Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks
Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DN...
Saved in:
| Published in: | Nucleic acids research Vol. 48; no. 3; pp. 1271 - 1284 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
20.02.2020
|
| Subjects: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability. |
|---|---|
| AbstractList | The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability. Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability. The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability. |
| Author | Sarkar, Sovan Hulme, Lydia Wee, Boon-Yu Prudden, John Pai, Chen-Chun Cullen, Jason K Tinline-Purvis, Helen Davé, Anoushka Murray, Johanne M Walker, Carol Humphrey, Timothy C Durley, Samuel C Watson, Adam Carr, Antony M |
| AuthorAffiliation | 1 CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford OX3 7DQ, UK 2 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex , Sussex BN1 9RQ, UK 3 QIMR Berghofer Medical Research Institute , Brisbane 4006, Australia |
| AuthorAffiliation_xml | – name: 1 CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford OX3 7DQ, UK – name: 3 QIMR Berghofer Medical Research Institute , Brisbane 4006, Australia – name: 2 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex , Sussex BN1 9RQ, UK |
| Author_xml | – sequence: 1 givenname: Anoushka surname: Davé fullname: Davé, Anoushka organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 2 givenname: Chen-Chun surname: Pai fullname: Pai, Chen-Chun organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 3 givenname: Samuel C surname: Durley fullname: Durley, Samuel C organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 4 givenname: Lydia surname: Hulme fullname: Hulme, Lydia organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 5 givenname: Sovan surname: Sarkar fullname: Sarkar, Sovan organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 6 givenname: Boon-Yu surname: Wee fullname: Wee, Boon-Yu organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 7 givenname: John surname: Prudden fullname: Prudden, John organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 8 givenname: Helen surname: Tinline-Purvis fullname: Tinline-Purvis, Helen organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 9 givenname: Jason K surname: Cullen fullname: Cullen, Jason K organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 10 givenname: Carol surname: Walker fullname: Walker, Carol organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK – sequence: 11 givenname: Adam surname: Watson fullname: Watson, Adam organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK – sequence: 12 givenname: Antony M surname: Carr fullname: Carr, Antony M organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK – sequence: 13 givenname: Johanne M surname: Murray fullname: Murray, Johanne M organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK – sequence: 14 givenname: Timothy C surname: Humphrey fullname: Humphrey, Timothy C email: timothy.humphrey@oncology.ox.ac.uk organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31828313$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1rFTEUxYO02Nfqyr1kJYKMzcdkkmyEUj8qlLrRdchM7jxjZ5IxyRT0rzf2vYpK6epyye-ec3PPMToIMQBCzyh5TYnmp8Gm0-31T1qbR2hDeceaVnfsAG0IJ6KhpFVH6Djnb4TQlor2MTriVDHFKd-g9SLOcYrbuGacYIhz74MtPobaLdYn7EOBNIPztkDGS6p4AQzj6AcPoWAHOMSbiAtMcYYE2DrnbwVswW-vzrCLaz9Bk0uyweE-gb3OT9DhaKcMT_f1BH15_-7z-UVz-enDx_Ozy2ZopSrNKEGCECCV1K6lmrtRD1T3fVdrZxkICVSNwjEY2k6AIkpJypyokFba8hP0Zqe7rH39w1AXTnYyS_KzTT9MtN78-xL8V7ONN0YS1nVcVIGXe4EUv6-Qi5l9HmCabIB6MsM4E0xrLVVFn__t9cfk7tYVoDtgSDHnBKMZfLm9dbX2k6HE_M7T1DzNPs868-q_mTvZ--kXOzquy4PgLzuNs0w |
| CitedBy_id | crossref_primary_10_3390_biom13061016 crossref_primary_10_1186_s12915_021_01167_1 crossref_primary_10_1093_nar_gkad160 crossref_primary_10_1016_j_envexpbot_2020_104227 crossref_primary_10_1016_j_envpol_2021_117821 crossref_primary_10_1038_s41392_020_0150_x crossref_primary_10_1038_s41392_024_02095_6 crossref_primary_10_1371_journal_pgen_1009671 |
| Cites_doi | 10.1093/nar/29.14.2963 10.1128/MCB.00462-07 10.1016/S1097-2765(03)00269-7 10.1038/83673 10.1093/emboj/cdg119 10.1371/journal.pgen.1000948 10.1016/j.gene.2011.05.028 10.1016/0076-6879(91)94059-L 10.1038/sj.emboj.7601582 10.1016/j.dnarep.2010.12.004 10.1038/346868a0 10.1073/pnas.0405443101 10.1091/mbc.e06-12-1084 10.1016/j.molcel.2009.01.027 10.1101/gad.7.12a.2345 10.1111/j.1365-2958.2006.05026.x 10.1146/annurev-genet-051710-150955 10.1002/yea.917 10.1093/genetics/136.3.849 10.1016/0378-1119(93)90551-D 10.1038/35082608 10.1007/BF00266917 10.1038/nature07312 10.1073/pnas.95.11.6049 10.1128/MCB.25.3.933-944.2005 10.1016/S1097-2765(02)00593-2 10.1074/jbc.M308838200 10.1128/MCB.17.12.6868 10.1093/genetics/159.1.91 10.1074/jbc.M202120200 10.1101/pdb.prot092031 10.1128/MCB.23.10.3692-3705.2003 10.1091/mbc.e03-08-0586 10.1073/pnas.112702399 10.1046/j.1365-2443.2003.00657.x 10.1128/MCB.01713-12 10.1371/journal.pbio.0020021 10.1126/science.289.5480.771 10.1038/nature10522 10.1091/mbc.12.12.4078 10.1073/pnas.0809380105 10.1093/nar/27.13.2655 10.1038/nrc1012 10.1101/gad.11.9.1111 10.1371/journal.pgen.1000973 10.1016/j.molcel.2009.05.015 10.1146/annurev.biochem.052308.093131 10.1007/BF00422063 10.1146/annurev.micro.56.012302.160916 10.1038/nsmb1136 10.1101/gad.503108 10.1016/j.dnarep.2008.04.004 10.1101/gad.221402 10.1093/nar/27.20.4050 10.1128/MCB.00613-10 10.1074/jbc.272.45.28194 10.1128/MCB.01596-06 10.1534/genetics.108.088955 10.1016/j.cell.2015.06.015 10.1016/S0092-8674(00)80750-3 10.1016/j.dnarep.2007.07.004 10.1016/j.cell.2011.02.013 10.1534/genetics.104.037598 10.1016/j.cell.2008.08.037 10.1242/jcs.02694 10.1016/S1097-2765(02)00595-6 10.1002/1873-3468.12656 10.1007/s00438-005-1111-3 10.1146/annurev.genet.40.110405.090636 10.1093/emboj/16.10.2682 10.1093/nar/gkf590 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/nar/gkz1109 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 1284 |
| ExternalDocumentID | PMC7026635 31828313 10_1093_nar_gkz1109 10.1093/nar/gkz1109 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: MRC grantid: MC_PC_12003 funderid: 10.13039/501100000265 – fundername: ERC grantid: 268788-SMI-DDR funderid: 10.13039/501100000781 – fundername: BBSRC grantid: BB/C510291/1; BB/K019805/1] funderid: 10.13039/501100000268 – fundername: CRUK grantid: C9601/A9484 funderid: 10.13039/501100000289 – fundername: EURISC-RAD grantid: FI6R-CT-2003-508842 – fundername: A*STAR grantid: H3R00391/H311 funderid: 10.13039/501100001348 – fundername: Medical Research Council grantid: MC_U142784382 – fundername: Medical Research Council grantid: MC_PC_12003 – fundername: Medical Research Council grantid: MC_UU_00001/4 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C510291/1 – fundername: ; ; grantid: MC_PC_12003 – fundername: ; ; grantid: H3R00391/H311 – fundername: ; grantid: FI6R-CT-2003-508842 – fundername: ; ; grantid: BB/C510291/1; BB/K019805/1] – fundername: ; ; grantid: 268788-SMI-DDR – fundername: ; ; grantid: C9601/A9484 |
| GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX ABEJV ABGNP ACUTJ AFYAG AMNDL CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c478t-f7e7e55e7879d4193df9c19bb6f9c6a2e57e18f5d2ec465e8088712d5c19989a3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515121900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Dec 02 02:13:16 EST 2025 Sun Nov 09 11:08:09 EST 2025 Mon Jul 21 06:05:03 EDT 2025 Sat Nov 29 03:25:00 EST 2025 Tue Nov 18 20:48:38 EST 2025 Wed Aug 28 03:18:46 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-f7e7e55e7879d4193df9c19bb6f9c6a2e57e18f5d2ec465e8088712d5c19989a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/nar/gkz1109 |
| PMID | 31828313 |
| PQID | 2325299978 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026635 proquest_miscellaneous_2325299978 pubmed_primary_31828313 crossref_citationtrail_10_1093_nar_gkz1109 crossref_primary_10_1093_nar_gkz1109 oup_primary_10_1093_nar_gkz1109 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-20 |
| PublicationDateYYYYMMDD | 2020-02-20 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2020 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Bonetti (2020021802195654400_B70) 2009; 35 Goodwin (2020021802195654400_B52) 1999; 27 Sugawara (2020021802195654400_B64) 2003; 12 Takahashi (2020021802195654400_B30) 2011; 31 Pennaneach (2020021802195654400_B73) 2006; 59 Malkova (2020021802195654400_B62) 2005; 25 Watson (2020021802195654400_B46) 2011; 484 Wang (2020021802195654400_B54) 2001; 29 Wilson (2020021802195654400_B31) 1999; 27 Kibe (2020021802195654400_B32) 2007; 18 Akamatsu (2020021802195654400_B11) 2007; 26 Marchetti (2020021802195654400_B29) 2002; 99 Stewart (2020021802195654400_B18) 1997; 16 Zhu (2020021802195654400_B6) 2008; 134 Sung (2020021802195654400_B13) 1997; 11 Nanbu (2020021802195654400_B25) 2013; 33 Haruta (2020021802195654400_B63) 2008; 7 Resnick (2020021802195654400_B1) 1976; 143 Lieber (2020021802195654400_B3) 2010; 79 Win (2020021802195654400_B28) 2005; 118 Chung (2020021802195654400_B38) 2010; 6 Cromie (2020021802195654400_B24) 2008; 179 Rog (2020021802195654400_B33) 2009; 33 Kramer (2020021802195654400_B71) 1993; 7 Putnam (2020021802195654400_B72) 2004; 101 Haruta (2020021802195654400_B12) 2006; 13 Coulon (2020021802195654400_B27) 2004; 15 Greider (2020021802195654400_B69) 1999; 97 Wang (2020021802195654400_B9) 2004; 2 Sugiyama (2020021802195654400_B8) 1998; 95 Laursen (2020021802195654400_B19) 2003; 23 Braybrooke (2020021802195654400_B67) 2003; 278 Ahmad (2020021802195654400_B20) 2005; 273 Hanahan (2020021802195654400_B2) 2011; 144 Zhou (2020021802195654400_B39) 2000; 289 Jahn (2020021802195654400_B34) 2002; 56 Cullen (2020021802195654400_B41) 2007; 27 Hickson (2020021802195654400_B16) 2003; 3 Gravel (2020021802195654400_B4) 2008; 22 Doe (2020021802195654400_B26) 2002; 277 Smeets (2020021802195654400_B60) 2003; 8 Mangahas (2020021802195654400_B56) 2001; 12 Leupold (2020021802195654400_B50) 1964; 2 Ahmad (2020021802195654400_B51) 2002; 19 Murray (2020021802195654400_B17) 1997; 17 Heyer (2020021802195654400_B14) 2010; 44 Prudden (2020021802195654400_B42) 2003; 22 Liu (2020021802195654400_B55) 2011; 479 Wu (2020021802195654400_B15) 2006; 40 Myung (2020021802195654400_B57) 2001; 411 Caspari (2020021802195654400_B21) 2002; 16 Niwa (2020021802195654400_B44) 1986; 203 Maundrell (2020021802195654400_B49) 1993; 123 Vaze (2020021802195654400_B53) 2002; 10 Tanaka (2020021802195654400_B45) 2002; 30 Moreno (2020021802195654400_B47) 1991; 194 Tsutsui (2020021802195654400_B59) 2001; 159 Hope (2020021802195654400_B23) 2007; 27 Pai (2020021802195654400_B43) 2018; 2018 Sung (2020021802195654400_B10) 1997; 272 Nimonkar (2020021802195654400_B58) 2008; 105 Brenneman (2020021802195654400_B66) 2002; 10 Keeney (2020021802195654400_B48) 1994; 136 Sugawara (2020021802195654400_B61) 1988 Mimitou (2020021802195654400_B5) 2008; 455 Mimitou (2020021802195654400_B7) 2011; 10 Argunhan (2020021802195654400_B68) 2017; 591 Hope (2020021802195654400_B22) 2005; 170 Gao (2020021802195654400_B36) 2008; 7 Taylor (2020021802195654400_B65) 2015; 162 Wilkie (2020021802195654400_B35) 1990; 346 Lydeard (2020021802195654400_B37) 2010; 6 Myung (2020021802195654400_B40) 2001; 27 |
| References_xml | – volume: 29 start-page: 2963 year: 2001 ident: 2020021802195654400_B54 article-title: Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.14.2963 – volume: 27 start-page: 7745 year: 2007 ident: 2020021802195654400_B41 article-title: Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00462-07 – volume: 12 start-page: 209 year: 2003 ident: 2020021802195654400_B64 article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00269-7 – volume: 27 start-page: 113 year: 2001 ident: 2020021802195654400_B40 article-title: SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination publication-title: Nat. Genet. doi: 10.1038/83673 – volume: 22 start-page: 1419 year: 2003 ident: 2020021802195654400_B42 article-title: Pathway utilization in response to a site-specific DNA double-strand break in fission yeast publication-title: EMBO J. doi: 10.1093/emboj/cdg119 – volume: 6 start-page: e1000948 year: 2010 ident: 2020021802195654400_B38 article-title: Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000948 – volume: 484 start-page: 75 year: 2011 ident: 2020021802195654400_B46 article-title: Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus publication-title: Gene doi: 10.1016/j.gene.2011.05.028 – volume: 194 start-page: 795 year: 1991 ident: 2020021802195654400_B47 article-title: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe publication-title: Methods Enzymol. doi: 10.1016/0076-6879(91)94059-L – volume: 26 start-page: 1352 year: 2007 ident: 2020021802195654400_B11 article-title: Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes publication-title: EMBO J. doi: 10.1038/sj.emboj.7601582 – volume: 10 start-page: 344 year: 2011 ident: 2020021802195654400_B7 article-title: DNA end resection–unraveling the tail publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2010.12.004 – volume: 346 start-page: 868 year: 1990 ident: 2020021802195654400_B35 article-title: A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n publication-title: Nature doi: 10.1038/346868a0 – volume: 101 start-page: 13262 year: 2004 ident: 2020021802195654400_B72 article-title: Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0405443101 – volume: 18 start-page: 2378 year: 2007 ident: 2020021802195654400_B32 article-title: Fission yeast Taz1 and RPA are synergistically required to prevent rapid telomere loss publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-12-1084 – volume: 33 start-page: 559 year: 2009 ident: 2020021802195654400_B33 article-title: Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.027 – volume: 7 start-page: 2345 year: 1993 ident: 2020021802195654400_B71 article-title: New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats publication-title: Genes Dev. doi: 10.1101/gad.7.12a.2345 – volume: 59 start-page: 1357 year: 2006 ident: 2020021802195654400_B73 article-title: Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05026.x – volume: 44 start-page: 113 year: 2010 ident: 2020021802195654400_B14 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-051710-150955 – volume: 19 start-page: 1381 year: 2002 ident: 2020021802195654400_B51 article-title: Helicase activity is only partially required for Schizosaccharomyces pombe Rqh1p function publication-title: Yeast doi: 10.1002/yea.917 – volume: 136 start-page: 849 year: 1994 ident: 2020021802195654400_B48 article-title: Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe publication-title: Genetics doi: 10.1093/genetics/136.3.849 – volume: 123 start-page: 127 year: 1993 ident: 2020021802195654400_B49 article-title: Thiamine-repressible expression vectors pREP and pRIP for fission yeast publication-title: Gene doi: 10.1016/0378-1119(93)90551-D – volume: 411 start-page: 1073 year: 2001 ident: 2020021802195654400_B57 article-title: Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae publication-title: Nature doi: 10.1038/35082608 – volume: 143 start-page: 119 year: 1976 ident: 2020021802195654400_B1 article-title: The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control publication-title: Mol. Gen. Genet. doi: 10.1007/BF00266917 – volume: 455 start-page: 770 year: 2008 ident: 2020021802195654400_B5 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature doi: 10.1038/nature07312 – volume: 95 start-page: 6049 year: 1998 ident: 2020021802195654400_B8 article-title: DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.11.6049 – volume: 25 start-page: 933 year: 2005 ident: 2020021802195654400_B62 article-title: RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.3.933-944.2005 – volume: 10 start-page: 373 year: 2002 ident: 2020021802195654400_B53 article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00593-2 – volume: 278 start-page: 48357 year: 2003 ident: 2020021802195654400_B67 article-title: Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308838200 – volume: 17 start-page: 6868 year: 1997 ident: 2020021802195654400_B17 article-title: Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance publication-title: Mol. Cell Biol. doi: 10.1128/MCB.17.12.6868 – volume: 159 start-page: 91 year: 2001 ident: 2020021802195654400_B59 article-title: Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe publication-title: Genetics doi: 10.1093/genetics/159.1.91 – volume: 277 start-page: 32753 year: 2002 ident: 2020021802195654400_B26 article-title: Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202120200 – volume: 2018 start-page: 289 year: 2018 ident: 2020021802195654400_B43 article-title: DNA double-strand break repair assay publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot092031 – volume: 23 start-page: 3692 year: 2003 ident: 2020021802195654400_B19 article-title: Role for the fission yeast RecQ helicase in DNA repair in G2 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.10.3692-3705.2003 – volume: 15 start-page: 71 year: 2004 ident: 2020021802195654400_B27 article-title: Slx1-Slx4 are subunits of a structure-specific endonuclease that maintains ribosomal DNA in fission yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-08-0586 – volume: 99 start-page: 7472 year: 2002 ident: 2020021802195654400_B29 article-title: A single unbranched S-phase DNA damage and replication fork blockage checkpoint pathway publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.112702399 – volume: 8 start-page: 573 year: 2003 ident: 2020021802195654400_B60 article-title: High dosage Rhp51 suppression of the MMS sensitivity of DNA structure checkpoint mutants reveals a relationship between Crb2 and Rhp51 publication-title: Genes Cells doi: 10.1046/j.1365-2443.2003.00657.x – volume: 33 start-page: 1175 year: 2013 ident: 2020021802195654400_B25 article-title: Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01713-12 – volume: 2 start-page: E21 year: 2004 ident: 2020021802195654400_B9 article-title: Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020021 – volume: 289 start-page: 771 year: 2000 ident: 2020021802195654400_B39 article-title: Pif1p helicase, a catalytic inhibitor of telomerase in yeast publication-title: Science doi: 10.1126/science.289.5480.771 – volume: 479 start-page: 245 year: 2011 ident: 2020021802195654400_B55 article-title: Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation publication-title: Nature doi: 10.1038/nature10522 – volume: 12 start-page: 4078 year: 2001 ident: 2020021802195654400_B56 article-title: Repair of chromosome ends after telomere loss in Saccharomyces publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.12.4078 – volume: 105 start-page: 16906 year: 2008 ident: 2020021802195654400_B58 article-title: Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0809380105 – volume: 2 start-page: 31 year: 1964 ident: 2020021802195654400_B50 article-title: Genetic fine structure in Schizosaccharomyces pombe publication-title: Proc.XI Int. Congr. Genet. – volume: 27 start-page: 2655 year: 1999 ident: 2020021802195654400_B31 article-title: The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.13.2655 – volume: 3 start-page: 169 year: 2003 ident: 2020021802195654400_B16 article-title: RecQ helicases: caretakers of the genome publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1012 – volume: 11 start-page: 1111 year: 1997 ident: 2020021802195654400_B13 article-title: Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase publication-title: Genes Dev. doi: 10.1101/gad.11.9.1111 – volume: 6 start-page: e1000973 year: 2010 ident: 2020021802195654400_B37 article-title: Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000973 – volume: 35 start-page: 70 year: 2009 ident: 2020021802195654400_B70 article-title: Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.05.015 – volume: 79 start-page: 181 year: 2010 ident: 2020021802195654400_B3 article-title: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.052308.093131 – volume: 203 start-page: 397 year: 1986 ident: 2020021802195654400_B44 article-title: Construction of a minichromosome by deletion and its mitotic and meiotic behaviour in fission yeast publication-title: Mol. Gen. Genet. doi: 10.1007/BF00422063 – volume: 56 start-page: 489 year: 2002 ident: 2020021802195654400_B34 article-title: Genome remodeling in ciliated protozoa publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.56.012302.160916 – volume: 13 start-page: 823 year: 2006 ident: 2020021802195654400_B12 article-title: The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1136 – volume: 22 start-page: 2767 year: 2008 ident: 2020021802195654400_B4 article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection publication-title: Genes Dev. doi: 10.1101/gad.503108 – volume: 7 start-page: 1233 year: 2008 ident: 2020021802195654400_B36 article-title: Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2008.04.004 – volume-title: DNA Sequences at the Telomeres of the Fission Yeast S. pombe year: 1988 ident: 2020021802195654400_B61 – volume: 16 start-page: 1195 year: 2002 ident: 2020021802195654400_B21 article-title: Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III publication-title: Genes Dev. doi: 10.1101/gad.221402 – volume: 27 start-page: 4050 year: 1999 ident: 2020021802195654400_B52 article-title: Topoisomerase III is essential for accurate nuclear division in Schizosaccharomyces pombe publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.20.4050 – volume: 31 start-page: 495 year: 2011 ident: 2020021802195654400_B30 article-title: Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00613-10 – volume: 272 start-page: 28194 year: 1997 ident: 2020021802195654400_B10 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.45.28194 – volume: 27 start-page: 3828 year: 2007 ident: 2020021802195654400_B23 article-title: Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01596-06 – volume: 179 start-page: 1157 year: 2008 ident: 2020021802195654400_B24 article-title: The fission yeast BLM homolog Rqh1 promotes meiotic recombination publication-title: Genetics doi: 10.1534/genetics.108.088955 – volume: 162 start-page: 271 year: 2015 ident: 2020021802195654400_B65 article-title: Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination publication-title: Cell doi: 10.1016/j.cell.2015.06.015 – volume: 97 start-page: 419 year: 1999 ident: 2020021802195654400_B69 article-title: Telomeres do D-loop-T-loop publication-title: Cell doi: 10.1016/S0092-8674(00)80750-3 – volume: 7 start-page: 1 year: 2008 ident: 2020021802195654400_B63 article-title: Fission yeast Swi5 protein, a novel DNA recombination mediator publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2007.07.004 – volume: 144 start-page: 646 year: 2011 ident: 2020021802195654400_B2 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 170 start-page: 519 year: 2005 ident: 2020021802195654400_B22 article-title: A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe publication-title: Genetics doi: 10.1534/genetics.104.037598 – volume: 134 start-page: 981 year: 2008 ident: 2020021802195654400_B6 article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends publication-title: Cell doi: 10.1016/j.cell.2008.08.037 – volume: 118 start-page: 5777 year: 2005 ident: 2020021802195654400_B28 article-title: A role for the fission yeast Rqh1 helicase in chromosome segregation publication-title: J. Cell Sci. doi: 10.1242/jcs.02694 – volume: 10 start-page: 387 year: 2002 ident: 2020021802195654400_B66 article-title: XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00595-6 – volume: 591 start-page: 2035 year: 2017 ident: 2020021802195654400_B68 article-title: The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination publication-title: FEBS Lett. doi: 10.1002/1873-3468.12656 – volume: 273 start-page: 102 year: 2005 ident: 2020021802195654400_B20 article-title: The N-terminal region of the Schizosaccharomyces pombe RecQ helicase, Rqh1p, physically interacts with Topoisomerase III and is required for Rqh1p function publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-005-1111-3 – volume: 40 start-page: 279 year: 2006 ident: 2020021802195654400_B15 article-title: DNA helicases required for homologous recombination and repair of damaged replication forks publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.40.110405.090636 – volume: 16 start-page: 2682 year: 1997 ident: 2020021802195654400_B18 article-title: rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest publication-title: EMBO J. doi: 10.1093/emboj/16.10.2682 – volume: 30 start-page: 4728 year: 2002 ident: 2020021802195654400_B45 article-title: The fission yeast pfh1(+) gene encodes an essential 5′ to 3′ DNA helicase required for the completion of S-phase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf590 |
| SSID | ssj0014154 |
| Score | 2.3735552 |
| Snippet | Abstract
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause... The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1271 |
| SubjectTerms | Chromosomes, Fungal - genetics DNA Breaks, Double-Stranded DNA Helicases - genetics DNA-Binding Proteins - genetics Exodeoxyribonucleases - genetics Gene Expression Regulation, Fungal - genetics Genome Integrity, Repair and Genome, Fungal - genetics Genomic Instability - genetics Loss of Heterozygosity - genetics Rad51 Recombinase - genetics Recombinational DNA Repair - genetics Schizosaccharomyces - genetics Schizosaccharomyces pombe Proteins - genetics Telomere - genetics |
| Title | Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31828313 https://www.proquest.com/docview/2325299978 https://pubmed.ncbi.nlm.nih.gov/PMC7026635 |
| Volume | 48 |
| WOSCitedRecordID | wos000515121900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62Mthe2q1dt_RHpkHZw8DUvxRZj6Fr6VO2hw7yZmTp3IYmcnCcQvvX9yQ7oSml21NwLBuhk6Xv0919B3AiQ0XkeCADTNI0SCOlnJNQBiqUiAk3hYm0LzYhRqNsPJZ_ugDZxQsufJmcWlWfXt8-OGlMWmojnrlCBVe_x2tnAe1BrUqUF9VMsy4N79mzGxvPRjLbE0z5PDTyyV5zsfO_vfwI2x2aZMPW_J_gDdpd2BtaYtKze_aD-fhOf3C-C-_PVrXd9mB5Wc3c30T7maPEM-LH3kR0NVeTmjkVidpnlRAUZXMfs4cMvd4E9ZkZZLa6q1iD02qGNTIXl-RfoBr2azRkploWUwzcQYo1jHi3ul18hr8X51dnl0FXgCHQqciaoBQokHOkj1qalKCeKaWOZFEM6HegYuQCo6zkJkadDjhmbsmKYsO1y9yTKtmHLVtZ_AqMgJLmBZchR0Joiheh4bE0oohCXfIy7sHPlXVy3amTuyIZ07z1kic5DXDeDXAPTtaN560ox8vNvpGZX2_xfTUFcrKA85UoizT2OQFN6p8kjt2DL-2UWL-IlkECZVHSA7ExWdYNnGT35h07ufHS3YIoL0G8g3_27BA-xI7Zu-T58Ai2mnqJx_BO3zWTRd2Ht2Kc9f35Qd9_C4_Tywgt |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homologous+recombination+repair+intermediates+promote+efficient+de+novo+telomere+addition+at+DNA+double-strand+breaks&rft.jtitle=Nucleic+acids+research&rft.au=Dav%C3%A9%2C+Anoushka&rft.au=Pai%2C+Chen-Chun&rft.au=Durley%2C+Samuel+C&rft.au=Hulme%2C+Lydia&rft.date=2020-02-20&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=48&rft.issue=3&rft.spage=1271&rft.epage=1284&rft_id=info:doi/10.1093%2Fnar%2Fgkz1109&rft.externalDocID=10.1093%2Fnar%2Fgkz1109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |