Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks

Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DN...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 48; no. 3; pp. 1271 - 1284
Main Authors: Davé, Anoushka, Pai, Chen-Chun, Durley, Samuel C, Hulme, Lydia, Sarkar, Sovan, Wee, Boon-Yu, Prudden, John, Tinline-Purvis, Helen, Cullen, Jason K, Walker, Carol, Watson, Adam, Carr, Antony M, Murray, Johanne M, Humphrey, Timothy C
Format: Journal Article
Language:English
Published: England Oxford University Press 20.02.2020
Subjects:
ISSN:0305-1048, 1362-4962, 1362-4962
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
AbstractList The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Author Sarkar, Sovan
Hulme, Lydia
Wee, Boon-Yu
Prudden, John
Pai, Chen-Chun
Cullen, Jason K
Tinline-Purvis, Helen
Davé, Anoushka
Murray, Johanne M
Walker, Carol
Humphrey, Timothy C
Durley, Samuel C
Watson, Adam
Carr, Antony M
AuthorAffiliation 1 CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford OX3 7DQ, UK
2 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex , Sussex BN1 9RQ, UK
3 QIMR Berghofer Medical Research Institute , Brisbane 4006, Australia
AuthorAffiliation_xml – name: 1 CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford OX3 7DQ, UK
– name: 3 QIMR Berghofer Medical Research Institute , Brisbane 4006, Australia
– name: 2 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex , Sussex BN1 9RQ, UK
Author_xml – sequence: 1
  givenname: Anoushka
  surname: Davé
  fullname: Davé, Anoushka
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 2
  givenname: Chen-Chun
  surname: Pai
  fullname: Pai, Chen-Chun
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 3
  givenname: Samuel C
  surname: Durley
  fullname: Durley, Samuel C
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 4
  givenname: Lydia
  surname: Hulme
  fullname: Hulme, Lydia
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 5
  givenname: Sovan
  surname: Sarkar
  fullname: Sarkar, Sovan
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 6
  givenname: Boon-Yu
  surname: Wee
  fullname: Wee, Boon-Yu
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 7
  givenname: John
  surname: Prudden
  fullname: Prudden, John
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 8
  givenname: Helen
  surname: Tinline-Purvis
  fullname: Tinline-Purvis, Helen
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 9
  givenname: Jason K
  surname: Cullen
  fullname: Cullen, Jason K
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 10
  givenname: Carol
  surname: Walker
  fullname: Walker, Carol
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
– sequence: 11
  givenname: Adam
  surname: Watson
  fullname: Watson, Adam
  organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
– sequence: 12
  givenname: Antony M
  surname: Carr
  fullname: Carr, Antony M
  organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
– sequence: 13
  givenname: Johanne M
  surname: Murray
  fullname: Murray, Johanne M
  organization: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
– sequence: 14
  givenname: Timothy C
  surname: Humphrey
  fullname: Humphrey, Timothy C
  email: timothy.humphrey@oncology.ox.ac.uk
  organization: CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31828313$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYO02Nfqyr1kJYKMzcdkkmyEUj8qlLrRdchM7jxjZ5IxyRT0rzf2vYpK6epyye-ec3PPMToIMQBCzyh5TYnmp8Gm0-31T1qbR2hDeceaVnfsAG0IJ6KhpFVH6Djnb4TQlor2MTriVDHFKd-g9SLOcYrbuGacYIhz74MtPobaLdYn7EOBNIPztkDGS6p4AQzj6AcPoWAHOMSbiAtMcYYE2DrnbwVswW-vzrCLaz9Bk0uyweE-gb3OT9DhaKcMT_f1BH15_-7z-UVz-enDx_Ozy2ZopSrNKEGCECCV1K6lmrtRD1T3fVdrZxkICVSNwjEY2k6AIkpJypyokFba8hP0Zqe7rH39w1AXTnYyS_KzTT9MtN78-xL8V7ONN0YS1nVcVIGXe4EUv6-Qi5l9HmCabIB6MsM4E0xrLVVFn__t9cfk7tYVoDtgSDHnBKMZfLm9dbX2k6HE_M7T1DzNPs868-q_mTvZ--kXOzquy4PgLzuNs0w
CitedBy_id crossref_primary_10_3390_biom13061016
crossref_primary_10_1186_s12915_021_01167_1
crossref_primary_10_1093_nar_gkad160
crossref_primary_10_1016_j_envexpbot_2020_104227
crossref_primary_10_1016_j_envpol_2021_117821
crossref_primary_10_1038_s41392_020_0150_x
crossref_primary_10_1038_s41392_024_02095_6
crossref_primary_10_1371_journal_pgen_1009671
Cites_doi 10.1093/nar/29.14.2963
10.1128/MCB.00462-07
10.1016/S1097-2765(03)00269-7
10.1038/83673
10.1093/emboj/cdg119
10.1371/journal.pgen.1000948
10.1016/j.gene.2011.05.028
10.1016/0076-6879(91)94059-L
10.1038/sj.emboj.7601582
10.1016/j.dnarep.2010.12.004
10.1038/346868a0
10.1073/pnas.0405443101
10.1091/mbc.e06-12-1084
10.1016/j.molcel.2009.01.027
10.1101/gad.7.12a.2345
10.1111/j.1365-2958.2006.05026.x
10.1146/annurev-genet-051710-150955
10.1002/yea.917
10.1093/genetics/136.3.849
10.1016/0378-1119(93)90551-D
10.1038/35082608
10.1007/BF00266917
10.1038/nature07312
10.1073/pnas.95.11.6049
10.1128/MCB.25.3.933-944.2005
10.1016/S1097-2765(02)00593-2
10.1074/jbc.M308838200
10.1128/MCB.17.12.6868
10.1093/genetics/159.1.91
10.1074/jbc.M202120200
10.1101/pdb.prot092031
10.1128/MCB.23.10.3692-3705.2003
10.1091/mbc.e03-08-0586
10.1073/pnas.112702399
10.1046/j.1365-2443.2003.00657.x
10.1128/MCB.01713-12
10.1371/journal.pbio.0020021
10.1126/science.289.5480.771
10.1038/nature10522
10.1091/mbc.12.12.4078
10.1073/pnas.0809380105
10.1093/nar/27.13.2655
10.1038/nrc1012
10.1101/gad.11.9.1111
10.1371/journal.pgen.1000973
10.1016/j.molcel.2009.05.015
10.1146/annurev.biochem.052308.093131
10.1007/BF00422063
10.1146/annurev.micro.56.012302.160916
10.1038/nsmb1136
10.1101/gad.503108
10.1016/j.dnarep.2008.04.004
10.1101/gad.221402
10.1093/nar/27.20.4050
10.1128/MCB.00613-10
10.1074/jbc.272.45.28194
10.1128/MCB.01596-06
10.1534/genetics.108.088955
10.1016/j.cell.2015.06.015
10.1016/S0092-8674(00)80750-3
10.1016/j.dnarep.2007.07.004
10.1016/j.cell.2011.02.013
10.1534/genetics.104.037598
10.1016/j.cell.2008.08.037
10.1242/jcs.02694
10.1016/S1097-2765(02)00595-6
10.1002/1873-3468.12656
10.1007/s00438-005-1111-3
10.1146/annurev.genet.40.110405.090636
10.1093/emboj/16.10.2682
10.1093/nar/gkf590
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkz1109
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1284
ExternalDocumentID PMC7026635
31828313
10_1093_nar_gkz1109
10.1093/nar/gkz1109
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MRC
  grantid: MC_PC_12003
  funderid: 10.13039/501100000265
– fundername: ERC
  grantid: 268788-SMI-DDR
  funderid: 10.13039/501100000781
– fundername: BBSRC
  grantid: BB/C510291/1; BB/K019805/1]
  funderid: 10.13039/501100000268
– fundername: CRUK
  grantid: C9601/A9484
  funderid: 10.13039/501100000289
– fundername: EURISC-RAD
  grantid: FI6R-CT-2003-508842
– fundername: A*STAR
  grantid: H3R00391/H311
  funderid: 10.13039/501100001348
– fundername: Medical Research Council
  grantid: MC_U142784382
– fundername: Medical Research Council
  grantid: MC_PC_12003
– fundername: Medical Research Council
  grantid: MC_UU_00001/4
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C510291/1
– fundername: ; ;
  grantid: MC_PC_12003
– fundername: ; ;
  grantid: H3R00391/H311
– fundername: ;
  grantid: FI6R-CT-2003-508842
– fundername: ; ;
  grantid: BB/C510291/1; BB/K019805/1]
– fundername: ; ;
  grantid: 268788-SMI-DDR
– fundername: ; ;
  grantid: C9601/A9484
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
ACUTJ
AFYAG
AMNDL
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-f7e7e55e7879d4193df9c19bb6f9c6a2e57e18f5d2ec465e8088712d5c19989a3
IEDL.DBID TOX
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515121900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Dec 02 02:13:16 EST 2025
Sun Nov 09 11:08:09 EST 2025
Mon Jul 21 06:05:03 EDT 2025
Sat Nov 29 03:25:00 EST 2025
Tue Nov 18 20:48:38 EST 2025
Wed Aug 28 03:18:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-f7e7e55e7879d4193df9c19bb6f9c6a2e57e18f5d2ec465e8088712d5c19989a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/nar/gkz1109
PMID 31828313
PQID 2325299978
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7026635
proquest_miscellaneous_2325299978
pubmed_primary_31828313
crossref_citationtrail_10_1093_nar_gkz1109
crossref_primary_10_1093_nar_gkz1109
oup_primary_10_1093_nar_gkz1109
PublicationCentury 2000
PublicationDate 2020-02-20
PublicationDateYYYYMMDD 2020-02-20
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bonetti (2020021802195654400_B70) 2009; 35
Goodwin (2020021802195654400_B52) 1999; 27
Sugawara (2020021802195654400_B64) 2003; 12
Takahashi (2020021802195654400_B30) 2011; 31
Pennaneach (2020021802195654400_B73) 2006; 59
Malkova (2020021802195654400_B62) 2005; 25
Watson (2020021802195654400_B46) 2011; 484
Wang (2020021802195654400_B54) 2001; 29
Wilson (2020021802195654400_B31) 1999; 27
Kibe (2020021802195654400_B32) 2007; 18
Akamatsu (2020021802195654400_B11) 2007; 26
Marchetti (2020021802195654400_B29) 2002; 99
Stewart (2020021802195654400_B18) 1997; 16
Zhu (2020021802195654400_B6) 2008; 134
Sung (2020021802195654400_B13) 1997; 11
Nanbu (2020021802195654400_B25) 2013; 33
Haruta (2020021802195654400_B63) 2008; 7
Resnick (2020021802195654400_B1) 1976; 143
Lieber (2020021802195654400_B3) 2010; 79
Win (2020021802195654400_B28) 2005; 118
Chung (2020021802195654400_B38) 2010; 6
Cromie (2020021802195654400_B24) 2008; 179
Rog (2020021802195654400_B33) 2009; 33
Kramer (2020021802195654400_B71) 1993; 7
Putnam (2020021802195654400_B72) 2004; 101
Haruta (2020021802195654400_B12) 2006; 13
Coulon (2020021802195654400_B27) 2004; 15
Greider (2020021802195654400_B69) 1999; 97
Wang (2020021802195654400_B9) 2004; 2
Sugiyama (2020021802195654400_B8) 1998; 95
Laursen (2020021802195654400_B19) 2003; 23
Braybrooke (2020021802195654400_B67) 2003; 278
Ahmad (2020021802195654400_B20) 2005; 273
Hanahan (2020021802195654400_B2) 2011; 144
Zhou (2020021802195654400_B39) 2000; 289
Jahn (2020021802195654400_B34) 2002; 56
Cullen (2020021802195654400_B41) 2007; 27
Hickson (2020021802195654400_B16) 2003; 3
Gravel (2020021802195654400_B4) 2008; 22
Doe (2020021802195654400_B26) 2002; 277
Smeets (2020021802195654400_B60) 2003; 8
Mangahas (2020021802195654400_B56) 2001; 12
Leupold (2020021802195654400_B50) 1964; 2
Ahmad (2020021802195654400_B51) 2002; 19
Murray (2020021802195654400_B17) 1997; 17
Heyer (2020021802195654400_B14) 2010; 44
Prudden (2020021802195654400_B42) 2003; 22
Liu (2020021802195654400_B55) 2011; 479
Wu (2020021802195654400_B15) 2006; 40
Myung (2020021802195654400_B57) 2001; 411
Caspari (2020021802195654400_B21) 2002; 16
Niwa (2020021802195654400_B44) 1986; 203
Maundrell (2020021802195654400_B49) 1993; 123
Vaze (2020021802195654400_B53) 2002; 10
Tanaka (2020021802195654400_B45) 2002; 30
Moreno (2020021802195654400_B47) 1991; 194
Tsutsui (2020021802195654400_B59) 2001; 159
Hope (2020021802195654400_B23) 2007; 27
Pai (2020021802195654400_B43) 2018; 2018
Sung (2020021802195654400_B10) 1997; 272
Nimonkar (2020021802195654400_B58) 2008; 105
Brenneman (2020021802195654400_B66) 2002; 10
Keeney (2020021802195654400_B48) 1994; 136
Sugawara (2020021802195654400_B61) 1988
Mimitou (2020021802195654400_B5) 2008; 455
Mimitou (2020021802195654400_B7) 2011; 10
Argunhan (2020021802195654400_B68) 2017; 591
Hope (2020021802195654400_B22) 2005; 170
Gao (2020021802195654400_B36) 2008; 7
Taylor (2020021802195654400_B65) 2015; 162
Wilkie (2020021802195654400_B35) 1990; 346
Lydeard (2020021802195654400_B37) 2010; 6
Myung (2020021802195654400_B40) 2001; 27
References_xml – volume: 29
  start-page: 2963
  year: 2001
  ident: 2020021802195654400_B54
  article-title: Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.14.2963
– volume: 27
  start-page: 7745
  year: 2007
  ident: 2020021802195654400_B41
  article-title: Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00462-07
– volume: 12
  start-page: 209
  year: 2003
  ident: 2020021802195654400_B64
  article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00269-7
– volume: 27
  start-page: 113
  year: 2001
  ident: 2020021802195654400_B40
  article-title: SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination
  publication-title: Nat. Genet.
  doi: 10.1038/83673
– volume: 22
  start-page: 1419
  year: 2003
  ident: 2020021802195654400_B42
  article-title: Pathway utilization in response to a site-specific DNA double-strand break in fission yeast
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg119
– volume: 6
  start-page: e1000948
  year: 2010
  ident: 2020021802195654400_B38
  article-title: Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000948
– volume: 484
  start-page: 75
  year: 2011
  ident: 2020021802195654400_B46
  article-title: Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus
  publication-title: Gene
  doi: 10.1016/j.gene.2011.05.028
– volume: 194
  start-page: 795
  year: 1991
  ident: 2020021802195654400_B47
  article-title: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94059-L
– volume: 26
  start-page: 1352
  year: 2007
  ident: 2020021802195654400_B11
  article-title: Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601582
– volume: 10
  start-page: 344
  year: 2011
  ident: 2020021802195654400_B7
  article-title: DNA end resection–unraveling the tail
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2010.12.004
– volume: 346
  start-page: 868
  year: 1990
  ident: 2020021802195654400_B35
  article-title: A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n
  publication-title: Nature
  doi: 10.1038/346868a0
– volume: 101
  start-page: 13262
  year: 2004
  ident: 2020021802195654400_B72
  article-title: Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0405443101
– volume: 18
  start-page: 2378
  year: 2007
  ident: 2020021802195654400_B32
  article-title: Fission yeast Taz1 and RPA are synergistically required to prevent rapid telomere loss
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-12-1084
– volume: 33
  start-page: 559
  year: 2009
  ident: 2020021802195654400_B33
  article-title: Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.027
– volume: 7
  start-page: 2345
  year: 1993
  ident: 2020021802195654400_B71
  article-title: New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.12a.2345
– volume: 59
  start-page: 1357
  year: 2006
  ident: 2020021802195654400_B73
  article-title: Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05026.x
– volume: 44
  start-page: 113
  year: 2010
  ident: 2020021802195654400_B14
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-051710-150955
– volume: 19
  start-page: 1381
  year: 2002
  ident: 2020021802195654400_B51
  article-title: Helicase activity is only partially required for Schizosaccharomyces pombe Rqh1p function
  publication-title: Yeast
  doi: 10.1002/yea.917
– volume: 136
  start-page: 849
  year: 1994
  ident: 2020021802195654400_B48
  article-title: Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe
  publication-title: Genetics
  doi: 10.1093/genetics/136.3.849
– volume: 123
  start-page: 127
  year: 1993
  ident: 2020021802195654400_B49
  article-title: Thiamine-repressible expression vectors pREP and pRIP for fission yeast
  publication-title: Gene
  doi: 10.1016/0378-1119(93)90551-D
– volume: 411
  start-page: 1073
  year: 2001
  ident: 2020021802195654400_B57
  article-title: Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/35082608
– volume: 143
  start-page: 119
  year: 1976
  ident: 2020021802195654400_B1
  article-title: The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00266917
– volume: 455
  start-page: 770
  year: 2008
  ident: 2020021802195654400_B5
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
  doi: 10.1038/nature07312
– volume: 95
  start-page: 6049
  year: 1998
  ident: 2020021802195654400_B8
  article-title: DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.11.6049
– volume: 25
  start-page: 933
  year: 2005
  ident: 2020021802195654400_B62
  article-title: RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.3.933-944.2005
– volume: 10
  start-page: 373
  year: 2002
  ident: 2020021802195654400_B53
  article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00593-2
– volume: 278
  start-page: 48357
  year: 2003
  ident: 2020021802195654400_B67
  article-title: Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308838200
– volume: 17
  start-page: 6868
  year: 1997
  ident: 2020021802195654400_B17
  article-title: Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.17.12.6868
– volume: 159
  start-page: 91
  year: 2001
  ident: 2020021802195654400_B59
  article-title: Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe
  publication-title: Genetics
  doi: 10.1093/genetics/159.1.91
– volume: 277
  start-page: 32753
  year: 2002
  ident: 2020021802195654400_B26
  article-title: Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202120200
– volume: 2018
  start-page: 289
  year: 2018
  ident: 2020021802195654400_B43
  article-title: DNA double-strand break repair assay
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot092031
– volume: 23
  start-page: 3692
  year: 2003
  ident: 2020021802195654400_B19
  article-title: Role for the fission yeast RecQ helicase in DNA repair in G2
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.10.3692-3705.2003
– volume: 15
  start-page: 71
  year: 2004
  ident: 2020021802195654400_B27
  article-title: Slx1-Slx4 are subunits of a structure-specific endonuclease that maintains ribosomal DNA in fission yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-08-0586
– volume: 99
  start-page: 7472
  year: 2002
  ident: 2020021802195654400_B29
  article-title: A single unbranched S-phase DNA damage and replication fork blockage checkpoint pathway
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.112702399
– volume: 8
  start-page: 573
  year: 2003
  ident: 2020021802195654400_B60
  article-title: High dosage Rhp51 suppression of the MMS sensitivity of DNA structure checkpoint mutants reveals a relationship between Crb2 and Rhp51
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2003.00657.x
– volume: 33
  start-page: 1175
  year: 2013
  ident: 2020021802195654400_B25
  article-title: Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01713-12
– volume: 2
  start-page: E21
  year: 2004
  ident: 2020021802195654400_B9
  article-title: Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020021
– volume: 289
  start-page: 771
  year: 2000
  ident: 2020021802195654400_B39
  article-title: Pif1p helicase, a catalytic inhibitor of telomerase in yeast
  publication-title: Science
  doi: 10.1126/science.289.5480.771
– volume: 479
  start-page: 245
  year: 2011
  ident: 2020021802195654400_B55
  article-title: Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
  publication-title: Nature
  doi: 10.1038/nature10522
– volume: 12
  start-page: 4078
  year: 2001
  ident: 2020021802195654400_B56
  article-title: Repair of chromosome ends after telomere loss in Saccharomyces
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.12.4078
– volume: 105
  start-page: 16906
  year: 2008
  ident: 2020021802195654400_B58
  article-title: Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0809380105
– volume: 2
  start-page: 31
  year: 1964
  ident: 2020021802195654400_B50
  article-title: Genetic fine structure in Schizosaccharomyces pombe
  publication-title: Proc.XI Int. Congr. Genet.
– volume: 27
  start-page: 2655
  year: 1999
  ident: 2020021802195654400_B31
  article-title: The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.13.2655
– volume: 3
  start-page: 169
  year: 2003
  ident: 2020021802195654400_B16
  article-title: RecQ helicases: caretakers of the genome
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1012
– volume: 11
  start-page: 1111
  year: 1997
  ident: 2020021802195654400_B13
  article-title: Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.9.1111
– volume: 6
  start-page: e1000973
  year: 2010
  ident: 2020021802195654400_B37
  article-title: Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000973
– volume: 35
  start-page: 70
  year: 2009
  ident: 2020021802195654400_B70
  article-title: Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.05.015
– volume: 79
  start-page: 181
  year: 2010
  ident: 2020021802195654400_B3
  article-title: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.052308.093131
– volume: 203
  start-page: 397
  year: 1986
  ident: 2020021802195654400_B44
  article-title: Construction of a minichromosome by deletion and its mitotic and meiotic behaviour in fission yeast
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00422063
– volume: 56
  start-page: 489
  year: 2002
  ident: 2020021802195654400_B34
  article-title: Genome remodeling in ciliated protozoa
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.56.012302.160916
– volume: 13
  start-page: 823
  year: 2006
  ident: 2020021802195654400_B12
  article-title: The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1136
– volume: 22
  start-page: 2767
  year: 2008
  ident: 2020021802195654400_B4
  article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection
  publication-title: Genes Dev.
  doi: 10.1101/gad.503108
– volume: 7
  start-page: 1233
  year: 2008
  ident: 2020021802195654400_B36
  article-title: Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2008.04.004
– volume-title: DNA Sequences at the Telomeres of the Fission Yeast S. pombe
  year: 1988
  ident: 2020021802195654400_B61
– volume: 16
  start-page: 1195
  year: 2002
  ident: 2020021802195654400_B21
  article-title: Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III
  publication-title: Genes Dev.
  doi: 10.1101/gad.221402
– volume: 27
  start-page: 4050
  year: 1999
  ident: 2020021802195654400_B52
  article-title: Topoisomerase III is essential for accurate nuclear division in Schizosaccharomyces pombe
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.20.4050
– volume: 31
  start-page: 495
  year: 2011
  ident: 2020021802195654400_B30
  article-title: Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00613-10
– volume: 272
  start-page: 28194
  year: 1997
  ident: 2020021802195654400_B10
  article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.45.28194
– volume: 27
  start-page: 3828
  year: 2007
  ident: 2020021802195654400_B23
  article-title: Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01596-06
– volume: 179
  start-page: 1157
  year: 2008
  ident: 2020021802195654400_B24
  article-title: The fission yeast BLM homolog Rqh1 promotes meiotic recombination
  publication-title: Genetics
  doi: 10.1534/genetics.108.088955
– volume: 162
  start-page: 271
  year: 2015
  ident: 2020021802195654400_B65
  article-title: Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate homologous recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.015
– volume: 97
  start-page: 419
  year: 1999
  ident: 2020021802195654400_B69
  article-title: Telomeres do D-loop-T-loop
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80750-3
– volume: 7
  start-page: 1
  year: 2008
  ident: 2020021802195654400_B63
  article-title: Fission yeast Swi5 protein, a novel DNA recombination mediator
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2007.07.004
– volume: 144
  start-page: 646
  year: 2011
  ident: 2020021802195654400_B2
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 170
  start-page: 519
  year: 2005
  ident: 2020021802195654400_B22
  article-title: A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe
  publication-title: Genetics
  doi: 10.1534/genetics.104.037598
– volume: 134
  start-page: 981
  year: 2008
  ident: 2020021802195654400_B6
  article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.037
– volume: 118
  start-page: 5777
  year: 2005
  ident: 2020021802195654400_B28
  article-title: A role for the fission yeast Rqh1 helicase in chromosome segregation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02694
– volume: 10
  start-page: 387
  year: 2002
  ident: 2020021802195654400_B66
  article-title: XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00595-6
– volume: 591
  start-page: 2035
  year: 2017
  ident: 2020021802195654400_B68
  article-title: The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12656
– volume: 273
  start-page: 102
  year: 2005
  ident: 2020021802195654400_B20
  article-title: The N-terminal region of the Schizosaccharomyces pombe RecQ helicase, Rqh1p, physically interacts with Topoisomerase III and is required for Rqh1p function
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-005-1111-3
– volume: 40
  start-page: 279
  year: 2006
  ident: 2020021802195654400_B15
  article-title: DNA helicases required for homologous recombination and repair of damaged replication forks
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090636
– volume: 16
  start-page: 2682
  year: 1997
  ident: 2020021802195654400_B18
  article-title: rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.10.2682
– volume: 30
  start-page: 4728
  year: 2002
  ident: 2020021802195654400_B45
  article-title: The fission yeast pfh1(+) gene encodes an essential 5′ to 3′ DNA helicase required for the completion of S-phase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf590
SSID ssj0014154
Score 2.3735552
Snippet Abstract The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause...
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1271
SubjectTerms Chromosomes, Fungal - genetics
DNA Breaks, Double-Stranded
DNA Helicases - genetics
DNA-Binding Proteins - genetics
Exodeoxyribonucleases - genetics
Gene Expression Regulation, Fungal - genetics
Genome Integrity, Repair and
Genome, Fungal - genetics
Genomic Instability - genetics
Loss of Heterozygosity - genetics
Rad51 Recombinase - genetics
Recombinational DNA Repair - genetics
Schizosaccharomyces - genetics
Schizosaccharomyces pombe Proteins - genetics
Telomere - genetics
Title Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks
URI https://www.ncbi.nlm.nih.gov/pubmed/31828313
https://www.proquest.com/docview/2325299978
https://pubmed.ncbi.nlm.nih.gov/PMC7026635
Volume 48
WOSCitedRecordID wos000515121900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62Mthe2q1dt_RHpkHZw8DUvxRZj6Fr6VO2hw7yZmTp3IYmcnCcQvvX9yQ7oSml21NwLBuhk6Xv0919B3AiQ0XkeCADTNI0SCOlnJNQBiqUiAk3hYm0LzYhRqNsPJZ_ugDZxQsufJmcWlWfXt8-OGlMWmojnrlCBVe_x2tnAe1BrUqUF9VMsy4N79mzGxvPRjLbE0z5PDTyyV5zsfO_vfwI2x2aZMPW_J_gDdpd2BtaYtKze_aD-fhOf3C-C-_PVrXd9mB5Wc3c30T7maPEM-LH3kR0NVeTmjkVidpnlRAUZXMfs4cMvd4E9ZkZZLa6q1iD02qGNTIXl-RfoBr2azRkploWUwzcQYo1jHi3ul18hr8X51dnl0FXgCHQqciaoBQokHOkj1qalKCeKaWOZFEM6HegYuQCo6zkJkadDjhmbsmKYsO1y9yTKtmHLVtZ_AqMgJLmBZchR0Joiheh4bE0oohCXfIy7sHPlXVy3amTuyIZ07z1kic5DXDeDXAPTtaN560ox8vNvpGZX2_xfTUFcrKA85UoizT2OQFN6p8kjt2DL-2UWL-IlkECZVHSA7ExWdYNnGT35h07ufHS3YIoL0G8g3_27BA-xI7Zu-T58Ai2mnqJx_BO3zWTRd2Ht2Kc9f35Qd9_C4_Tywgt
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homologous+recombination+repair+intermediates+promote+efficient+de+novo+telomere+addition+at+DNA+double-strand+breaks&rft.jtitle=Nucleic+acids+research&rft.au=Dav%C3%A9%2C+Anoushka&rft.au=Pai%2C+Chen-Chun&rft.au=Durley%2C+Samuel+C&rft.au=Hulme%2C+Lydia&rft.date=2020-02-20&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=48&rft.issue=3&rft.spage=1271&rft.epage=1284&rft_id=info:doi/10.1093%2Fnar%2Fgkz1109&rft.externalDocID=10.1093%2Fnar%2Fgkz1109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon