Machine learning and serving of discrete field theories

A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 10; H. 1; S. 19329
1. Verfasser: Qin, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 09.11.2020
Nature Publishing Group
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton’s laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important.
AbstractList A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton’s laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important.
A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton's laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important.A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set of observational data on a spacetime lattice, and the serving algorithm uses the learned discrete field theory to predict new observations of the field for new boundary and initial conditions. The approach of learning discrete field theories overcomes the difficulties associated with learning continuous theories by artificial intelligence. The serving algorithm of discrete field theories belongs to the family of structure-preserving geometric algorithms, which have been proven to be superior to the conventional algorithms based on discretization of differential equations. The effectiveness of the method and algorithms developed is demonstrated using the examples of nonlinear oscillations and the Kepler problem. In particular, the learning algorithm learns a discrete field theory from a set of data of planetary orbits similar to what Kepler inherited from Tycho Brahe in 1601, and the serving algorithm correctly predicts other planetary orbits, including parabolic and hyperbolic escaping orbits, of the solar system without learning or knowing Newton's laws of motion and universal gravitation. The proposed algorithms are expected to be applicable when the effects of special relativity and general relativity are important.
ArticleNumber 19329
Author Qin, Hong
Author_xml – sequence: 1
  givenname: Hong
  surname: Qin
  fullname: Qin, Hong
  email: hongqin@princeton.edu
  organization: Plasma Physics Laboratory, Princeton University
BackLink https://www.osti.gov/servlets/purl/1779752$$D View this record in Osti.gov
BookMark eNp9UUtrFTEYDVKxtfYPuBp042Y078dGkOILKm50HTLJN_emzE1qklvw35txKmoXzSYf5Dy-k_MUnaScAKHnBL8mmOk3lRNh9IgpHpVkmIz4ETqjmIuRMkpP_plP0UWt17gfQQ0n5gk6ZYxIrbU8Q-qL8_uYYFjAlRTTbnApDBXK7TrneQix-gINhjnCEoa2h1wi1Gfo8eyWChd39zn6_uH9t8tP49XXj58v312NnivdRpiEo5xjCiboWQoa-BQ40ZPEWpo5BM8DKDHBTJ1hQePg2SQ99noCAxNl5-jtpntznA4QPKRW3GJvSjy48tNmF-3_Lynu7S7fWiXXtKwLvNgEcm3RVh8b-L3PKYFvlihllFhdXt25lPzjCLXZQ48Ny-IS5GO1lAvDBMWEd-jLe9DrfCyp_0FHKSIEl5x0lN5QvuRaC8y2G7sW87pkXCzBdm3Rbi3a3qL93aLFnUrvUf-EfZDENlLt4LSD8nerB1i_AOfFr2U
CitedBy_id crossref_primary_10_1088_2058_6272_abf125
crossref_primary_10_1017_S0022377821000702
crossref_primary_10_1016_j_jmps_2022_104909
crossref_primary_10_1007_s12559_023_10238_0
crossref_primary_10_1557_s43578_023_00892_3
crossref_primary_10_1007_s42979_022_01094_0
crossref_primary_10_1090_mcom_4120
crossref_primary_10_1177_02783649231169492
crossref_primary_10_1017_S0022377821000155
crossref_primary_10_1016_j_cam_2022_114780
crossref_primary_10_1088_2632_2153_acec31
crossref_primary_10_1038_s41598_023_34862_w
crossref_primary_10_1088_1674_1056_ac8d88
crossref_primary_10_1016_j_ifacol_2023_10_1457
crossref_primary_10_1088_1361_6587_abcbaa
crossref_primary_10_1103_PhysRevE_111_025301
Cites_doi 10.1007/JHEP06(2019)003
10.1063/1.4976849
10.1126/science.aaw1147
10.1007/s002200050505
10.1016/j.jcp.2018.10.045
10.1016/j.cpc.2019.04.003
10.1109/TMI.2018.2827462
10.1088/0029-5515/56/1/014001
10.1007/JHEP05(2019)036
10.1103/PhysRevLett.100.035006
10.1002/cnm.1640100303
10.1115/1.4043148
10.1017/S0022377820000434
10.1063/1.4930118
10.1016/j.physleta.2018.12.010
10.1063/1.4826218
10.1103/PhysRevE.94.013205
10.1103/PhysRevD.97.094506
10.1063/1.4897372
10.1038/s41586-019-1116-4
10.1063/1.5022277
10.1073/pnas.1814058116
10.1063/1.4972824
10.1126/sciadv.1602614
10.1063/1.4867669
10.1016/S0893-6080(05)80058-9
10.1016/j.physleta.2016.12.031
10.1103/PhysRevD.86.054505
10.1126/science.aag2302
10.1007/978-1-4899-3093-4
10.1063/1.4962573
10.1103/PhysRevE.47.1392
10.1088/0029-5515/37/6/I02
10.1088/0029-5515/43/12/021
10.1063/1.4742985
10.1017/S096249290100006X
10.1063/1.4938034
10.1088/1741-4326/ab38dc
10.1109/72.712178
10.1016/0895-7177(94)90095-7
10.1063/1.4967276
10.1126/science.1165893
10.1088/0741-3335/57/5/054007
10.1016/0895-7177(94)00160-X
10.1088/0029-5515/39/2/308
10.1016/j.jcp.2019.108925
10.1111/1467-9213.00309
10.1088/1361-6420/aa9a90
10.1103/PhysRevFluids.3.074602
10.1088/0954-898X_9_4_008
10.1103/PhysRevB.96.205152
10.1109/72.80202
10.1063/1.5004429
10.1016/0888-613X(92)90014-Q
10.1017/S002237781700040X
10.1016/j.jcp.2017.08.033
10.1088/2058-6272/aac3d1
10.1063/1.4986097
10.1073/pnas.0609476104
10.1073/pnas.1909854116
10.1073/pnas.1517384113
10.1140/epja/i2014-14148-0
10.1063/1.5128231
10.1093/mnrasl/slx008
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
CorporateAuthor_xml – name: Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
OIOZB
OTOTI
5PM
DOI 10.1038/s41598-020-76301-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7652943
1779752
10_1038_s41598_020_76301_0
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
OIOZB
OTOTI
U1R
5PM
ID FETCH-LOGICAL-c478t-eb5a24402e9d8f652d4bd418b60869fddc4de75bef2a93d80dc3b6c0c8be9eb23
IEDL.DBID M2P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594627900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:49:05 EST 2025
Thu May 18 22:29:47 EDT 2023
Sun Nov 09 12:03:43 EST 2025
Tue Oct 07 07:45:05 EDT 2025
Sat Nov 29 04:02:51 EST 2025
Tue Nov 18 22:39:22 EST 2025
Fri Feb 21 02:38:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-eb5a24402e9d8f652d4bd418b60869fddc4de75bef2a93d80dc3b6c0c8be9eb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-09CH11466
USDOE
OpenAccessLink https://www.proquest.com/docview/2471554641?pq-origsite=%requestingapplication%
PMID 33168886
PQID 2471554641
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7652943
osti_scitechconnect_1779752
proquest_miscellaneous_2459352014
proquest_journals_2471554641
crossref_citationtrail_10_1038_s41598_020_76301_0
crossref_primary_10_1038_s41598_020_76301_0
springer_journals_10_1038_s41598_020_76301_0
PublicationCentury 2000
PublicationDate 2020-11-09
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References He (CR56) 2015; 22
Ramacher (CR3) 1993; 6
Xiao, Qin, Liu (CR70) 2018; 20
Nomura, Darmawan, Yamaji, Imada (CR23) 2017; 96
Long, Lu, Dong (CR21) 2019; 399
Schaeffer (CR28) 2017; 473
CR39
CR38
CR37
Kraus, Kormann, Morrison, Sonnendrücker (CR69) 2017; 83
CR36
CR35
He, Sun, Qin, Liu (CR60) 2016; 23
CR34
CR77
Cerri, Nguyen, Pierini, Spiropulu, Vlimant (CR86) 2019; 2019
CR76
CR31
Wu, Xiao, Paterson (CR13) 2018; 3
Ellison (CR71) 2018; 25
Glasser, Qin (CR75) 2020; 86
Chen (CR66) 2017; 349
Carleo, Troyer (CR22) 2017; 355
Marsden, Patrick, Shkoller (CR48) 1998; 199
Beane, Davoudi, Savage (CR79) 2014; 50
He, Zhou, Sun, Liu, Qin (CR67) 2017; 381
Brunton, Proctor, Kutz (CR26) 2016; 113
Zhou, Qin, Burby, Bhattacharjee (CR55) 2014; 21
CR46
CR45
Bongard, Lipson (CR24) 2007; 104
Gelß, Klus, Eisert, Schßtte (CR32) 2019; 14
CR88
Zhang (CR54) 2014; 21
CR41
CR85
Wilde (CR5) 1993; 47
CR40
Noé, Olsson, Köhler, Wu (CR43) 2019; 365
CR84
Narendra, Parthasarathy (CR2) 1992; 6
CR82
Han, Ma, Ma, Weinan (CR15) 2019; 116
CR81
CR80
Weinan (CR6) 2017; 5
Kates-Harbeck, Svyatkovskiy, Tang (CR12) 2019; 568
Davoudi, Savage (CR83) 2012; 86
Marsden, West (CR49) 2001; 10
Rudy, Brunton, Proctor, Kutz (CR27) 2017; 3
Chen, Rubanova, Bettencourt, Duvenaud (CR7) 2018; 31
Squire, Qin, Tang (CR52) 2012; 19
Xiao, Qin (CR73) 2019; 59
Burby, Ellison (CR68) 2017; 24
Baydin, Pearlmutter, Radul, Siskind (CR29) 2017; 18
Ellison, Finn, Qin, Tang (CR58) 2015; 57
Xiao (CR61) 2016; 23
Haber, Ruthotto (CR8) 2018; 34
Xiao, Qin (CR74) 2019; 241
Wroblewski, Jahns, Leuer (CR9) 1997; 37
Burby (CR65) 2017; 24
Yang (CR87) 2018; 37
Narendra, Parthasarathy (CR1) 1990; 1
Vannucci, Oliveira, Tajima (CR10) 1999; 39
Meade, Fernández (CR17) 1994; 19
Bostrom (CR78) 2003; 53
Meade, Fernández (CR18) 1994; 20
Halverson, Nelson, Ruehle (CR44) 2019; 2019
Dissanayake, Phan-Thien (CR16) 1994; 10
Xiao, Qin, Liu, Zhang (CR64) 2017; 24
Hairer, Lubich, Wanner (CR50) 2006
Bar-Sinai, Hoyer, Hickey, Brenner (CR14) 2019; 116
Zhang (CR62) 2016; 94
Lagaris, Likas, Fotiadis (CR19) 1998; 9
Qin (CR59) 2016; 56
Xiao, Qin, Shi, Liu, Zhang (CR72) 2019; 383
Raissi (CR30) 2018; 19
Yoshino (CR11) 2003; 43
Shanahan, Trewartha, Detmold (CR42) 2018; 97
Bailer-Jones, MacKay, Withers (CR20) 1998; 9
Xiao, Liu, Qin, Yu, Xiang (CR57) 2015; 22
Schmidt, Lipson (CR25) 2009; 324
Howse, Abdallah, Heileman (CR4) 1995; 8
Sanz-Serna, Calvo (CR47) 1994
Wang, Liu, Qin (CR63) 2016; 23
Raissi, Perdikaris, Karniadakis (CR33) 2019; 378
Qin, Guan (CR51) 2008; 100
Xiao, Liu, Qin, Yu (CR53) 2013; 20
PD Wilde (76301_CR5) 1993; 47
CAL Bailer-Jones (76301_CR20) 1998; 9
JE Marsden (76301_CR48) 1998; 199
J Squire (76301_CR52) 2012; 19
Y Zhou (76301_CR55) 2014; 21
F Noé (76301_CR43) 2019; 365
J Xiao (76301_CR72) 2019; 383
N Bostrom (76301_CR78) 2003; 53
JW Howse (76301_CR4) 1995; 8
M Raissi (76301_CR30) 2018; 19
R Zhang (76301_CR54) 2014; 21
AS Glasser (76301_CR75) 2020; 86
J Han (76301_CR15) 2019; 116
JE Marsden (76301_CR49) 2001; 10
JM Sanz-Serna (76301_CR47) 1994
PE Shanahan (76301_CR42) 2018; 97
J Bongard (76301_CR24) 2007; 104
P Gelß (76301_CR32) 2019; 14
Z Long (76301_CR21) 2019; 399
SL Brunton (76301_CR26) 2016; 113
Q Yang (76301_CR87) 2018; 37
CL Ellison (76301_CR71) 2018; 25
E Hairer (76301_CR50) 2006
KS Narendra (76301_CR2) 1992; 6
JW Burby (76301_CR68) 2017; 24
J Xiao (76301_CR57) 2015; 22
H Schaeffer (76301_CR28) 2017; 473
AG Baydin (76301_CR29) 2017; 18
J Kates-Harbeck (76301_CR12) 2019; 568
J-L Wu (76301_CR13) 2018; 3
JW Burby (76301_CR65) 2017; 24
E Haber (76301_CR8) 2018; 34
AJ Meade Jr (76301_CR17) 1994; 19
76301_CR40
76301_CR84
R Zhang (76301_CR62) 2016; 94
76301_CR41
76301_CR85
H Qin (76301_CR59) 2016; 56
76301_CR80
D Wroblewski (76301_CR9) 1997; 37
Q Chen (76301_CR66) 2017; 349
R Yoshino (76301_CR11) 2003; 43
76301_CR82
76301_CR81
J Xiao (76301_CR73) 2019; 59
IE Lagaris (76301_CR19) 1998; 9
CL Ellison (76301_CR58) 2015; 57
Y He (76301_CR60) 2016; 23
76301_CR88
A Vannucci (76301_CR10) 1999; 39
H Qin (76301_CR51) 2008; 100
76301_CR46
76301_CR45
SR Beane (76301_CR79) 2014; 50
G Carleo (76301_CR22) 2017; 355
M Schmidt (76301_CR25) 2009; 324
SH Rudy (76301_CR27) 2017; 3
MWMG Dissanayake (76301_CR16) 1994; 10
Y He (76301_CR67) 2017; 381
76301_CR31
J Xiao (76301_CR74) 2019; 241
J Halverson (76301_CR44) 2019; 2019
76301_CR37
Y Wang (76301_CR63) 2016; 23
76301_CR36
76301_CR39
U Ramacher (76301_CR3) 1993; 6
76301_CR38
M Kraus (76301_CR69) 2017; 83
76301_CR77
M Raissi (76301_CR33) 2019; 378
76301_CR76
76301_CR35
76301_CR34
TQ Chen (76301_CR7) 2018; 31
Y Bar-Sinai (76301_CR14) 2019; 116
J Xiao (76301_CR64) 2017; 24
KS Narendra (76301_CR1) 1990; 1
Y He (76301_CR56) 2015; 22
E Weinan (76301_CR6) 2017; 5
J Xiao (76301_CR53) 2013; 20
O Cerri (76301_CR86) 2019; 2019
AJ Meade Jr (76301_CR18) 1994; 20
Y Nomura (76301_CR23) 2017; 96
J Xiao (76301_CR61) 2016; 23
J Xiao (76301_CR70) 2018; 20
Z Davoudi (76301_CR83) 2012; 86
References_xml – ident: CR45
– volume: 2019
  start-page: 3
  year: 2019
  ident: CR44
  article-title: Branes with brains: Exploring string vacua with deep reinforcement learning
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2019)003
– volume: 24
  start-page: 032101
  year: 2017
  ident: CR65
  article-title: Finite-dimensional collisionless kinetic theory
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4976849
– volume: 365
  start-page: eaaw1147
  year: 2019
  ident: CR43
  article-title: Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
  publication-title: Science
  doi: 10.1126/science.aaw1147
– volume: 199
  start-page: 351
  year: 1998
  end-page: 395
  ident: CR48
  article-title: Multisymplectic geometry, variational integrators, and nonlinear pdes
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050505
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR33
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 241
  start-page: 19
  year: 2019
  end-page: 27
  ident: CR74
  article-title: Explicit high-order gauge-independent symplectic algorithms for relativistic charged particle dynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.04.003
– volume: 37
  start-page: 1348
  year: 2018
  end-page: 1357
  ident: CR87
  article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: CR39
– volume: 56
  start-page: 014001
  year: 2016
  ident: CR59
  article-title: Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/1/014001
– volume: 2019
  start-page: 36
  year: 2019
  ident: CR86
  article-title: Variational autoencoders for new physics mining at the large hadron collider
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2019)036
– volume: 100
  start-page: 035006
  year: 2008
  ident: CR51
  article-title: Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.035006
– volume: 10
  start-page: 195
  year: 1994
  end-page: 201
  ident: CR16
  article-title: Neural-network-based approximations for solving partial differential equations
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1640100303
– ident: CR35
– volume: 14
  start-page: 061006
  year: 2019
  ident: CR32
  article-title: Multidimensional approximation of nonlinear dynamical systems
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4043148
– volume: 86
  start-page: 835860303
  year: 2020
  ident: CR75
  article-title: The geometric theory of charge conservation in particle-in-cell simulations
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377820000434
– ident: CR80
– ident: CR77
– volume: 22
  start-page: 092305
  year: 2015
  ident: CR57
  article-title: Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4930118
– volume: 383
  start-page: 808
  year: 2019
  end-page: 812
  ident: CR72
  article-title: A lattice Maxwell system with discrete space–time symmetry and local energy–momentum conservation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.12.010
– ident: CR84
– volume: 20
  start-page: 102517
  year: 2013
  ident: CR53
  article-title: A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4826218
– volume: 94
  start-page: 013205
  year: 2016
  ident: CR62
  article-title: Explicit symplectic algorithms based on generating functions for charged particle dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.013205
– volume: 97
  start-page: 094506
  year: 2018
  ident: CR42
  article-title: Machine learning action parameters in lattice quantum chromodynamics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.094506
– volume: 31
  start-page: 6572
  year: 2018
  end-page: 6583
  ident: CR7
  article-title: Neural ordinary differential equations
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR46
– volume: 21
  start-page: 102109
  year: 2014
  ident: CR55
  article-title: Variational integration for ideal magnetohydrodynamics with built-in advection equations
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4897372
– ident: CR88
– volume: 568
  start-page: 526
  year: 2019
  ident: CR12
  article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1116-4
– volume: 25
  start-page: 052502
  year: 2018
  ident: CR71
  article-title: Degenerate variational integrators for magnetic field line flow and guiding center trajectories
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5022277
– volume: 116
  start-page: 15344
  year: 2019
  end-page: 15349
  ident: CR14
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814058116
– volume: 23
  start-page: 122513
  year: 2016
  ident: CR63
  article-title: Lorentz covariant canonical symplectic algorithms for dynamics of charged particles
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4972824
– volume: 18
  start-page: 153:1
  year: 2017
  end-page: 153:43
  ident: CR29
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J. Mach. Learn. Res.
– ident: CR36
– ident: CR85
– volume: 19
  start-page: 1
  year: 2018
  end-page: 24
  ident: CR30
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– ident: CR81
– volume: 3
  start-page: e1602614
  year: 2017
  ident: CR27
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 21
  start-page: 032504
  year: 2014
  ident: CR54
  article-title: Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4867669
– volume: 6
  start-page: 547
  year: 1993
  end-page: 557
  ident: CR3
  article-title: Hamiltonian dynamics of neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80058-9
– volume: 5
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR6
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
– volume: 381
  start-page: 568
  year: 2017
  end-page: 573
  ident: CR67
  article-title: Explicit k -symplectic algorithms for charged particle dynamics
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.12.031
– volume: 86
  start-page: 054505
  year: 2012
  ident: CR83
  article-title: Restoration of rotational symmetry in the continuum limit of lattice field theories
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.054505
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  ident: CR22
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– year: 1994
  ident: CR47
  publication-title: Numerical Hamiltonian Problems
  doi: 10.1007/978-1-4899-3093-4
– volume: 23
  start-page: 092108
  year: 2016
  ident: CR60
  article-title: Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4962573
– volume: 47
  start-page: 1392
  year: 1993
  end-page: 1396
  ident: CR5
  article-title: Class of Hamiltonian neural networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1392
– volume: 37
  start-page: 725
  year: 1997
  end-page: 741
  ident: CR9
  article-title: Tokamak disruption alarm based on a neural network model of the high-beta limit
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/37/6/I02
– volume: 43
  start-page: 1771
  year: 2003
  end-page: 1786
  ident: CR11
  article-title: Neural-net disruption predictor in JT-60u
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/12/021
– volume: 19
  start-page: 084501
  year: 2012
  ident: CR52
  article-title: Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4742985
– volume: 10
  start-page: 357
  year: 2001
  end-page: 514
  ident: CR49
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numerica
  doi: 10.1017/S096249290100006X
– volume: 22
  start-page: 124503
  year: 2015
  ident: CR56
  article-title: Hamiltonian time integrators for Vlasov-Maxwell equations
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4938034
– volume: 59
  start-page: 106044
  year: 2019
  ident: CR73
  article-title: Field theory and a structure-preserving geometric particle-in-cell algorithm for drift wave instability and turbulence
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab38dc
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: CR19
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 19
  start-page: 1
  year: 1994
  end-page: 25
  ident: CR17
  article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)90095-7
– ident: CR37
– volume: 23
  start-page: 112107
  year: 2016
  ident: CR61
  article-title: Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4967276
– ident: CR82
– volume: 324
  start-page: 81
  year: 2009
  end-page: 85
  ident: CR25
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 57
  start-page: 054007
  year: 2015
  ident: CR58
  article-title: Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/57/5/054007
– ident: CR40
– volume: 20
  start-page: 19
  year: 1994
  end-page: 44
  ident: CR18
  article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)00160-X
– volume: 39
  start-page: 255
  year: 1999
  end-page: 262
  ident: CR10
  article-title: Forecast of TEXT plasma disruptions using soft x rays as input signal in a neural network
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/2/308
– volume: 399
  start-page: 108925
  year: 2019
  ident: CR21
  article-title: PDE-net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108925
– volume: 53
  start-page: 243
  year: 2003
  end-page: 255
  ident: CR78
  article-title: Are we living in a computer simulation?
  publication-title: Philos. Quart.
  doi: 10.1111/1467-9213.00309
– volume: 8
  start-page: 274
  year: 1995
  end-page: 280
  ident: CR4
  article-title: Gradient and Hamiltonian dynamics applied to learning in neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 014004
  year: 2018
  ident: CR8
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9a90
– volume: 3
  start-page: 074602
  year: 2018
  ident: CR13
  article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– volume: 9
  start-page: 531
  year: 1998
  end-page: 547
  ident: CR20
  article-title: A recurrent neural network for modelling dynamical systems
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_9_4_008
– year: 2006
  ident: CR50
  publication-title: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations
– volume: 96
  start-page: 205152
  year: 2017
  ident: CR23
  article-title: Restricted boltzmann machine learning for solving strongly correlated quantum systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205152
– ident: CR38
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: CR1
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– volume: 24
  start-page: 110703
  year: 2017
  ident: CR68
  article-title: Toroidal regularization of the guiding center Lagrangian
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5004429
– ident: CR31
– volume: 6
  start-page: 109
  year: 1992
  end-page: 131
  ident: CR2
  article-title: Neural networks and dynamical systems
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/0888-613X(92)90014-Q
– ident: CR34
– volume: 83
  start-page: 905830401
  year: 2017
  ident: CR69
  article-title: GEMPIC: geometric electromagnetic particle-in-cell methods
  publication-title: J. Plasma Phys.
  doi: 10.1017/S002237781700040X
– volume: 349
  start-page: 441
  year: 2017
  end-page: 452
  ident: CR66
  article-title: Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger-Maxwell systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.08.033
– ident: CR76
– volume: 20
  start-page: 110501
  year: 2018
  ident: CR70
  article-title: Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aac3d1
– ident: CR41
– volume: 24
  start-page: 062112
  year: 2017
  ident: CR64
  article-title: Local energy conservation law for a spatially-discretized Hamiltonian Vlasov-Maxwell system
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4986097
– volume: 104
  start-page: 9943
  year: 2007
  end-page: 9948
  ident: CR24
  article-title: Automated reverse engineering of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0609476104
– volume: 116
  start-page: 21983
  year: 2019
  end-page: 21991
  ident: CR15
  article-title: Uniformly accurate machine learning-based hydrodynamic models for kinetic equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1909854116
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: CR26
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 473
  start-page: 20160446
  year: 2017
  ident: CR28
  article-title: Learning partial differential equations via data discovery and sparse optimization
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 50
  start-page: 148
  year: 2014
  ident: CR79
  article-title: Constraints on the universe as a numerical simulation
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2014-14148-0
– volume: 31
  start-page: 6572
  year: 2018
  ident: 76301_CR7
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 113
  start-page: 3932
  year: 2016
  ident: 76301_CR26
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 6
  start-page: 547
  year: 1993
  ident: 76301_CR3
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80058-9
– volume: 8
  start-page: 274
  year: 1995
  ident: 76301_CR4
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 102109
  year: 2014
  ident: 76301_CR55
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4897372
– volume: 5
  start-page: 1
  year: 2017
  ident: 76301_CR6
  publication-title: Commun. Math. Stat.
– volume: 473
  start-page: 20160446
  year: 2017
  ident: 76301_CR28
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– ident: 76301_CR36
  doi: 10.1063/1.5128231
– ident: 76301_CR80
– volume: 1
  start-page: 4
  year: 1990
  ident: 76301_CR1
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– ident: 76301_CR88
– ident: 76301_CR46
– volume: 24
  start-page: 032101
  year: 2017
  ident: 76301_CR65
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4976849
– ident: 76301_CR84
– volume-title: Numerical Hamiltonian Problems
  year: 1994
  ident: 76301_CR47
  doi: 10.1007/978-1-4899-3093-4
– volume: 23
  start-page: 112107
  year: 2016
  ident: 76301_CR61
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4967276
– volume: 21
  start-page: 032504
  year: 2014
  ident: 76301_CR54
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4867669
– volume: 83
  start-page: 905830401
  year: 2017
  ident: 76301_CR69
  publication-title: J. Plasma Phys.
  doi: 10.1017/S002237781700040X
– volume: 9
  start-page: 531
  year: 1998
  ident: 76301_CR20
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_9_4_008
– volume: 24
  start-page: 062112
  year: 2017
  ident: 76301_CR64
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4986097
– volume: 22
  start-page: 124503
  year: 2015
  ident: 76301_CR56
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4938034
– volume: 324
  start-page: 81
  year: 2009
  ident: 76301_CR25
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 86
  start-page: 054505
  year: 2012
  ident: 76301_CR83
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.054505
– volume: 22
  start-page: 092305
  year: 2015
  ident: 76301_CR57
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4930118
– volume: 20
  start-page: 110501
  year: 2018
  ident: 76301_CR70
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aac3d1
– volume: 116
  start-page: 15344
  year: 2019
  ident: 76301_CR14
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814058116
– volume: 96
  start-page: 205152
  year: 2017
  ident: 76301_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205152
– ident: 76301_CR35
– volume: 56
  start-page: 014001
  year: 2016
  ident: 76301_CR59
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/1/014001
– volume: 3
  start-page: 074602
  year: 2018
  ident: 76301_CR13
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– volume: 39
  start-page: 255
  year: 1999
  ident: 76301_CR10
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/2/308
– volume: 399
  start-page: 108925
  year: 2019
  ident: 76301_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108925
– volume: 86
  start-page: 835860303
  year: 2020
  ident: 76301_CR75
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377820000434
– volume: 43
  start-page: 1771
  year: 2003
  ident: 76301_CR11
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/12/021
– volume: 241
  start-page: 19
  year: 2019
  ident: 76301_CR74
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.04.003
– volume: 14
  start-page: 061006
  year: 2019
  ident: 76301_CR32
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4043148
– ident: 76301_CR41
– volume: 53
  start-page: 243
  year: 2003
  ident: 76301_CR78
  publication-title: Philos. Quart.
  doi: 10.1111/1467-9213.00309
– volume: 2019
  start-page: 36
  year: 2019
  ident: 76301_CR86
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2019)036
– ident: 76301_CR45
– volume: 37
  start-page: 725
  year: 1997
  ident: 76301_CR9
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/37/6/I02
– volume: 199
  start-page: 351
  year: 1998
  ident: 76301_CR48
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050505
– volume: 19
  start-page: 1
  year: 1994
  ident: 76301_CR17
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)90095-7
– volume: 19
  start-page: 1
  year: 2018
  ident: 76301_CR30
  publication-title: J. Mach. Learn. Res.
– volume-title: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: 76301_CR50
– volume: 100
  start-page: 035006
  year: 2008
  ident: 76301_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.035006
– volume: 23
  start-page: 122513
  year: 2016
  ident: 76301_CR63
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4972824
– volume: 355
  start-page: 602
  year: 2017
  ident: 76301_CR22
  publication-title: Science
  doi: 10.1126/science.aag2302
– ident: 76301_CR31
– volume: 568
  start-page: 526
  year: 2019
  ident: 76301_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-1116-4
– ident: 76301_CR39
– ident: 76301_CR77
– volume: 116
  start-page: 21983
  year: 2019
  ident: 76301_CR15
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1909854116
– volume: 3
  start-page: e1602614
  year: 2017
  ident: 76301_CR27
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– ident: 76301_CR34
– ident: 76301_CR40
– volume: 20
  start-page: 102517
  year: 2013
  ident: 76301_CR53
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4826218
– volume: 25
  start-page: 052502
  year: 2018
  ident: 76301_CR71
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5022277
– volume: 20
  start-page: 19
  year: 1994
  ident: 76301_CR18
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)00160-X
– ident: 76301_CR82
– volume: 383
  start-page: 808
  year: 2019
  ident: 76301_CR72
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.12.010
– volume: 378
  start-page: 686
  year: 2019
  ident: 76301_CR33
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 104
  start-page: 9943
  year: 2007
  ident: 76301_CR24
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0609476104
– volume: 10
  start-page: 357
  year: 2001
  ident: 76301_CR49
  publication-title: Acta Numerica
  doi: 10.1017/S096249290100006X
– volume: 23
  start-page: 092108
  year: 2016
  ident: 76301_CR60
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4962573
– volume: 10
  start-page: 195
  year: 1994
  ident: 76301_CR16
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1640100303
– volume: 349
  start-page: 441
  year: 2017
  ident: 76301_CR66
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.08.033
– volume: 34
  start-page: 014004
  year: 2018
  ident: 76301_CR8
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9a90
– volume: 97
  start-page: 094506
  year: 2018
  ident: 76301_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.094506
– volume: 19
  start-page: 084501
  year: 2012
  ident: 76301_CR52
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4742985
– ident: 76301_CR76
– ident: 76301_CR38
– volume: 50
  start-page: 148
  year: 2014
  ident: 76301_CR79
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2014-14148-0
– volume: 2019
  start-page: 3
  year: 2019
  ident: 76301_CR44
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2019)003
– ident: 76301_CR37
– volume: 365
  start-page: eaaw1147
  year: 2019
  ident: 76301_CR43
  publication-title: Science
  doi: 10.1126/science.aaw1147
– volume: 381
  start-page: 568
  year: 2017
  ident: 76301_CR67
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.12.031
– volume: 47
  start-page: 1392
  year: 1993
  ident: 76301_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1392
– volume: 24
  start-page: 110703
  year: 2017
  ident: 76301_CR68
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5004429
– ident: 76301_CR81
– volume: 37
  start-page: 1348
  year: 2018
  ident: 76301_CR87
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: 76301_CR85
  doi: 10.1093/mnrasl/slx008
– volume: 6
  start-page: 109
  year: 1992
  ident: 76301_CR2
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/0888-613X(92)90014-Q
– volume: 57
  start-page: 054007
  year: 2015
  ident: 76301_CR58
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/57/5/054007
– volume: 94
  start-page: 013205
  year: 2016
  ident: 76301_CR62
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.013205
– volume: 9
  start-page: 987
  year: 1998
  ident: 76301_CR19
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 18
  start-page: 153:1
  year: 2017
  ident: 76301_CR29
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 106044
  year: 2019
  ident: 76301_CR73
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab38dc
SSID ssj0000529419
Score 2.462616
Snippet A method for machine learning and serving of discrete field theories in physics is developed. The learning algorithm trains a discrete field theory from a set...
SourceID pubmedcentral
osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19329
SubjectTerms 639/705/1046
639/766/259
Algorithms
Artificial intelligence
Differential equations
Humanities and Social Sciences
information theory and computation
Learning algorithms
Machine learning
MATHEMATICS AND COMPUTING
multidisciplinary
Oscillations
Science
Science (multidisciplinary)
scientific data
Theory of relativity
Title Machine learning and serving of discrete field theories
URI https://link.springer.com/article/10.1038/s41598-020-76301-0
https://www.proquest.com/docview/2471554641
https://www.proquest.com/docview/2459352014
https://www.osti.gov/servlets/purl/1779752
https://pubmed.ncbi.nlm.nih.gov/PMC7652943
Volume 10
WOSCitedRecordID wos000594627900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1da9sw8FiTDfqy7zKvXfBgb5upLcmW9DS20rI9JJixQfYkbEneCsXukrSwf787RUlJYX3pizBItmXfne77DuAd6zrNdVNkJZc6E04WmVLCZcj5Wi5b4bnsQrMJOZup-VzX0eC2jGGVmzMxHNRusGQjP2Z4ilJElSg-Xv7JqGsUeVdjC409GKNkU1BI15TVWxsLebFEoWOuTM7V8RL5FeWUoc6EhEWa9A4_Gg1IVzuy5u1IyVvu0sCFzp7cd_9P4XGUP9NPa4R5Bg98_xwerTtS_n0BchqCK30au0n8SpvepWS5peuhSymLd4GCdhpC39KQB4nK9kv4cXb6_eRLFnsrZFZItcp8WzbI2XPmtVNdVTInWicK1Vao4-jOOSucl2XrO9Zo7lTuLG8rm1vVeo3aOD-AUT_0_hWk2jNfepSMGleKosGT3LGS4yN8Ja2SKoFi84eNjYXHqf_FhQkOcK7MGioGoWICVEyewPvtPZfrsht3rj4kwBkUGqjyraUQIbsyhZRaliyBow1ETCTQpbkBRwJvt9NIWuQvaXo_XNGaUqN8ikpkAnIHD7Z7ouLcuzP9-e9QpFtWhHw8gQ8bjLl5-f-_5PXdez2EfUa4S2ZtfQSj1eLKv4GH9np1vlxMYE_OZRjVBMafT2f1t0mwMUwCWdAocRzXX6f1z383dBMn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBVQuvBGhBYIEJ4ia2E5sHxBCQNWq7aqHIvVmEtuBlaqkbLag_il-IzNOstVWorceuEVy4jjxNy_PC-A1q2vNdZklOZc6EU5miVLCJSj5Ki4r4bmsQ7MJOZ2q42N9uAZ_xlwYCqsceWJg1K61dEa-xZCLUkSVyD6c_kyoaxR5V8cWGj0s9vz5bzTZuve7n3F_3zC2_eXo004ydBVIrJBqkfgqL1Gmpcxrp-oiZ05UTmSqKlC717VzVjgv88rXrNTcqdRZXhU2taryGu1QjvPegJuCKotRqCA7XJ7pkNdMZHrIzUm52upQPlIOG9poSMhkua_Iv0mLdLyi216OzLzkng1Sb_ve__a_7sPdQb-OP_YE8QDWfPMQbvcdN88fgTwIwaM-HrplfI_LxsV0Mk3XbR1TlvIcDYk4hPbFIc9z5rvH8PVaVv0EJk3b-KcQa8987lHzK10ushIllWM5xyl8Ia2SKoJs3FFjh8Lq1N_jxAQHP1emR4FBFJiAApNG8Hb5zGlfVuTKuzcIKAaVIqrsaykEyi5MJqWWOYtgc0SAGRhQZy62P4JXy2FkHeQPKhvfntE9uUb9G43kCOQK7pZrouLjqyPN7EcoQi4LAjuP4N2I0IuX__tLnl291pewvnN0sG_2d6d7G3CHEd3QEb7ehMlifuafwy37azHr5i8C4cXw7bqR-xes6GxD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceCNCCwQJThBtYjuxfUAIUVasSld7AKmcTGI7sFKVlM0W1L_Gr2Mmj622Er31wC2SE8eJv3l5XgAvWFlqrvMkSrnUkXAyiZQSLkLJV3BZCM9l2TabkLOZOjrS8y34M-TCUFjlwBNbRu1qS2fkY4ZclCKqRDIu-7CI-f7k7cnPiDpIkad1aKfRQeTAn_1G8615M93HvX7J2OTD5_cfo77DQGSFVKvIF2mO8i1mXjtVZilzonAiUUWGmr4unbPCeZkWvmS55k7FzvIis7FVhddok3Kc9xpso0ou2Ai259PD-df1CQ_50ESi-0ydmKtxg9KSMtrQYkOyJjt-QxqOaqTqDU33YpzmBWdtKwMnt__nv3cHbvWad_iuI5W7sOWre3Cj68V5dh_kYRtW6sO-j8b3MK9cSGfWdF2XIeUvL9HECNugv7DNAF345gF8uZJVP4RRVVf-EYTaM5961Alzl4okRxnmWMpxCp9Jq6QKIBl219i-5Dp1_jg2reufK9MhwiAiTIsIEwfwav3MSVdw5NK7dwk0BtUlqvlrKTjKrkwipZYpC2BvQIPpWVNjzqEQwPP1MDIV8hTlla9P6Z5Uo2aO5nMAcgOD6zVRWfLNkWrxoy1PLjMCPg_g9YDW85f_-0seX77WZ7CDgDWfprODXbjJiITobF_vwWi1PPVP4Lr9tVo0y6c9FYbw7aqh-xe7EnaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+serving+of+discrete+field+theories&rft.jtitle=Scientific+reports&rft.au=Qin%2C+Hong&rft.date=2020-11-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76301-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_76301_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon