Machine learning and serving of discrete field theories
A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 10; H. 1; S. 19329 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
09.11.2020
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton’s laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important. |
|---|---|
| AbstractList | A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton’s laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important. A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton's laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important.A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton's laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important. |
| ArticleNumber | 19329 |
| Author | Qin, Hong |
| Author_xml | – sequence: 1 givenname: Hong surname: Qin fullname: Qin, Hong email: hongqin@princeton.edu organization: Plasma Physics Laboratory, Princeton University |
| BackLink | https://www.osti.gov/servlets/purl/1779752$$D View this record in Osti.gov |
| BookMark | eNp9UUtrFTEYDVKxtfYPuBp042Y078dGkOILKm50HTLJN_emzE1qklvw35txKmoXzSYf5Dy-k_MUnaScAKHnBL8mmOk3lRNh9IgpHpVkmIz4ETqjmIuRMkpP_plP0UWt17gfQQ0n5gk6ZYxIrbU8Q-qL8_uYYFjAlRTTbnApDBXK7TrneQix-gINhjnCEoa2h1wi1Gfo8eyWChd39zn6_uH9t8tP49XXj58v312NnivdRpiEo5xjCiboWQoa-BQ40ZPEWpo5BM8DKDHBTJ1hQePg2SQ99noCAxNl5-jtpntznA4QPKRW3GJvSjy48tNmF-3_Lynu7S7fWiXXtKwLvNgEcm3RVh8b-L3PKYFvlihllFhdXt25lPzjCLXZQ48Ny-IS5GO1lAvDBMWEd-jLe9DrfCyp_0FHKSIEl5x0lN5QvuRaC8y2G7sW87pkXCzBdm3Rbi3a3qL93aLFnUrvUf-EfZDENlLt4LSD8nerB1i_AOfFr2U |
| CitedBy_id | crossref_primary_10_1088_2058_6272_abf125 crossref_primary_10_1017_S0022377821000702 crossref_primary_10_1016_j_jmps_2022_104909 crossref_primary_10_1007_s12559_023_10238_0 crossref_primary_10_1557_s43578_023_00892_3 crossref_primary_10_1007_s42979_022_01094_0 crossref_primary_10_1090_mcom_4120 crossref_primary_10_1177_02783649231169492 crossref_primary_10_1017_S0022377821000155 crossref_primary_10_1016_j_cam_2022_114780 crossref_primary_10_1088_2632_2153_acec31 crossref_primary_10_1038_s41598_023_34862_w crossref_primary_10_1088_1674_1056_ac8d88 crossref_primary_10_1016_j_ifacol_2023_10_1457 crossref_primary_10_1088_1361_6587_abcbaa crossref_primary_10_1103_PhysRevE_111_025301 |
| Cites_doi | 10.1007/JHEP06(2019)003 10.1063/1.4976849 10.1126/science.aaw1147 10.1007/s002200050505 10.1016/j.jcp.2018.10.045 10.1016/j.cpc.2019.04.003 10.1109/TMI.2018.2827462 10.1088/0029-5515/56/1/014001 10.1007/JHEP05(2019)036 10.1103/PhysRevLett.100.035006 10.1002/cnm.1640100303 10.1115/1.4043148 10.1017/S0022377820000434 10.1063/1.4930118 10.1016/j.physleta.2018.12.010 10.1063/1.4826218 10.1103/PhysRevE.94.013205 10.1103/PhysRevD.97.094506 10.1063/1.4897372 10.1038/s41586-019-1116-4 10.1063/1.5022277 10.1073/pnas.1814058116 10.1063/1.4972824 10.1126/sciadv.1602614 10.1063/1.4867669 10.1016/S0893-6080(05)80058-9 10.1016/j.physleta.2016.12.031 10.1103/PhysRevD.86.054505 10.1126/science.aag2302 10.1007/978-1-4899-3093-4 10.1063/1.4962573 10.1103/PhysRevE.47.1392 10.1088/0029-5515/37/6/I02 10.1088/0029-5515/43/12/021 10.1063/1.4742985 10.1017/S096249290100006X 10.1063/1.4938034 10.1088/1741-4326/ab38dc 10.1109/72.712178 10.1016/0895-7177(94)90095-7 10.1063/1.4967276 10.1126/science.1165893 10.1088/0741-3335/57/5/054007 10.1016/0895-7177(94)00160-X 10.1088/0029-5515/39/2/308 10.1016/j.jcp.2019.108925 10.1111/1467-9213.00309 10.1088/1361-6420/aa9a90 10.1103/PhysRevFluids.3.074602 10.1088/0954-898X_9_4_008 10.1103/PhysRevB.96.205152 10.1109/72.80202 10.1063/1.5004429 10.1016/0888-613X(92)90014-Q 10.1017/S002237781700040X 10.1016/j.jcp.2017.08.033 10.1088/2058-6272/aac3d1 10.1063/1.4986097 10.1073/pnas.0609476104 10.1073/pnas.1909854116 10.1073/pnas.1517384113 10.1140/epja/i2014-14148-0 10.1063/1.5128231 10.1093/mnrasl/slx008 |
| ContentType | Journal Article |
| Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) |
| CorporateAuthor_xml | – name: Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 OIOZB OTOTI 5PM |
| DOI | 10.1038/s41598-020-76301-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC7652943 1779752 10_1038_s41598_020_76301_0 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 OIOZB OTOTI U1R 5PM |
| ID | FETCH-LOGICAL-c478t-eb5a24402e9d8f652d4bd418b60869fddc4de75bef2a93d80dc3b6c0c8be9eb23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594627900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:49:05 EST 2025 Thu May 18 22:29:47 EDT 2023 Sun Nov 09 12:03:43 EST 2025 Tue Oct 07 07:45:05 EDT 2025 Sat Nov 29 04:02:51 EST 2025 Tue Nov 18 22:39:22 EST 2025 Fri Feb 21 02:38:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-eb5a24402e9d8f652d4bd418b60869fddc4de75bef2a93d80dc3b6c0c8be9eb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-09CH11466 USDOE |
| OpenAccessLink | https://www.proquest.com/docview/2471554641?pq-origsite=%requestingapplication% |
| PMID | 33168886 |
| PQID | 2471554641 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7652943 osti_scitechconnect_1779752 proquest_miscellaneous_2459352014 proquest_journals_2471554641 crossref_citationtrail_10_1038_s41598_020_76301_0 crossref_primary_10_1038_s41598_020_76301_0 springer_journals_10_1038_s41598_020_76301_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-09 |
| PublicationDateYYYYMMDD | 2020-11-09 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | He (CR56) 2015; 22 Ramacher (CR3) 1993; 6 Xiao, Qin, Liu (CR70) 2018; 20 Nomura, Darmawan, Yamaji, Imada (CR23) 2017; 96 Long, Lu, Dong (CR21) 2019; 399 Schaeffer (CR28) 2017; 473 CR39 CR38 CR37 Kraus, Kormann, Morrison, Sonnendrücker (CR69) 2017; 83 CR36 CR35 He, Sun, Qin, Liu (CR60) 2016; 23 CR34 CR77 Cerri, Nguyen, Pierini, Spiropulu, Vlimant (CR86) 2019; 2019 CR76 CR31 Wu, Xiao, Paterson (CR13) 2018; 3 Ellison (CR71) 2018; 25 Glasser, Qin (CR75) 2020; 86 Chen (CR66) 2017; 349 Carleo, Troyer (CR22) 2017; 355 Marsden, Patrick, Shkoller (CR48) 1998; 199 Beane, Davoudi, Savage (CR79) 2014; 50 He, Zhou, Sun, Liu, Qin (CR67) 2017; 381 Brunton, Proctor, Kutz (CR26) 2016; 113 Zhou, Qin, Burby, Bhattacharjee (CR55) 2014; 21 CR46 CR45 Bongard, Lipson (CR24) 2007; 104 Gelß, Klus, Eisert, Schßtte (CR32) 2019; 14 CR88 Zhang (CR54) 2014; 21 CR41 CR85 Wilde (CR5) 1993; 47 CR40 Noé, Olsson, Köhler, Wu (CR43) 2019; 365 CR84 Narendra, Parthasarathy (CR2) 1992; 6 CR82 Han, Ma, Ma, Weinan (CR15) 2019; 116 CR81 CR80 Weinan (CR6) 2017; 5 Kates-Harbeck, Svyatkovskiy, Tang (CR12) 2019; 568 Davoudi, Savage (CR83) 2012; 86 Marsden, West (CR49) 2001; 10 Rudy, Brunton, Proctor, Kutz (CR27) 2017; 3 Chen, Rubanova, Bettencourt, Duvenaud (CR7) 2018; 31 Squire, Qin, Tang (CR52) 2012; 19 Xiao, Qin (CR73) 2019; 59 Burby, Ellison (CR68) 2017; 24 Baydin, Pearlmutter, Radul, Siskind (CR29) 2017; 18 Ellison, Finn, Qin, Tang (CR58) 2015; 57 Xiao (CR61) 2016; 23 Haber, Ruthotto (CR8) 2018; 34 Xiao, Qin (CR74) 2019; 241 Wroblewski, Jahns, Leuer (CR9) 1997; 37 Burby (CR65) 2017; 24 Yang (CR87) 2018; 37 Narendra, Parthasarathy (CR1) 1990; 1 Vannucci, Oliveira, Tajima (CR10) 1999; 39 Meade, Fernández (CR17) 1994; 19 Bostrom (CR78) 2003; 53 Meade, Fernández (CR18) 1994; 20 Halverson, Nelson, Ruehle (CR44) 2019; 2019 Dissanayake, Phan-Thien (CR16) 1994; 10 Xiao, Qin, Liu, Zhang (CR64) 2017; 24 Hairer, Lubich, Wanner (CR50) 2006 Bar-Sinai, Hoyer, Hickey, Brenner (CR14) 2019; 116 Zhang (CR62) 2016; 94 Lagaris, Likas, Fotiadis (CR19) 1998; 9 Qin (CR59) 2016; 56 Xiao, Qin, Shi, Liu, Zhang (CR72) 2019; 383 Raissi (CR30) 2018; 19 Yoshino (CR11) 2003; 43 Shanahan, Trewartha, Detmold (CR42) 2018; 97 Bailer-Jones, MacKay, Withers (CR20) 1998; 9 Xiao, Liu, Qin, Yu, Xiang (CR57) 2015; 22 Schmidt, Lipson (CR25) 2009; 324 Howse, Abdallah, Heileman (CR4) 1995; 8 Sanz-Serna, Calvo (CR47) 1994 Wang, Liu, Qin (CR63) 2016; 23 Raissi, Perdikaris, Karniadakis (CR33) 2019; 378 Qin, Guan (CR51) 2008; 100 Xiao, Liu, Qin, Yu (CR53) 2013; 20 PD Wilde (76301_CR5) 1993; 47 CAL Bailer-Jones (76301_CR20) 1998; 9 JE Marsden (76301_CR48) 1998; 199 J Squire (76301_CR52) 2012; 19 Y Zhou (76301_CR55) 2014; 21 F Noé (76301_CR43) 2019; 365 J Xiao (76301_CR72) 2019; 383 N Bostrom (76301_CR78) 2003; 53 JW Howse (76301_CR4) 1995; 8 M Raissi (76301_CR30) 2018; 19 R Zhang (76301_CR54) 2014; 21 AS Glasser (76301_CR75) 2020; 86 J Han (76301_CR15) 2019; 116 JE Marsden (76301_CR49) 2001; 10 JM Sanz-Serna (76301_CR47) 1994 PE Shanahan (76301_CR42) 2018; 97 J Bongard (76301_CR24) 2007; 104 P Gelß (76301_CR32) 2019; 14 Z Long (76301_CR21) 2019; 399 SL Brunton (76301_CR26) 2016; 113 Q Yang (76301_CR87) 2018; 37 CL Ellison (76301_CR71) 2018; 25 E Hairer (76301_CR50) 2006 KS Narendra (76301_CR2) 1992; 6 JW Burby (76301_CR68) 2017; 24 J Xiao (76301_CR57) 2015; 22 H Schaeffer (76301_CR28) 2017; 473 AG Baydin (76301_CR29) 2017; 18 J Kates-Harbeck (76301_CR12) 2019; 568 J-L Wu (76301_CR13) 2018; 3 JW Burby (76301_CR65) 2017; 24 E Haber (76301_CR8) 2018; 34 AJ Meade Jr (76301_CR17) 1994; 19 76301_CR40 76301_CR84 R Zhang (76301_CR62) 2016; 94 76301_CR41 76301_CR85 H Qin (76301_CR59) 2016; 56 76301_CR80 D Wroblewski (76301_CR9) 1997; 37 Q Chen (76301_CR66) 2017; 349 R Yoshino (76301_CR11) 2003; 43 76301_CR82 76301_CR81 J Xiao (76301_CR73) 2019; 59 IE Lagaris (76301_CR19) 1998; 9 CL Ellison (76301_CR58) 2015; 57 Y He (76301_CR60) 2016; 23 76301_CR88 A Vannucci (76301_CR10) 1999; 39 H Qin (76301_CR51) 2008; 100 76301_CR46 76301_CR45 SR Beane (76301_CR79) 2014; 50 G Carleo (76301_CR22) 2017; 355 M Schmidt (76301_CR25) 2009; 324 SH Rudy (76301_CR27) 2017; 3 MWMG Dissanayake (76301_CR16) 1994; 10 Y He (76301_CR67) 2017; 381 76301_CR31 J Xiao (76301_CR74) 2019; 241 J Halverson (76301_CR44) 2019; 2019 76301_CR37 Y Wang (76301_CR63) 2016; 23 76301_CR36 76301_CR39 U Ramacher (76301_CR3) 1993; 6 76301_CR38 M Kraus (76301_CR69) 2017; 83 76301_CR77 M Raissi (76301_CR33) 2019; 378 76301_CR76 76301_CR35 76301_CR34 TQ Chen (76301_CR7) 2018; 31 Y Bar-Sinai (76301_CR14) 2019; 116 J Xiao (76301_CR64) 2017; 24 KS Narendra (76301_CR1) 1990; 1 Y He (76301_CR56) 2015; 22 E Weinan (76301_CR6) 2017; 5 J Xiao (76301_CR53) 2013; 20 O Cerri (76301_CR86) 2019; 2019 AJ Meade Jr (76301_CR18) 1994; 20 Y Nomura (76301_CR23) 2017; 96 J Xiao (76301_CR61) 2016; 23 J Xiao (76301_CR70) 2018; 20 Z Davoudi (76301_CR83) 2012; 86 |
| References_xml | – ident: CR45 – volume: 2019 start-page: 3 year: 2019 ident: CR44 article-title: Branes with brains: Exploring string vacua with deep reinforcement learning publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2019)003 – volume: 24 start-page: 032101 year: 2017 ident: CR65 article-title: Finite-dimensional collisionless kinetic theory publication-title: Phys. Plasmas doi: 10.1063/1.4976849 – volume: 365 start-page: eaaw1147 year: 2019 ident: CR43 article-title: Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning publication-title: Science doi: 10.1126/science.aaw1147 – volume: 199 start-page: 351 year: 1998 end-page: 395 ident: CR48 article-title: Multisymplectic geometry, variational integrators, and nonlinear pdes publication-title: Commun. Math. Phys. doi: 10.1007/s002200050505 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR33 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 241 start-page: 19 year: 2019 end-page: 27 ident: CR74 article-title: Explicit high-order gauge-independent symplectic algorithms for relativistic charged particle dynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.04.003 – volume: 37 start-page: 1348 year: 2018 end-page: 1357 ident: CR87 article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – ident: CR39 – volume: 56 start-page: 014001 year: 2016 ident: CR59 article-title: Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/1/014001 – volume: 2019 start-page: 36 year: 2019 ident: CR86 article-title: Variational autoencoders for new physics mining at the large hadron collider publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2019)036 – volume: 100 start-page: 035006 year: 2008 ident: CR51 article-title: Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.035006 – volume: 10 start-page: 195 year: 1994 end-page: 201 ident: CR16 article-title: Neural-network-based approximations for solving partial differential equations publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1640100303 – ident: CR35 – volume: 14 start-page: 061006 year: 2019 ident: CR32 article-title: Multidimensional approximation of nonlinear dynamical systems publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4043148 – volume: 86 start-page: 835860303 year: 2020 ident: CR75 article-title: The geometric theory of charge conservation in particle-in-cell simulations publication-title: J. Plasma Phys. doi: 10.1017/S0022377820000434 – ident: CR80 – ident: CR77 – volume: 22 start-page: 092305 year: 2015 ident: CR57 article-title: Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves publication-title: Phys. Plasmas doi: 10.1063/1.4930118 – volume: 383 start-page: 808 year: 2019 end-page: 812 ident: CR72 article-title: A lattice Maxwell system with discrete space–time symmetry and local energy–momentum conservation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.12.010 – ident: CR84 – volume: 20 start-page: 102517 year: 2013 ident: CR53 article-title: A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system publication-title: Phys. Plasmas doi: 10.1063/1.4826218 – volume: 94 start-page: 013205 year: 2016 ident: CR62 article-title: Explicit symplectic algorithms based on generating functions for charged particle dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.013205 – volume: 97 start-page: 094506 year: 2018 ident: CR42 article-title: Machine learning action parameters in lattice quantum chromodynamics publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.094506 – volume: 31 start-page: 6572 year: 2018 end-page: 6583 ident: CR7 article-title: Neural ordinary differential equations publication-title: Adv. Neural Inf. Process. Syst. – ident: CR46 – volume: 21 start-page: 102109 year: 2014 ident: CR55 article-title: Variational integration for ideal magnetohydrodynamics with built-in advection equations publication-title: Phys. Plasmas doi: 10.1063/1.4897372 – ident: CR88 – volume: 568 start-page: 526 year: 2019 ident: CR12 article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning publication-title: Nature doi: 10.1038/s41586-019-1116-4 – volume: 25 start-page: 052502 year: 2018 ident: CR71 article-title: Degenerate variational integrators for magnetic field line flow and guiding center trajectories publication-title: Phys. Plasmas doi: 10.1063/1.5022277 – volume: 116 start-page: 15344 year: 2019 end-page: 15349 ident: CR14 article-title: Learning data-driven discretizations for partial differential equations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1814058116 – volume: 23 start-page: 122513 year: 2016 ident: CR63 article-title: Lorentz covariant canonical symplectic algorithms for dynamics of charged particles publication-title: Phys. Plasmas doi: 10.1063/1.4972824 – volume: 18 start-page: 153:1 year: 2017 end-page: 153:43 ident: CR29 article-title: Automatic differentiation in machine learning: A survey publication-title: J. Mach. Learn. Res. – ident: CR36 – ident: CR85 – volume: 19 start-page: 1 year: 2018 end-page: 24 ident: CR30 article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations publication-title: J. Mach. Learn. Res. – ident: CR81 – volume: 3 start-page: e1602614 year: 2017 ident: CR27 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – volume: 21 start-page: 032504 year: 2014 ident: CR54 article-title: Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields publication-title: Phys. Plasmas doi: 10.1063/1.4867669 – volume: 6 start-page: 547 year: 1993 end-page: 557 ident: CR3 article-title: Hamiltonian dynamics of neural networks publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80058-9 – volume: 5 start-page: 1 year: 2017 end-page: 11 ident: CR6 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. – volume: 381 start-page: 568 year: 2017 end-page: 573 ident: CR67 article-title: Explicit k -symplectic algorithms for charged particle dynamics publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.12.031 – volume: 86 start-page: 054505 year: 2012 ident: CR83 article-title: Restoration of rotational symmetry in the continuum limit of lattice field theories publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.054505 – volume: 355 start-page: 602 year: 2017 end-page: 606 ident: CR22 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science doi: 10.1126/science.aag2302 – year: 1994 ident: CR47 publication-title: Numerical Hamiltonian Problems doi: 10.1007/978-1-4899-3093-4 – volume: 23 start-page: 092108 year: 2016 ident: CR60 article-title: Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations publication-title: Phys. Plasmas doi: 10.1063/1.4962573 – volume: 47 start-page: 1392 year: 1993 end-page: 1396 ident: CR5 article-title: Class of Hamiltonian neural networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1392 – volume: 37 start-page: 725 year: 1997 end-page: 741 ident: CR9 article-title: Tokamak disruption alarm based on a neural network model of the high-beta limit publication-title: Nucl. Fusion doi: 10.1088/0029-5515/37/6/I02 – volume: 43 start-page: 1771 year: 2003 end-page: 1786 ident: CR11 article-title: Neural-net disruption predictor in JT-60u publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/12/021 – volume: 19 start-page: 084501 year: 2012 ident: CR52 article-title: Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme publication-title: Phys. Plasmas doi: 10.1063/1.4742985 – volume: 10 start-page: 357 year: 2001 end-page: 514 ident: CR49 article-title: Discrete mechanics and variational integrators publication-title: Acta Numerica doi: 10.1017/S096249290100006X – volume: 22 start-page: 124503 year: 2015 ident: CR56 article-title: Hamiltonian time integrators for Vlasov-Maxwell equations publication-title: Phys. Plasmas doi: 10.1063/1.4938034 – volume: 59 start-page: 106044 year: 2019 ident: CR73 article-title: Field theory and a structure-preserving geometric particle-in-cell algorithm for drift wave instability and turbulence publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab38dc – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: CR19 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 19 start-page: 1 year: 1994 end-page: 25 ident: CR17 article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)90095-7 – ident: CR37 – volume: 23 start-page: 112107 year: 2016 ident: CR61 article-title: Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems publication-title: Phys. Plasmas doi: 10.1063/1.4967276 – ident: CR82 – volume: 324 start-page: 81 year: 2009 end-page: 85 ident: CR25 article-title: Distilling free-form natural laws from experimental data publication-title: Science doi: 10.1126/science.1165893 – volume: 57 start-page: 054007 year: 2015 ident: CR58 article-title: Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/5/054007 – ident: CR40 – volume: 20 start-page: 19 year: 1994 end-page: 44 ident: CR18 article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)00160-X – volume: 39 start-page: 255 year: 1999 end-page: 262 ident: CR10 article-title: Forecast of TEXT plasma disruptions using soft x rays as input signal in a neural network publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/2/308 – volume: 399 start-page: 108925 year: 2019 ident: CR21 article-title: PDE-net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108925 – volume: 53 start-page: 243 year: 2003 end-page: 255 ident: CR78 article-title: Are we living in a computer simulation? publication-title: Philos. Quart. doi: 10.1111/1467-9213.00309 – volume: 8 start-page: 274 year: 1995 end-page: 280 ident: CR4 article-title: Gradient and Hamiltonian dynamics applied to learning in neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 014004 year: 2018 ident: CR8 article-title: Stable architectures for deep neural networks publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa9a90 – volume: 3 start-page: 074602 year: 2018 ident: CR13 article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.074602 – volume: 9 start-page: 531 year: 1998 end-page: 547 ident: CR20 article-title: A recurrent neural network for modelling dynamical systems publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_9_4_008 – year: 2006 ident: CR50 publication-title: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations – volume: 96 start-page: 205152 year: 2017 ident: CR23 article-title: Restricted boltzmann machine learning for solving strongly correlated quantum systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.205152 – ident: CR38 – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: CR1 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – volume: 24 start-page: 110703 year: 2017 ident: CR68 article-title: Toroidal regularization of the guiding center Lagrangian publication-title: Phys. Plasmas doi: 10.1063/1.5004429 – ident: CR31 – volume: 6 start-page: 109 year: 1992 end-page: 131 ident: CR2 article-title: Neural networks and dynamical systems publication-title: Int. J. Approx. Reason. doi: 10.1016/0888-613X(92)90014-Q – ident: CR34 – volume: 83 start-page: 905830401 year: 2017 ident: CR69 article-title: GEMPIC: geometric electromagnetic particle-in-cell methods publication-title: J. Plasma Phys. doi: 10.1017/S002237781700040X – volume: 349 start-page: 441 year: 2017 end-page: 452 ident: CR66 article-title: Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger-Maxwell systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.08.033 – ident: CR76 – volume: 20 start-page: 110501 year: 2018 ident: CR70 article-title: Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aac3d1 – ident: CR41 – volume: 24 start-page: 062112 year: 2017 ident: CR64 article-title: Local energy conservation law for a spatially-discretized Hamiltonian Vlasov-Maxwell system publication-title: Phys. Plasmas doi: 10.1063/1.4986097 – volume: 104 start-page: 9943 year: 2007 end-page: 9948 ident: CR24 article-title: Automated reverse engineering of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0609476104 – volume: 116 start-page: 21983 year: 2019 end-page: 21991 ident: CR15 article-title: Uniformly accurate machine learning-based hydrodynamic models for kinetic equations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1909854116 – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: CR26 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 473 start-page: 20160446 year: 2017 ident: CR28 article-title: Learning partial differential equations via data discovery and sparse optimization publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 50 start-page: 148 year: 2014 ident: CR79 article-title: Constraints on the universe as a numerical simulation publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2014-14148-0 – volume: 31 start-page: 6572 year: 2018 ident: 76301_CR7 publication-title: Adv. Neural Inf. Process. Syst. – volume: 113 start-page: 3932 year: 2016 ident: 76301_CR26 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 6 start-page: 547 year: 1993 ident: 76301_CR3 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80058-9 – volume: 8 start-page: 274 year: 1995 ident: 76301_CR4 publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 102109 year: 2014 ident: 76301_CR55 publication-title: Phys. Plasmas doi: 10.1063/1.4897372 – volume: 5 start-page: 1 year: 2017 ident: 76301_CR6 publication-title: Commun. Math. Stat. – volume: 473 start-page: 20160446 year: 2017 ident: 76301_CR28 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – ident: 76301_CR36 doi: 10.1063/1.5128231 – ident: 76301_CR80 – volume: 1 start-page: 4 year: 1990 ident: 76301_CR1 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – ident: 76301_CR88 – ident: 76301_CR46 – volume: 24 start-page: 032101 year: 2017 ident: 76301_CR65 publication-title: Phys. Plasmas doi: 10.1063/1.4976849 – ident: 76301_CR84 – volume-title: Numerical Hamiltonian Problems year: 1994 ident: 76301_CR47 doi: 10.1007/978-1-4899-3093-4 – volume: 23 start-page: 112107 year: 2016 ident: 76301_CR61 publication-title: Phys. Plasmas doi: 10.1063/1.4967276 – volume: 21 start-page: 032504 year: 2014 ident: 76301_CR54 publication-title: Phys. Plasmas doi: 10.1063/1.4867669 – volume: 83 start-page: 905830401 year: 2017 ident: 76301_CR69 publication-title: J. Plasma Phys. doi: 10.1017/S002237781700040X – volume: 9 start-page: 531 year: 1998 ident: 76301_CR20 publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_9_4_008 – volume: 24 start-page: 062112 year: 2017 ident: 76301_CR64 publication-title: Phys. Plasmas doi: 10.1063/1.4986097 – volume: 22 start-page: 124503 year: 2015 ident: 76301_CR56 publication-title: Phys. Plasmas doi: 10.1063/1.4938034 – volume: 324 start-page: 81 year: 2009 ident: 76301_CR25 publication-title: Science doi: 10.1126/science.1165893 – volume: 86 start-page: 054505 year: 2012 ident: 76301_CR83 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.054505 – volume: 22 start-page: 092305 year: 2015 ident: 76301_CR57 publication-title: Phys. Plasmas doi: 10.1063/1.4930118 – volume: 20 start-page: 110501 year: 2018 ident: 76301_CR70 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aac3d1 – volume: 116 start-page: 15344 year: 2019 ident: 76301_CR14 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1814058116 – volume: 96 start-page: 205152 year: 2017 ident: 76301_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.205152 – ident: 76301_CR35 – volume: 56 start-page: 014001 year: 2016 ident: 76301_CR59 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/1/014001 – volume: 3 start-page: 074602 year: 2018 ident: 76301_CR13 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.074602 – volume: 39 start-page: 255 year: 1999 ident: 76301_CR10 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/2/308 – volume: 399 start-page: 108925 year: 2019 ident: 76301_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108925 – volume: 86 start-page: 835860303 year: 2020 ident: 76301_CR75 publication-title: J. Plasma Phys. doi: 10.1017/S0022377820000434 – volume: 43 start-page: 1771 year: 2003 ident: 76301_CR11 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/12/021 – volume: 241 start-page: 19 year: 2019 ident: 76301_CR74 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.04.003 – volume: 14 start-page: 061006 year: 2019 ident: 76301_CR32 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4043148 – ident: 76301_CR41 – volume: 53 start-page: 243 year: 2003 ident: 76301_CR78 publication-title: Philos. Quart. doi: 10.1111/1467-9213.00309 – volume: 2019 start-page: 36 year: 2019 ident: 76301_CR86 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2019)036 – ident: 76301_CR45 – volume: 37 start-page: 725 year: 1997 ident: 76301_CR9 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/37/6/I02 – volume: 199 start-page: 351 year: 1998 ident: 76301_CR48 publication-title: Commun. Math. Phys. doi: 10.1007/s002200050505 – volume: 19 start-page: 1 year: 1994 ident: 76301_CR17 publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)90095-7 – volume: 19 start-page: 1 year: 2018 ident: 76301_CR30 publication-title: J. Mach. Learn. Res. – volume-title: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations year: 2006 ident: 76301_CR50 – volume: 100 start-page: 035006 year: 2008 ident: 76301_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.035006 – volume: 23 start-page: 122513 year: 2016 ident: 76301_CR63 publication-title: Phys. Plasmas doi: 10.1063/1.4972824 – volume: 355 start-page: 602 year: 2017 ident: 76301_CR22 publication-title: Science doi: 10.1126/science.aag2302 – ident: 76301_CR31 – volume: 568 start-page: 526 year: 2019 ident: 76301_CR12 publication-title: Nature doi: 10.1038/s41586-019-1116-4 – ident: 76301_CR39 – ident: 76301_CR77 – volume: 116 start-page: 21983 year: 2019 ident: 76301_CR15 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1909854116 – volume: 3 start-page: e1602614 year: 2017 ident: 76301_CR27 publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – ident: 76301_CR34 – ident: 76301_CR40 – volume: 20 start-page: 102517 year: 2013 ident: 76301_CR53 publication-title: Phys. Plasmas doi: 10.1063/1.4826218 – volume: 25 start-page: 052502 year: 2018 ident: 76301_CR71 publication-title: Phys. Plasmas doi: 10.1063/1.5022277 – volume: 20 start-page: 19 year: 1994 ident: 76301_CR18 publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(94)00160-X – ident: 76301_CR82 – volume: 383 start-page: 808 year: 2019 ident: 76301_CR72 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.12.010 – volume: 378 start-page: 686 year: 2019 ident: 76301_CR33 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 104 start-page: 9943 year: 2007 ident: 76301_CR24 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0609476104 – volume: 10 start-page: 357 year: 2001 ident: 76301_CR49 publication-title: Acta Numerica doi: 10.1017/S096249290100006X – volume: 23 start-page: 092108 year: 2016 ident: 76301_CR60 publication-title: Phys. Plasmas doi: 10.1063/1.4962573 – volume: 10 start-page: 195 year: 1994 ident: 76301_CR16 publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1640100303 – volume: 349 start-page: 441 year: 2017 ident: 76301_CR66 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.08.033 – volume: 34 start-page: 014004 year: 2018 ident: 76301_CR8 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa9a90 – volume: 97 start-page: 094506 year: 2018 ident: 76301_CR42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.094506 – volume: 19 start-page: 084501 year: 2012 ident: 76301_CR52 publication-title: Phys. Plasmas doi: 10.1063/1.4742985 – ident: 76301_CR76 – ident: 76301_CR38 – volume: 50 start-page: 148 year: 2014 ident: 76301_CR79 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2014-14148-0 – volume: 2019 start-page: 3 year: 2019 ident: 76301_CR44 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2019)003 – ident: 76301_CR37 – volume: 365 start-page: eaaw1147 year: 2019 ident: 76301_CR43 publication-title: Science doi: 10.1126/science.aaw1147 – volume: 381 start-page: 568 year: 2017 ident: 76301_CR67 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.12.031 – volume: 47 start-page: 1392 year: 1993 ident: 76301_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1392 – volume: 24 start-page: 110703 year: 2017 ident: 76301_CR68 publication-title: Phys. Plasmas doi: 10.1063/1.5004429 – ident: 76301_CR81 – volume: 37 start-page: 1348 year: 2018 ident: 76301_CR87 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – ident: 76301_CR85 doi: 10.1093/mnrasl/slx008 – volume: 6 start-page: 109 year: 1992 ident: 76301_CR2 publication-title: Int. J. Approx. Reason. doi: 10.1016/0888-613X(92)90014-Q – volume: 57 start-page: 054007 year: 2015 ident: 76301_CR58 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/5/054007 – volume: 94 start-page: 013205 year: 2016 ident: 76301_CR62 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.013205 – volume: 9 start-page: 987 year: 1998 ident: 76301_CR19 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 18 start-page: 153:1 year: 2017 ident: 76301_CR29 publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 106044 year: 2019 ident: 76301_CR73 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab38dc |
| SSID | ssj0000529419 |
| Score | 2.462616 |
| Snippet | A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set... |
| SourceID | pubmedcentral osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19329 |
| SubjectTerms | 639/705/1046 639/766/259 Algorithms Artificial intelligence Differential equations Humanities and Social Sciences information theory and computation Learning algorithms Machine learning MATHEMATICS AND COMPUTING multidisciplinary Oscillations Science Science (multidisciplinary) scientific data Theory of relativity |
| Title | Machine learning and serving of discrete field theories |
| URI | https://link.springer.com/article/10.1038/s41598-020-76301-0 https://www.proquest.com/docview/2471554641 https://www.proquest.com/docview/2459352014 https://www.osti.gov/servlets/purl/1779752 https://pubmed.ncbi.nlm.nih.gov/PMC7652943 |
| Volume | 10 |
| WOSCitedRecordID | wos000594627900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1da9sw8FiTDfqy7zKvXfBgb5upLcmW9DS20rI9JJixQfYkbEneCsXukrSwf787RUlJYX3pizBItmXfne77DuAd6zrNdVNkJZc6E04WmVLCZcj5Wi5b4bnsQrMJOZup-VzX0eC2jGGVmzMxHNRusGQjP2Z4ilJElSg-Xv7JqGsUeVdjC409GKNkU1BI15TVWxsLebFEoWOuTM7V8RL5FeWUoc6EhEWa9A4_Gg1IVzuy5u1IyVvu0sCFzp7cd_9P4XGUP9NPa4R5Bg98_xwerTtS_n0BchqCK30au0n8SpvepWS5peuhSymLd4GCdhpC39KQB4nK9kv4cXb6_eRLFnsrZFZItcp8WzbI2XPmtVNdVTInWicK1Vao4-jOOSucl2XrO9Zo7lTuLG8rm1vVeo3aOD-AUT_0_hWk2jNfepSMGleKosGT3LGS4yN8Ja2SKoFi84eNjYXHqf_FhQkOcK7MGioGoWICVEyewPvtPZfrsht3rj4kwBkUGqjyraUQIbsyhZRaliyBow1ETCTQpbkBRwJvt9NIWuQvaXo_XNGaUqN8ikpkAnIHD7Z7ouLcuzP9-e9QpFtWhHw8gQ8bjLl5-f-_5PXdez2EfUa4S2ZtfQSj1eLKv4GH9np1vlxMYE_OZRjVBMafT2f1t0mwMUwCWdAocRzXX6f1z383dBMn |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBVQuvBGhBYIEJ4ia2E5sHxBCQNWq7aqHIvVmEtuBlaqkbLag_il-IzNOstVWorceuEVy4jjxNy_PC-A1q2vNdZklOZc6EU5miVLCJSj5Ki4r4bmsQ7MJOZ2q42N9uAZ_xlwYCqsceWJg1K61dEa-xZCLUkSVyD6c_kyoaxR5V8cWGj0s9vz5bzTZuve7n3F_3zC2_eXo004ydBVIrJBqkfgqL1Gmpcxrp-oiZ05UTmSqKlC717VzVjgv88rXrNTcqdRZXhU2taryGu1QjvPegJuCKotRqCA7XJ7pkNdMZHrIzUm52upQPlIOG9poSMhkua_Iv0mLdLyi216OzLzkng1Sb_ve__a_7sPdQb-OP_YE8QDWfPMQbvcdN88fgTwIwaM-HrplfI_LxsV0Mk3XbR1TlvIcDYk4hPbFIc9z5rvH8PVaVv0EJk3b-KcQa8987lHzK10ushIllWM5xyl8Ia2SKoJs3FFjh8Lq1N_jxAQHP1emR4FBFJiAApNG8Hb5zGlfVuTKuzcIKAaVIqrsaykEyi5MJqWWOYtgc0SAGRhQZy62P4JXy2FkHeQPKhvfntE9uUb9G43kCOQK7pZrouLjqyPN7EcoQi4LAjuP4N2I0IuX__tLnl291pewvnN0sG_2d6d7G3CHEd3QEb7ehMlifuafwy37azHr5i8C4cXw7bqR-xes6GxD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceCNCCwQJThBtYjuxfUAIUVasSld7AKmcTGI7sFKVlM0W1L_Gr2Mmj622Er31wC2SE8eJv3l5XgAvWFlqrvMkSrnUkXAyiZQSLkLJV3BZCM9l2TabkLOZOjrS8y34M-TCUFjlwBNbRu1qS2fkY4ZclCKqRDIu-7CI-f7k7cnPiDpIkad1aKfRQeTAn_1G8615M93HvX7J2OTD5_cfo77DQGSFVKvIF2mO8i1mXjtVZilzonAiUUWGmr4unbPCeZkWvmS55k7FzvIis7FVhddok3Kc9xpso0ou2Ai259PD-df1CQ_50ESi-0ydmKtxg9KSMtrQYkOyJjt-QxqOaqTqDU33YpzmBWdtKwMnt__nv3cHbvWad_iuI5W7sOWre3Cj68V5dh_kYRtW6sO-j8b3MK9cSGfWdF2XIeUvL9HECNugv7DNAF345gF8uZJVP4RRVVf-EYTaM5961Alzl4okRxnmWMpxCp9Jq6QKIBl219i-5Dp1_jg2reufK9MhwiAiTIsIEwfwav3MSVdw5NK7dwk0BtUlqvlrKTjKrkwipZYpC2BvQIPpWVNjzqEQwPP1MDIV8hTlla9P6Z5Uo2aO5nMAcgOD6zVRWfLNkWrxoy1PLjMCPg_g9YDW85f_-0seX77WZ7CDgDWfprODXbjJiITobF_vwWi1PPVP4Lr9tVo0y6c9FYbw7aqh-xe7EnaM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+serving+of+discrete+field+theories&rft.jtitle=Scientific+reports&rft.au=Qin%2C+Hong&rft.date=2020-11-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76301-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_76301_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |