024_02_011
crossref_primary_10_1371_journal_pone_0079204
crossref_primary_10_1093_ve_veac020
crossref_primary_10_3390_ani12141855
crossref_primary_10_1007_s10126_021_10019_6
crossref_primary_10_1016_j_meegid_2019_103917
crossref_primary_10_1016_j_ympev_2013_06_026
crossref_primary_10_1093_ve_veac014
crossref_primary_10_1016_j_ympev_2023_107758
crossref_primary_10_1007_s10340_024_01832_8
crossref_primary_10_1016_j_meegid_2017_06_007
crossref_primary_10_1371_journal_pone_0246508
crossref_primary_10_3390_v13081520
crossref_primary_10_1093_sysbio_syy009
crossref_primary_10_1007_s10344_023_01685_z
crossref_primary_10_1098_rsos_140375
crossref_primary_10_1186_s12915_021_01220_z
crossref_primary_10_3389_fphys_2019_01592
crossref_primary_10_1007_s00122_025_04894_z
crossref_primary_10_1016_j_ympev_2019_106550
crossref_primary_10_1002_tax_12263
crossref_primary_10_1371_journal_pone_0228485
crossref_primary_10_1016_j_ympev_2022_107548
crossref_primary_10_1038_s41598_019_43420_2
crossref_primary_10_1111_syen_12510
crossref_primary_10_7717_peerj_9726
crossref_primary_10_1007_s10336_022_01996_z
crossref_primary_10_1016_j_cell_2018_11_005
crossref_primary_10_1371_journal_pntd_0008133
crossref_primary_10_1111_syen_12629
crossref_primary_10_1371_journal_ppat_1013168
crossref_primary_10_3390_fishes10090449
crossref_primary_10_1093_sysbio_syx041
crossref_primary_10_1111_mec_15222
crossref_primary_10_3390_genes15121521
crossref_primary_10_1134_S1022795418100125
crossref_primary_10_1038_s41467_020_20507_3
crossref_primary_10_1016_j_ympev_2016_12_013
crossref_primary_10_1093_ve_vey016
crossref_primary_10_1016_j_ympev_2022_107678
crossref_primary_10_1111_tbed_14117
crossref_primary_10_1111_jwas_70010
crossref_primary_10_1177_1094342016652461
crossref_primary_10_1111_syen_12537
crossref_primary_10_1038_s41598_025_01398_0
crossref_primary_10_1371_journal_pntd_0011536
crossref_primary_10_3201_eid2612_200303
crossref_primary_10_3389_fmicb_2020_00961
crossref_primary_10_3732_ajb_1400316
crossref_primary_10_3389_fimmu_2019_01062
crossref_primary_10_3390_v14040659
crossref_primary_10_1093_sysbio_syae005
crossref_primary_10_1093_sysbio_syy024
crossref_primary_10_1186_s12864_024_09993_7
crossref_primary_10_1590_0074_02760190076
crossref_primary_10_1093_molbev_msw159
crossref_primary_10_1016_j_virusres_2020_197897
crossref_primary_10_1016_j_ympev_2022_107643
crossref_primary_10_1093_molbev_msv185
crossref_primary_10_3390_pathogens10080988
crossref_primary_10_1016_j_ympev_2023_107960
crossref_primary_10_1111_mec_15449
crossref_primary_10_1111_syen_12407
crossref_primary_10_1371_journal_pntd_0008113
crossref_primary_10_1016_j_fgb_2022_103675
crossref_primary_10_1038_s41559_019_0997_9
crossref_primary_10_1080_14772000_2018_1468362
crossref_primary_10_1016_j_jpdc_2018_12_006
crossref_primary_10_1016_j_virol_2018_02_006
crossref_primary_10_1111_mec_14470
crossref_primary_10_1038_s43856_022_00130_7
crossref_primary_10_1093_ve_vex028
crossref_primary_10_1111_geb_12672
crossref_primary_10_1080_03014223_2016_1167093
crossref_primary_10_1371_journal_pone_0187883
crossref_primary_10_1093_sysbio_syu084
crossref_primary_10_1093_sysbio_syw021
crossref_primary_10_1002_ajb2_1797
crossref_primary_10_12705_675_1
crossref_primary_10_1371_journal_pntd_0002769
crossref_primary_10_1371_journal_pone_0207220
crossref_primary_10_1017_S0031182018000549
crossref_primary_10_1007_s00239_013_9566_z
crossref_primary_10_1104_pp_15_00376
crossref_primary_10_3390_v14010066
crossref_primary_10_1186_1471_2105_15_133
crossref_primary_10_1093_sysbio_syv068
crossref_primary_10_1093_sysbio_syu098
crossref_primary_10_3390_v14122627
crossref_primary_10_1128_JVI_02238_18
crossref_primary_10_1101_gr_273631_120
crossref_primary_10_3389_fmars_2017_00088
crossref_primary_10_3389_fsufs_2023_1068109
crossref_primary_10_3389_fmicb_2019_00613
crossref_primary_10_1080_08912963_2022_2114352
crossref_primary_10_1111_jse_12543
crossref_primary_10_1093_ve_veae020
crossref_primary_10_1016_j_ympev_2018_08_018
crossref_primary_10_1186_s12983_018_0289_2
crossref_primary_10_1038_s41598_017_15152_8
crossref_primary_10_1016_j_meegid_2022_105242
crossref_primary_10_1093_ve_vead049
crossref_primary_10_1016_j_ympev_2024_108162
crossref_primary_10_1186_s12917_019_2096_1
crossref_primary_10_1111_tbed_14434
crossref_primary_10_1111_j_1558_5646_2012_01682_x
crossref_primary_10_1186_s40249_024_01211_6
crossref_primary_10_1093_jxb_eraf268
crossref_primary_10_1371_journal_pone_0135028
crossref_primary_10_1111_jzs_12323
crossref_primary_10_1186_s12859_017_1916_1
crossref_primary_10_1093_ve_veaf018
crossref_primary_10_3389_fmicb_2023_1243567
crossref_primary_10_1371_journal_pcbi_1008322
crossref_primary_10_1371_journal_pone_0310027
crossref_primary_10_1038_s44298_024_00042_4
crossref_primary_10_1371_journal_ppat_1013227
crossref_primary_10_1093_sysbio_syw054
crossref_primary_10_1002_cpe_4046
crossref_primary_10_3732_ajb_1400106
crossref_primary_10_1016_j_animal_2024_101350
crossref_primary_10_3390_v14071551
crossref_primary_10_1128_JVI_00745_17
crossref_primary_10_3390_ijms23179786
crossref_primary_10_1186_s12915_020_00865_6
crossref_primary_10_1186_s40246_022_00406_y
crossref_primary_10_1145_3484983
crossref_primary_10_1093_sysbio_syae030
crossref_primary_10_1371_journal_ppat_1003543
crossref_primary_10_1111_ppa_12942
crossref_primary_10_3390_v15020437
crossref_primary_10_1007_s12031_016_0867_8
crossref_primary_10_1128_JVI_01623_19
crossref_primary_10_1016_j_virusres_2023_199106
crossref_primary_10_1016_j_ympev_2024_108236
crossref_primary_10_1016_j_isci_2024_110016
crossref_primary_10_1038_s41586_023_06631_2
crossref_primary_10_1186_s12915_024_02107_5
crossref_primary_10_1111_jzs_12103
crossref_primary_10_1371_journal_ppat_1010062
crossref_primary_10_1002_ece3_70621
crossref_primary_10_1080_22221751_2024_2307511
crossref_primary_10_1126_science_abh2644
crossref_primary_10_1111_boj_12339
crossref_primary_10_1186_s12862_017_1002_3
crossref_primary_10_1002_tpg2_20149
crossref_primary_10_1111_tbed_14503
crossref_primary_10_7717_peerj_5886
crossref_primary_10_1534_g3_119_400951
crossref_primary_10_1016_j_meegid_2018_03_014
crossref_primary_10_7717_peerj_761
crossref_primary_10_1111_jse_12225
crossref_primary_10_1111_1440_1703_12442
crossref_primary_10_1080_00275514_2025_2516370
crossref_primary_10_3389_fmicb_2019_01079
crossref_primary_10_1111_tbed_13789
crossref_primary_10_1016_j_micpath_2023_106068
crossref_primary_10_3390_microorganisms8060940
crossref_primary_10_1146_annurev_statistics_033021_112532
crossref_primary_10_1093_molbev_msaa047
crossref_primary_10_1186_s12915_022_01387_z
crossref_primary_10_1002_aqc_4099
crossref_primary_10_1016_j_ympev_2015_04_019
crossref_primary_10_1080_21505594_2025_2478074
crossref_primary_10_1128_spectrum_02090_22
crossref_primary_10_3390_jof9070781
crossref_primary_10_1186_s12864_025_11743_2
crossref_primary_10_1007_s10126_020_09983_2
crossref_primary_10_1098_rsos_211605
crossref_primary_10_1016_j_chom_2021_01_015
crossref_primary_10_1016_j_cell_2019_07_018
crossref_primary_10_1159_000438910
crossref_primary_10_1186_s12915_025_02213_y
crossref_primary_10_3389_fmicb_2020_02063
crossref_primary_10_1093_molbev_mss075
crossref_primary_10_1093_ve_vez036
crossref_primary_10_1016_j_meegid_2019_04_020
crossref_primary_10_1016_j_isci_2025_111771
crossref_primary_10_1016_j_febslet_2015_11_026
crossref_primary_10_1016_j_jsames_2020_102900
crossref_primary_10_1371_journal_pone_0125768
crossref_primary_10_1098_rspb_2017_0919
crossref_primary_10_1186_1471_2105_14_25
crossref_primary_10_1186_s12915_022_01489_8
crossref_primary_10_3389_fmars_2020_588192
crossref_primary_10_1371_journal_pntd_0004717
crossref_primary_10_3390_ani14213154
crossref_primary_10_12688_wellcomeopenres_14732_1
crossref_primary_10_1007_s10530_025_03532_5
crossref_primary_10_1186_s12862_016_0597_0
crossref_primary_10_1093_sysbio_syx074
crossref_primary_10_3389_fmicb_2022_848250
crossref_primary_10_1038_s41598_019_57389_5
crossref_primary_10_1093_icb_icab138
crossref_primary_10_1089_cmb_2012_0243
crossref_primary_10_1093_bib_bbad349
crossref_primary_10_1128_JVI_01681_15
crossref_primary_10_1126_science_abd2161
crossref_primary_10_3114_sim_2024_109_09
crossref_primary_10_1007_s11227_013_0911_1
crossref_primary_10_1093_sysbio_syx085
crossref_primary_10_1007_s10750_016_3051_9
crossref_primary_10_1093_molbev_msab149
crossref_primary_10_1080_14772000_2022_2090633
crossref_primary_10_1093_ve_vez023
crossref_primary_10_1111_jbi_13139
crossref_primary_10_1093_sysbio_syz020
crossref_primary_10_4142_jvs_2015_16_4_459
crossref_primary_10_7717_peerj_cs_9
crossref_primary_10_3390_genes14030584
crossref_primary_10_1111_syen_12546
crossref_primary_10_1038_s41431_021_00897_8
crossref_primary_10_1016_j_virusres_2017_06_002
crossref_primary_10_1093_molbev_msac143
crossref_primary_10_1186_s12868_016_0274_7
crossref_primary_10_1371_journal_pntd_0002581
crossref_primary_10_1093_inthealth_ihv012
crossref_primary_10_3835_plantgenome2017_06_0050
crossref_primary_10_1016_j_cub_2021_10_052
crossref_primary_10_3390_insects8010025
crossref_primary_10_1128_JVI_00929_19
crossref_primary_10_1007_s10722_021_01282_6
crossref_primary_10_1038_srep36164
crossref_primary_10_1111_boj_12399
crossref_primary_10_1093_molbev_msu216
crossref_primary_10_1371_journal_pntd_0007910
crossref_primary_10_1093_sysbio_syx092
crossref_primary_10_1093_ve_vey023
crossref_primary_10_1126_science_aat7115
crossref_primary_10_3390_v15030757
crossref_primary_10_1007_s00705_014_2262_5
crossref_primary_10_3389_fsufs_2021_740137
crossref_primary_10_3390_ijms17030392
crossref_primary_10_1109_TCBB_2014_2366756
crossref_primary_10_1016_j_actatropica_2014_04_032
crossref_primary_10_1017_S0950268818001759
crossref_primary_10_1016_j_ins_2015_06_040
crossref_primary_10_12688_wellcomeopenres_14730_1
crossref_primary_10_1111_mec_15120
crossref_primary_10_1007_s00438_019_01546_y
crossref_primary_10_12688_wellcomeopenres_14730_2
ContentType Journal Article
Copyright The Author(s) 2011. Published by Oxford University Press on behalf of the Society of Systematic Biologists. 2011
Copyright_xml – notice: The Author(s) 2011. Published by Oxford University Press on behalf of the Society of Systematic Biologists. 2011
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/sysbio/syr100
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
EndPage 173
ExternalDocumentID 21963610
10.1093/sysbio/syr100
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT092807MA
– fundername: NIGMS NIH HHS
  grantid: R01-GM037841
– fundername: NIGMS NIH HHS
  grantid: R01 GM037841
– fundername: NINDS NIH HHS
  grantid: R01-NS063897
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H011285/1
– fundername: NIGMS NIH HHS
  grantid: R01 GM069801
– fundername: NIGMS NIH HHS
  grantid: R01-GM078985
– fundername: NIGMS NIH HHS
  grantid: R01 GM086887
– fundername: Wellcome Trust
  grantid: 095831
– fundername: NHGRI NIH HHS
  grantid: R01-HG006139
GroupedDBID ---
-~X
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
4.4
48X
5VS
5WD
70D
AAHBH
AAHKG
AAIMJ
AAISJ
AAJKP
AAJQQ
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABSQW
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACCCW
ACGEJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACNCT
ACPRK
ACSTJ
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKVX
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AGUYK
AHMBA
AHXOZ
AHXPO
AIAGR
AIJHB
AILXY
AJEEA
AJNCP
AJWEG
AKHUL
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BENPR
BEYMZ
BHONS
BQDIO
BSWAC
C45
CBGCD
CDBKE
COF
CS3
CUYZI
CZ4
DAKXR
DEVKO
DILTD
DU5
D~K
EAD
EAP
EAS
EBC
EBD
EBS
EE~
EHN
EJD
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HCIFZ
HF~
HW0
HZ~
I-F
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NEJ
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
P2P
PAFKI
PEELM
Q1.
Q5Y
QBD
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
SA0
SV3
TAE
TEORI
TLC
TN5
TOX
TUS
WH7
X7H
XSW
YAYTL
YKOAZ
YXANX
~02
~91
.-4
53G
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAWDT
ABIME
ABNGD
ABPIB
ABSMQ
ABTAH
ABUWG
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
AEKPW
AEUYN
AFKRA
AFSHK
AGKRT
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
AZQEC
BBNVY
BES
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
CGR
CUY
CVF
CXTWN
D1J
DFGAJ
DWQXO
ECM
EIF
ELUNK
FEDTE
FYUFA
GNUQQ
GTFYD
GUQSH
HGD
HMCUK
HQ2
HTVGU
HVGLF
JEFFH
LK8
M1P
M2O
M2P
M2Q
M7P
MBTAY
MVM
NPM
O~Y
PADUT
PB-
PCBAR
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
WHG
XOL
YXE
ZCG
ZY4
7X8
AJBYB
ID FETCH-LOGICAL-c4790-538b087bae7ea75e52b06b45a1ad3dde23d8c055e5da3d0cfa2cd3517c59bdf33
IEDL.DBID TOX
ISSN 1063-5157
1076-836X
IngestDate Sun Sep 28 11:39:12 EDT 2025
Thu Apr 03 07:00:14 EDT 2025
Wed Apr 02 07:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian phylogenetics
GPU
parallel computing
maximum likelihood
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4790-538b087bae7ea75e52b06b45a1ad3dde23d8c055e5da3d0cfa2cd3517c59bdf33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/sysbio/syr100
PMID 21963610
PQID 912640307
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_912640307
pubmed_primary_21963610
oup_primary_10_1093_sysbio_syr100
PublicationCentury 2000
PublicationDate 2012-01-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Systematic biology
PublicationTitleAlternate Syst Biol
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 19369496 - Bioinformatics. 2009 Jun 1;25(11):1370-6
12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
17996036 - BMC Evol Biol. 2007;7:214
20147900 - Nature. 2010 Feb 25;463(7284):1079-83
7288891 - J Mol Evol. 1981;17(6):368-76
References_xml – reference: 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
– reference: 17996036 - BMC Evol Biol. 2007;7:214
– reference: 7288891 - J Mol Evol. 1981;17(6):368-76
– reference: 20147900 - Nature. 2010 Feb 25;463(7284):1079-83
– reference: 19369496 - Bioinformatics. 2009 Jun 1;25(11):1370-6
SSID ssj0011651
Score 2.564302
Snippet Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a...
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a...
SourceID proquest
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 170
SubjectTerms Algorithms
Computational Biology - methods
Computing Methodologies
Evolution, Molecular
Genome
Phylogeny
Software
Title BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics
URI https://www.ncbi.nlm.nih.gov/pubmed/21963610
https://www.proquest.com/docview/912640307
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gAokL78d4TEHiGiltmqXlNtAGhzF6GGjiUuVVwYEWNobEv8dpuk1iHHZpI6WPyLacz3ZsI3RlNFjUKmLEUs1IFMqcyIjnROg4CkJJmapKKT33xWAQj0ZJWvs7Jv-E8BPmkrbVWwm3cUCdcR7w2An08HE0DxcE7arPIpg3jMAGLepimktv_8liWwKT1abS21l9ObtouwaOuOM5vYfWbLGPNn0ryR8YdfVs9FJWowP0edPt3PW717hT4M4iUI1TfybrHXYtXHkEc6ktloXB7tQHSRe5BNg3fXAP1gkOGKawQ6hVgWdYUPoKJj9IoUuGnByip153eHtP6hYLREcioQTUnaKxUNIKKwW3PFS0rSIuA2kYaL6QmVhTDhNGMkN1LkNtGA-E5okyOWNHqFGUhT1BmEaWSwFoUjtXEpOSuWJvudFC6UBq3kSXQPvswxfRyHzwm2WenJknZxPhGWcyEHMXu5CFLaeTLAkAuTmF1ETHnmPzL4VOiQAKPF3hB2doCxBP6H0o56jxNZ7aC7Shv4Fq4xZaF6MYroP0oVUJ2C8hH85a
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BEAGLE%3A+An+Application+Programming+Interface+and+High-Performance+Computing+Library+for+Statistical+Phylogenetics&rft.jtitle=Systematic+biology&rft.au=Ayres%2C+Daniel+L.&rft.au=Darling%2C+Aaron&rft.au=Zwickl%2C+Derrick+J.&rft.au=Beerli%2C+Peter&rft.date=2012-01-01&rft.pub=Oxford+University+Press&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=61&rft.issue=1&rft.spage=170&rft.epage=173&rft_id=info:doi/10.1093%2Fsysbio%2Fsyr100&rft.externalDocID=10.1093%2Fsysbio%2Fsyr100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon