Regulation of Plant Responses to Salt Stress
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels...
Uložené v:
| Vydané v: | International journal of molecular sciences Ročník 22; číslo 9; s. 4609 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
28.04.2021
MDPI |
| Predmet: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress. |
|---|---|
| AbstractList | Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress. Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress. |
| Author | Zhang, Qikun Zhou, Huapeng Ma, Changle Zhao, Shuangshuang Liu, Mingyue Wang, Pingping |
| AuthorAffiliation | 1 Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; zhangqikun1016@163.com (Q.Z.); lmy312325@163.com (M.L.); machangle@sdnu.edu.cn (C.M.) 2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; zhouhuapeng@scu.edu.cn |
| AuthorAffiliation_xml | – name: 2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; zhouhuapeng@scu.edu.cn – name: 1 Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; zhangqikun1016@163.com (Q.Z.); lmy312325@163.com (M.L.); machangle@sdnu.edu.cn (C.M.) |
| Author_xml | – sequence: 1 givenname: Shuangshuang surname: Zhao fullname: Zhao, Shuangshuang – sequence: 2 givenname: Qikun surname: Zhang fullname: Zhang, Qikun – sequence: 3 givenname: Mingyue orcidid: 0000-0002-4162-8684 surname: Liu fullname: Liu, Mingyue – sequence: 4 givenname: Huapeng orcidid: 0000-0002-6802-7440 surname: Zhou fullname: Zhou, Huapeng – sequence: 5 givenname: Changle surname: Ma fullname: Ma, Changle – sequence: 6 givenname: Pingping surname: Wang fullname: Wang, Pingping |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33924753$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctLw0AQxhdR7ENvniXgxUOj-0iyuxdBii8oKK2el00yqSlJtmY3gv-9W9tKLZ5mmP19H9_MDtBhYxpA6IzgK8Ykvi4XtaUUyyjB8gD1SURpiHHCD3f6HhpYu8CYMhrLY9TzQhrxmPXRaArzrtKuNE1giuCl0o0LpmCXprFgA2eCma5cMHMtWHuCjgpdWTjd1CF6u797HT-Gk-eHp_HtJMwiLlwIEhKS05TrKMlYwjhPAXDuw0Z5zgXJfM_iWBQ09UOCpU40B81kLjkmkWZDdLP2XXZpDXkGjWt1pZZtWev2Sxldqr8vTfmu5uZTCUJjJhJvcLkxaM1HB9apurQZVH47MJ1VNKZYJFLEsUcv9tCF6drGr7eiBOVEYOap891Ev1G2h_QAXQNZa6xtoVBZ6X7O6gOWlSJ4xWK1-1teNNoTbX3_xb8B0GKU3A |
| CitedBy_id | crossref_primary_10_3389_fbioe_2022_929681 crossref_primary_10_3390_ijms242216450 crossref_primary_10_3390_plants14091296 crossref_primary_10_3390_ijms25136845 crossref_primary_10_1016_j_jprot_2024_105072 crossref_primary_10_1134_S1021443724609261 crossref_primary_10_1016_j_scitotenv_2024_176333 crossref_primary_10_1093_plcell_koac292 crossref_primary_10_1080_07352689_2024_2354981 crossref_primary_10_1186_s40538_024_00670_1 crossref_primary_10_1111_ppl_13832 crossref_primary_10_3390_ijms23094810 crossref_primary_10_1007_s11816_024_00916_2 crossref_primary_10_3390_ijms26083518 crossref_primary_10_1007_s42729_024_02154_5 crossref_primary_10_3390_ijms26188938 crossref_primary_10_1007_s00253_022_11838_w crossref_primary_10_1007_s12042_025_09429_w crossref_primary_10_3389_fpls_2021_736421 crossref_primary_10_3390_plants13020312 crossref_primary_10_1186_s40529_021_00320_x crossref_primary_10_1186_s12870_025_07037_0 crossref_primary_10_3390_horticulturae11091130 crossref_primary_10_1016_j_plantsci_2023_111706 crossref_primary_10_3390_w15061065 crossref_primary_10_1007_s00344_022_10875_z crossref_primary_10_3390_genes14101943 crossref_primary_10_1016_j_micres_2022_127225 crossref_primary_10_1038_s41598_024_61576_4 crossref_primary_10_1073_pnas_2407821121 crossref_primary_10_1111_jac_12779 crossref_primary_10_1016_j_gene_2023_147255 crossref_primary_10_3390_horticulturae10080858 crossref_primary_10_1007_s11056_021_09879_6 crossref_primary_10_17221_459_2024_PSE crossref_primary_10_1088_2515_7620_ad61c5 crossref_primary_10_1007_s42729_024_01616_0 crossref_primary_10_3390_horticulturae9020230 crossref_primary_10_1007_s00344_023_11146_1 crossref_primary_10_3390_plants12244110 crossref_primary_10_3390_agronomy13010174 crossref_primary_10_3390_horticulturae9070770 crossref_primary_10_3390_ijms23158436 crossref_primary_10_3390_plants12142646 crossref_primary_10_1016_j_plaphy_2025_110132 crossref_primary_10_1111_aab_12919 crossref_primary_10_1111_pce_15621 crossref_primary_10_3390_agronomy14112613 crossref_primary_10_3390_metabo11110724 crossref_primary_10_1016_j_plaphy_2025_110135 crossref_primary_10_1016_j_scienta_2024_113793 crossref_primary_10_3390_ijms26136289 crossref_primary_10_1080_15569543_2024_2382989 crossref_primary_10_1093_plphys_kiad135 crossref_primary_10_1134_S1021443724607055 crossref_primary_10_3390_plants13111488 crossref_primary_10_1007_s42729_024_01790_1 crossref_primary_10_1007_s11103_023_01386_w crossref_primary_10_3390_ijms242216123 crossref_primary_10_3390_ijms24129793 crossref_primary_10_1186_s12870_025_06194_6 crossref_primary_10_3389_fpls_2021_751965 crossref_primary_10_3390_plants13111468 crossref_primary_10_1007_s00344_024_11590_7 crossref_primary_10_3390_ijms23042272 crossref_primary_10_1007_s44154_024_00198_2 crossref_primary_10_3390_cimb47090754 crossref_primary_10_1038_s42003_025_08077_w crossref_primary_10_1080_00103624_2023_2274032 crossref_primary_10_1016_j_scienta_2023_112178 crossref_primary_10_1093_plcell_koad250 crossref_primary_10_1186_s12870_025_06599_3 crossref_primary_10_48130_vegres_0024_0017 crossref_primary_10_1007_s40626_023_00270_8 crossref_primary_10_1093_plphys_kiae335 crossref_primary_10_1134_S1021443724609248 crossref_primary_10_1016_j_ijbiomac_2024_129971 crossref_primary_10_1007_s42729_023_01401_5 crossref_primary_10_1016_j_sajb_2023_10_047 crossref_primary_10_1007_s11240_022_02260_1 crossref_primary_10_3390_drones6090257 crossref_primary_10_1007_s10343_025_01123_x crossref_primary_10_1016_j_sajb_2022_09_033 crossref_primary_10_1007_s44154_023_00126_w crossref_primary_10_1007_s00299_023_03052_3 crossref_primary_10_1007_s11240_023_02511_9 crossref_primary_10_1007_s10343_023_00867_8 crossref_primary_10_1080_03067319_2025_2534027 crossref_primary_10_3389_fpls_2024_1445791 crossref_primary_10_1186_s13059_025_03766_5 crossref_primary_10_1016_j_focha_2025_100886 crossref_primary_10_1002_tpg2_20502 crossref_primary_10_3390_f15112051 crossref_primary_10_1016_j_plaphy_2022_08_021 crossref_primary_10_3390_plants11243503 crossref_primary_10_4014_jmb_2304_04005 crossref_primary_10_3390_ijms23147645 crossref_primary_10_1016_j_envres_2023_117907 crossref_primary_10_1002_advs_202506590 crossref_primary_10_3390_su141610032 crossref_primary_10_1016_j_eti_2024_103947 crossref_primary_10_3390_f13111864 crossref_primary_10_1007_s00344_024_11429_1 crossref_primary_10_3389_fmicb_2025_1589415 crossref_primary_10_3390_ijms26052095 crossref_primary_10_1111_tpj_16614 crossref_primary_10_1007_s11104_023_06444_2 crossref_primary_10_1016_j_cj_2022_06_007 crossref_primary_10_1016_j_egg_2024_100266 crossref_primary_10_1016_j_sajb_2024_04_047 crossref_primary_10_3390_plants14091268 crossref_primary_10_3389_fpls_2021_753099 crossref_primary_10_3390_ijms26010329 crossref_primary_10_3390_life13071454 crossref_primary_10_1016_j_plaphy_2023_107858 crossref_primary_10_1007_s10142_023_01140_x crossref_primary_10_3390_soilsystems8010011 crossref_primary_10_1007_s11240_024_02822_5 crossref_primary_10_1016_j_micres_2024_127707 crossref_primary_10_3390_horticulturae11060697 crossref_primary_10_1093_plcell_koad167 crossref_primary_10_1016_j_scienta_2024_113754 crossref_primary_10_3389_fpls_2022_1012186 crossref_primary_10_1093_plcell_koaf103 crossref_primary_10_3390_agronomy11122500 crossref_primary_10_3390_ijms242216157 crossref_primary_10_3390_genes15070958 crossref_primary_10_1111_ppl_13805 crossref_primary_10_1186_s12870_025_06562_2 crossref_primary_10_1007_s10725_023_01017_w crossref_primary_10_3390_ijms241612761 crossref_primary_10_1016_j_plantsci_2023_111658 crossref_primary_10_1111_pce_14844 crossref_primary_10_1093_bbb_zbae057 crossref_primary_10_3390_ijms24065605 crossref_primary_10_3390_f15040605 crossref_primary_10_3390_plants12071439 crossref_primary_10_1007_s00572_025_01209_4 crossref_primary_10_3390_plants13020217 crossref_primary_10_1007_s12298_024_01476_z crossref_primary_10_1007_s10142_024_01347_6 crossref_primary_10_1038_s41596_024_01068_x crossref_primary_10_3390_genes14122203 crossref_primary_10_1016_j_jhazmat_2024_136013 crossref_primary_10_1093_plcell_koac082 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1007_s00344_024_11494_6 crossref_primary_10_1098_rstb_2024_0245 crossref_primary_10_1093_hr_uhae068 crossref_primary_10_1111_ppl_13702 crossref_primary_10_3389_fpls_2022_1072782 crossref_primary_10_3390_ijms231912053 crossref_primary_10_3390_agronomy15092103 crossref_primary_10_1007_s00425_023_04188_y crossref_primary_10_3389_fpls_2022_881039 crossref_primary_10_1111_pce_70194 crossref_primary_10_3389_fmicb_2025_1587491 crossref_primary_10_3390_su15075805 crossref_primary_10_1016_j_plaphy_2024_109048 crossref_primary_10_3390_horticulturae10050466 crossref_primary_10_1016_j_sajb_2024_10_004 crossref_primary_10_3390_plants13020283 crossref_primary_10_1002_sae2_12083 crossref_primary_10_1016_j_jenvman_2025_126948 crossref_primary_10_1111_pce_14946 crossref_primary_10_3390_f14081686 crossref_primary_10_1080_10407790_2023_2269605 crossref_primary_10_1111_ppl_14644 crossref_primary_10_1016_j_scitotenv_2023_165446 crossref_primary_10_1186_s12864_024_10962_3 crossref_primary_10_3390_ijms26115043 crossref_primary_10_1016_j_jplph_2025_154608 crossref_primary_10_1134_S1021443724609893 crossref_primary_10_1016_j_crope_2023_03_002 crossref_primary_10_1111_ppl_13675 crossref_primary_10_12944_CARJ_12_2_05 crossref_primary_10_3390_ijms23094539 crossref_primary_10_1016_j_sajb_2024_06_039 crossref_primary_10_1007_s44154_024_00195_5 crossref_primary_10_1016_j_psep_2022_10_040 crossref_primary_10_1016_j_saa_2025_126267 crossref_primary_10_3390_metabo13080895 crossref_primary_10_3389_fpls_2022_920881 crossref_primary_10_1016_j_jplph_2022_153806 crossref_primary_10_1080_23311932_2024_2327666 crossref_primary_10_3390_plants13223201 crossref_primary_10_1016_j_ncrops_2024_100023 crossref_primary_10_1093_gigascience_giad053 crossref_primary_10_3390_horticulturae10111150 crossref_primary_10_1007_s10725_024_01127_z crossref_primary_10_3390_agronomy13092310 crossref_primary_10_3390_antiox11122362 crossref_primary_10_1007_s11756_023_01554_9 crossref_primary_10_3390_plants14020254 crossref_primary_10_1016_j_plantsci_2024_112371 crossref_primary_10_3390_agronomy14081771 crossref_primary_10_3390_plants14050803 crossref_primary_10_3390_biology11040597 crossref_primary_10_3390_cells12151960 crossref_primary_10_3390_genes14040892 crossref_primary_10_1111_pbi_13729 crossref_primary_10_3390_genes15050555 crossref_primary_10_1007_s11104_025_07292_y crossref_primary_10_3390_app12178640 crossref_primary_10_1134_S1062359024607171 crossref_primary_10_3389_fpls_2022_996765 crossref_primary_10_3390_ijms26167978 crossref_primary_10_3390_plants13060752 crossref_primary_10_1002_pei3_70036 crossref_primary_10_1186_s12870_024_05524_4 crossref_primary_10_1007_s42729_025_02536_3 crossref_primary_10_1016_j_indcrop_2024_119854 crossref_primary_10_3389_fpls_2022_866265 crossref_primary_10_1111_jac_70116 crossref_primary_10_1016_j_plaphy_2025_109666 crossref_primary_10_1186_s12870_025_06803_4 crossref_primary_10_1007_s10265_024_01528_1 crossref_primary_10_3389_fpls_2025_1522534 crossref_primary_10_48130_tihort_0025_0022 crossref_primary_10_1111_pce_14818 crossref_primary_10_1093_jxb_eraf058 crossref_primary_10_1186_s13007_022_00915_w crossref_primary_10_1016_j_sajb_2023_04_049 crossref_primary_10_1016_j_scienta_2023_112453 crossref_primary_10_1093_plcell_koaf035 crossref_primary_10_1038_s41598_024_72614_6 crossref_primary_10_3389_fpls_2023_1090366 crossref_primary_10_3390_genes15091176 crossref_primary_10_3390_agronomy13092213 crossref_primary_10_3390_agronomy14081670 crossref_primary_10_1186_s12870_024_04966_0 crossref_primary_10_3390_ijms26062500 crossref_primary_10_1007_s44372_025_00249_6 crossref_primary_10_17221_127_2024_PPS crossref_primary_10_3390_ijerph191610399 crossref_primary_10_1007_s11105_024_01488_9 crossref_primary_10_1007_s12298_024_01504_y crossref_primary_10_1016_j_envpol_2024_123363 crossref_primary_10_3390_agriculture12122070 crossref_primary_10_3389_fpls_2024_1397552 crossref_primary_10_3390_plants12081666 crossref_primary_10_3390_agronomy13010036 crossref_primary_10_1016_j_plaphy_2025_110476 crossref_primary_10_1134_S1021443724608644 crossref_primary_10_3390_plants13141990 crossref_primary_10_1007_s10343_024_01018_3 crossref_primary_10_1016_j_jare_2024_12_031 crossref_primary_10_1007_s00284_023_03288_y crossref_primary_10_1007_s11676_022_01486_1 crossref_primary_10_3390_horticulturae10090966 crossref_primary_10_3390_biology14040416 crossref_primary_10_3390_life15081294 crossref_primary_10_1016_j_ecolind_2025_113789 crossref_primary_10_1016_j_plaphy_2025_109478 crossref_primary_10_3390_f15111905 crossref_primary_10_1186_s40538_023_00510_8 crossref_primary_10_1080_09064710_2025_2466433 crossref_primary_10_3389_fpls_2025_1561280 crossref_primary_10_15835_nbha50112607 crossref_primary_10_3389_fpls_2024_1375478 crossref_primary_10_3390_ijms23116167 crossref_primary_10_3390_plants12183329 crossref_primary_10_3389_fpls_2024_1374142 crossref_primary_10_1038_s41598_023_49629_6 crossref_primary_10_1111_ppl_14611 crossref_primary_10_1186_s12870_023_04465_8 crossref_primary_10_1111_ppl_13647 crossref_primary_10_3390_plants13060805 crossref_primary_10_3390_horticulturae8111002 crossref_primary_10_1186_s12870_025_06288_1 crossref_primary_10_1007_s11033_025_10830_7 crossref_primary_10_3390_plants14131932 crossref_primary_10_1016_j_watres_2023_120864 crossref_primary_10_3390_agronomy13010016 crossref_primary_10_3390_life14050595 crossref_primary_10_3390_plants13162307 crossref_primary_10_3389_fpls_2022_1054064 crossref_primary_10_3389_fpls_2024_1353436 crossref_primary_10_3390_genes13101803 crossref_primary_10_3390_plants13233311 crossref_primary_10_3389_fmicb_2024_1336533 crossref_primary_10_3390_ijms26010085 crossref_primary_10_3390_plants12142606 crossref_primary_10_3389_fpls_2022_1002302 crossref_primary_10_1016_j_ygeno_2022_110398 crossref_primary_10_3390_plants13010141 crossref_primary_10_1007_s11240_024_02684_x crossref_primary_10_3389_fpls_2021_777119 crossref_primary_10_12791_KSBEC_2025_34_3_335 crossref_primary_10_3389_fpls_2022_1049954 crossref_primary_10_1108_PIJPSM_06_2023_0081 crossref_primary_10_1080_15592324_2022_2081419 crossref_primary_10_3390_plants14020145 crossref_primary_10_1007_s11356_024_34275_w crossref_primary_10_3390_agronomy15020270 crossref_primary_10_3389_fpls_2022_988845 crossref_primary_10_3390_antiox12051043 crossref_primary_10_1016_j_sajb_2023_04_008 crossref_primary_10_1016_j_envexpbot_2022_104917 crossref_primary_10_3390_f15010159 crossref_primary_10_7717_peerj_18236 crossref_primary_10_1016_j_jprot_2024_105328 crossref_primary_10_1111_ppl_13786 crossref_primary_10_3389_fpls_2022_1023696 crossref_primary_10_1111_ppl_70403 crossref_primary_10_1186_s12870_025_06858_3 crossref_primary_10_1016_j_plaphy_2023_108075 crossref_primary_10_15835_nbha50212704 crossref_primary_10_1007_s13562_025_00958_9 crossref_primary_10_12944_CARJ_11_2_03 crossref_primary_10_1016_j_indcrop_2025_120823 crossref_primary_10_1021_acs_est_5c01063 crossref_primary_10_3390_plants14182864 crossref_primary_10_1016_j_sajb_2023_06_029 crossref_primary_10_3389_fpls_2024_1395696 crossref_primary_10_3390_plants13081162 crossref_primary_10_3390_genes16030296 crossref_primary_10_3390_genes14081586 crossref_primary_10_32604_phyton_2024_053914 crossref_primary_10_1016_j_indcrop_2024_119319 crossref_primary_10_3390_plants11233358 crossref_primary_10_1007_s00299_024_03219_6 crossref_primary_10_3390_metabo13090994 crossref_primary_10_1039_D5EN00292C crossref_primary_10_1016_j_plaphy_2024_108599 crossref_primary_10_1016_j_plaphy_2025_109600 crossref_primary_10_1080_19315260_2024_2383847 crossref_primary_10_1016_j_envexpbot_2023_105604 crossref_primary_10_3390_ijms231710185 crossref_primary_10_1111_ppl_70197 crossref_primary_10_3390_ijms24043693 crossref_primary_10_1007_s13225_025_00550_5 crossref_primary_10_3390_antiox11040671 crossref_primary_10_1186_s12870_023_04509_z crossref_primary_10_3390_cimb47060421 crossref_primary_10_3390_horticulturae11030309 crossref_primary_10_1111_ppl_14252 crossref_primary_10_3390_ijms252312537 crossref_primary_10_1111_ppl_70044 crossref_primary_10_1016_j_plaphy_2024_108372 crossref_primary_10_1016_j_scienta_2025_114323 crossref_primary_10_3390_ijms24010734 crossref_primary_10_3390_plants14111687 crossref_primary_10_3390_agronomy14071462 crossref_primary_10_1007_s10265_023_01487_z crossref_primary_10_3390_jof10040283 crossref_primary_10_1111_grs_12417 crossref_primary_10_1007_s11105_024_01450_9 crossref_primary_10_1007_s11738_024_03713_0 crossref_primary_10_1038_s41598_024_70427_1 crossref_primary_10_1038_s41598_022_10767_y crossref_primary_10_1111_ppl_14262 crossref_primary_10_1111_pce_15183 crossref_primary_10_1007_s10343_025_01174_0 crossref_primary_10_3390_ijms242015374 crossref_primary_10_1111_ppl_14266 crossref_primary_10_1111_ppl_14146 crossref_primary_10_36253_phyto_15444 crossref_primary_10_1007_s00344_025_11846_w crossref_primary_10_1186_s13068_023_02286_3 crossref_primary_10_3390_agronomy13030693 crossref_primary_10_1016_j_sajb_2024_08_040 crossref_primary_10_1016_j_scienta_2024_112911 crossref_primary_10_3389_fpls_2023_1196319 crossref_primary_10_1016_j_jplph_2022_153862 crossref_primary_10_3390_cimb47070481 crossref_primary_10_1016_j_heliyon_2024_e26389 crossref_primary_10_1186_s12870_022_03887_0 crossref_primary_10_3389_fpls_2023_1185440 crossref_primary_10_3390_ijms26030896 crossref_primary_10_2166_wrd_2025_108 crossref_primary_10_3390_plants12122253 crossref_primary_10_48130_grares_0024_0029 crossref_primary_10_3390_plants13010051 crossref_primary_10_3390_ijms26041780 crossref_primary_10_1071_FP25031 crossref_primary_10_3390_plants12081704 crossref_primary_10_1111_ppl_70387 crossref_primary_10_1007_s42729_024_01676_2 crossref_primary_10_1111_brv_13172 crossref_primary_10_3390_ijms23031603 crossref_primary_10_3390_ijms25042084 crossref_primary_10_3390_plants14172743 crossref_primary_10_1016_j_scienta_2022_111437 crossref_primary_10_1071_FP25034 crossref_primary_10_3390_plants14172623 crossref_primary_10_3390_ijms232416146 crossref_primary_10_1007_s12355_024_01495_w crossref_primary_10_3390_antiox12091779 crossref_primary_10_3390_ijms24032592 crossref_primary_10_3389_fenvs_2022_998141 crossref_primary_10_1016_j_plantsci_2024_112201 crossref_primary_10_3389_fpls_2023_1127532 crossref_primary_10_3390_agronomy14040730 crossref_primary_10_3390_agronomy14123044 crossref_primary_10_3390_agriculture13030734 crossref_primary_10_3390_ijms23020702 crossref_primary_10_35118_apjmbb_2025_033_3_01 crossref_primary_10_3390_plants11121565 crossref_primary_10_1007_s40626_025_00379_y crossref_primary_10_1016_j_sajb_2023_07_037 crossref_primary_10_1111_ppl_14563 crossref_primary_10_3390_agronomy13020595 crossref_primary_10_3389_fpls_2022_956410 crossref_primary_10_3390_ijms25042198 crossref_primary_10_1007_s00299_025_03446_5 crossref_primary_10_3390_ijms25073651 crossref_primary_10_3390_microorganisms13081820 crossref_primary_10_3390_antiox13040448 crossref_primary_10_1007_s44154_024_00190_w crossref_primary_10_1016_j_scienta_2025_114376 crossref_primary_10_3390_horticulturae10060588 crossref_primary_10_1016_j_phytochem_2024_114367 crossref_primary_10_1186_s12870_024_05708_y crossref_primary_10_1111_tpj_16052 crossref_primary_10_1080_01140671_2025_2454619 crossref_primary_10_1111_tpj_70420 crossref_primary_10_7717_peerj_14602 crossref_primary_10_1111_jac_70047 crossref_primary_10_1007_s11240_023_02550_2 crossref_primary_10_1134_S1021443725601600 crossref_primary_10_3389_fagro_2025_1568758 crossref_primary_10_1016_j_ecoenv_2022_113938 crossref_primary_10_3390_f16010094 crossref_primary_10_3390_ijms232416048 crossref_primary_10_1007_s00425_025_04787_x crossref_primary_10_1007_s11033_022_08064_y crossref_primary_10_1016_j_pmpp_2025_102807 crossref_primary_10_32604_phyton_2022_019572 crossref_primary_10_3390_antiox14080994 crossref_primary_10_3389_fpls_2023_1161334 crossref_primary_10_3390_agronomy12112708 crossref_primary_10_3390_agronomy12092014 crossref_primary_10_1016_j_plaphy_2025_109505 crossref_primary_10_1016_j_sajb_2024_01_069 crossref_primary_10_1186_s12284_023_00663_y crossref_primary_10_1007_s10725_025_01364_w crossref_primary_10_3390_ijms23095006 crossref_primary_10_1111_ppl_14222 crossref_primary_10_3390_ijms25052639 crossref_primary_10_3390_plants12213680 crossref_primary_10_1590_1983_21252023v36n420rc crossref_primary_10_3390_horticulturae10020147 crossref_primary_10_3390_ijms24087290 crossref_primary_10_1007_s00344_023_11194_7 crossref_primary_10_3390_su152115569 crossref_primary_10_1007_s10725_025_01276_9 crossref_primary_10_3390_ijms25105437 crossref_primary_10_1093_jxb_eraf253 crossref_primary_10_3389_fpls_2024_1520457 crossref_primary_10_1007_s00344_024_11237_7 crossref_primary_10_3389_fpls_2023_1201730 crossref_primary_10_3390_plants13050744 crossref_primary_10_3390_ijms242316812 crossref_primary_10_3389_fpls_2022_1030138 crossref_primary_10_3390_plants14132065 crossref_primary_10_1089_ars_2024_0889 crossref_primary_10_1111_ppl_14111 crossref_primary_10_1111_ppl_14592 crossref_primary_10_3390_plants13010092 crossref_primary_10_1007_s00344_024_11544_z crossref_primary_10_3389_fpls_2022_976341 crossref_primary_10_3390_ijms23126376 crossref_primary_10_1089_omi_2021_0210 crossref_primary_10_1016_j_tplants_2023_04_003 crossref_primary_10_3389_fpls_2023_1274684 crossref_primary_10_3390_plants12051016 crossref_primary_10_1186_s12864_024_10114_7 crossref_primary_10_1093_plphys_kiae520 crossref_primary_10_1111_ppl_14082 crossref_primary_10_3390_ijms24076647 crossref_primary_10_1007_s13199_025_01037_2 crossref_primary_10_3390_ijms25052521 crossref_primary_10_3390_agronomy13122984 crossref_primary_10_1002_jpln_202300101 crossref_primary_10_3389_fpls_2025_1568423 crossref_primary_10_3390_cells12162082 crossref_primary_10_3390_ijms24010242 crossref_primary_10_1007_s00344_023_11021_z crossref_primary_10_1016_j_envexpbot_2025_106097 crossref_primary_10_3390_biom14020227 crossref_primary_10_1093_hr_uhac277 crossref_primary_10_1007_s42729_024_01821_x crossref_primary_10_3390_agronomy12112841 crossref_primary_10_1016_j_scienta_2023_111905 crossref_primary_10_1111_gcbb_13084 crossref_primary_10_1007_s13205_024_03943_6 crossref_primary_10_1007_s13562_024_00941_w crossref_primary_10_1007_s42976_024_00522_6 crossref_primary_10_1016_j_heliyon_2024_e26526 crossref_primary_10_1007_s12298_023_01370_0 crossref_primary_10_3390_ijms25052654 crossref_primary_10_1007_s11103_024_01431_2 crossref_primary_10_3389_fpls_2022_1052569 crossref_primary_10_1088_1755_1315_1226_1_012022 crossref_primary_10_1186_s12870_023_04711_z crossref_primary_10_1186_s12284_025_00787_3 crossref_primary_10_1007_s12298_024_01521_x crossref_primary_10_1016_j_plaphy_2024_108767 crossref_primary_10_1016_j_envexpbot_2023_105450 crossref_primary_10_1016_j_sajb_2024_03_041 crossref_primary_10_3390_ijms23074016 crossref_primary_10_3390_app131810420 crossref_primary_10_3390_ijms241813965 crossref_primary_10_1016_j_envexpbot_2023_105455 crossref_primary_10_3389_fpls_2022_978066 crossref_primary_10_3390_plants13152142 crossref_primary_10_3390_ijms26136438 crossref_primary_10_3390_plants14071064 crossref_primary_10_1093_treephys_tpae113 crossref_primary_10_1016_j_ijbiomac_2025_139542 crossref_primary_10_3389_fpls_2022_1053699 crossref_primary_10_3390_horticulturae11050532 crossref_primary_10_3390_membranes11120984 crossref_primary_10_1007_s00344_025_11656_0 crossref_primary_10_3389_fgene_2025_1617034 crossref_primary_10_3390_ijms25063310 crossref_primary_10_3389_fpls_2022_1040142 crossref_primary_10_1016_j_plaphy_2024_108655 crossref_primary_10_1016_j_plaphy_2024_108776 crossref_primary_10_1007_s00299_025_03486_x crossref_primary_10_3389_fpls_2023_1173857 crossref_primary_10_1016_j_jafr_2024_100994 crossref_primary_10_1007_s00299_024_03292_x crossref_primary_10_1186_s12870_023_04050_z crossref_primary_10_3390_ijms25169124 crossref_primary_10_1016_j_plana_2025_100171 crossref_primary_10_3390_agriculture13101932 crossref_primary_10_3390_genes15101311 crossref_primary_10_3390_plants13121672 crossref_primary_10_3390_ijms24043623 crossref_primary_10_1007_s42729_024_02145_6 crossref_primary_10_1371_journal_pone_0326093 crossref_primary_10_3389_fpls_2025_1611975 crossref_primary_10_3390_f14051035 crossref_primary_10_1111_nph_18928 crossref_primary_10_1016_j_bbrc_2024_150509 crossref_primary_10_1038_s41598_022_09061_8 crossref_primary_10_1016_j_envexpbot_2023_105515 crossref_primary_10_3389_fpls_2022_1042855 crossref_primary_10_1007_s00344_024_11601_7 crossref_primary_10_3390_horticulturae9091015 crossref_primary_10_1111_ppl_14280 crossref_primary_10_3390_plants12234059 crossref_primary_10_3390_biology14030287 crossref_primary_10_3390_plants14050781 crossref_primary_10_1111_pce_14359 crossref_primary_10_1016_j_plantsci_2025_112601 crossref_primary_10_1007_s12633_024_03122_5 crossref_primary_10_1080_15592324_2023_2276611 crossref_primary_10_1007_s00299_025_03509_7 crossref_primary_10_3389_fpls_2022_1060154 crossref_primary_10_1007_s44371_024_00046_2 crossref_primary_10_1111_pbi_14326 crossref_primary_10_3390_j7010006 crossref_primary_10_3389_fpls_2022_874579 crossref_primary_10_1038_s41598_025_04235_6 crossref_primary_10_3390_plants11192525 crossref_primary_10_1007_s00299_025_03607_6 crossref_primary_10_3390_plants12122356 crossref_primary_10_1093_hr_uhac189 crossref_primary_10_3390_agriculture14081337 crossref_primary_10_1007_s00344_022_10740_z crossref_primary_10_1007_s00344_024_11392_x crossref_primary_10_1007_s10725_023_00997_z crossref_primary_10_3390_ijms25158216 crossref_primary_10_1016_j_plaphy_2024_108843 crossref_primary_10_1016_j_envexpbot_2024_105937 crossref_primary_10_1080_15592324_2025_2479513 crossref_primary_10_1007_s10725_024_01187_1 crossref_primary_10_3390_plants13213029 crossref_primary_10_3390_w16081095 crossref_primary_10_1016_j_cj_2023_06_001 crossref_primary_10_3390_horticulturae8070568 crossref_primary_10_1080_07388551_2022_2093695 crossref_primary_10_1111_pce_15544 crossref_primary_10_1093_hr_uhac291 crossref_primary_10_1038_s41598_025_92555_y crossref_primary_10_3389_fpls_2022_970651 crossref_primary_10_1007_s42729_024_01754_5 crossref_primary_10_3390_f16030538 crossref_primary_10_3390_plants12061356 crossref_primary_10_1016_j_indcrop_2023_116826 crossref_primary_10_3390_agronomy13020613 crossref_primary_10_1007_s44372_025_00330_0 crossref_primary_10_3390_ijms241813998 crossref_primary_10_3390_agronomy13030771 crossref_primary_10_1016_j_indcrop_2024_120251 crossref_primary_10_1186_s12870_025_06424_x crossref_primary_10_1111_ppl_14195 crossref_primary_10_1186_s12870_022_03541_9 crossref_primary_10_3390_ijms24054426 crossref_primary_10_3389_fpls_2022_1061141 crossref_primary_10_1007_s42729_024_02090_4 crossref_primary_10_1016_j_jgg_2022_06_009 crossref_primary_10_3390_plants14071013 crossref_primary_10_1007_s12038_024_00424_z crossref_primary_10_3389_fpls_2024_1408642 crossref_primary_10_1111_ppl_14075 crossref_primary_10_1515_biol_2022_0734 crossref_primary_10_3389_fpls_2023_1284480 |
| Cites_doi | 10.1111/1477-8947.12054 10.1007/s00299-007-0395-7 10.1111/plb.13114 10.1111/tpj.12123 10.1098/rstb.2007.2166 10.1016/j.cell.2006.06.011 10.3390/ijms20102389 10.3390/ijms21176036 10.4161/psb.24820 10.1016/j.pbi.2019.08.002 10.1016/j.tplants.2010.08.007 10.1080/15592324.2015.1078955 10.1105/tpc.113.117069 10.1016/j.cub.2018.01.023 10.1111/j.1365-313X.2009.04092.x 10.1111/jipb.13079 10.1111/j.1399-3054.2012.01635.x 10.1073/pnas.2034853100 10.1007/s00299-014-1629-0 10.1111/j.1365-313X.2007.03236.x 10.3390/ijms20051059 10.1007/978-1-4939-6813-8_16 10.1016/j.tplants.2020.06.008 10.3390/ijms20061403 10.1007/s00299-012-1242-z 10.1111/plb.12084 10.1146/annurev-arplant-050718-100005 10.1007/s11103-016-0520-5 10.1371/journal.pone.0200938 10.1111/j.1744-7909.2010.00981.x 10.1016/j.devcel.2020.08.005 10.1016/j.bbagen.2016.05.032 10.1186/1939-8433-5-11 10.1111/jipb.13061 10.1080/15592324.2019.1625697 10.3390/ijms20235910 10.3390/ijms19020335 10.1146/annurev.arplant.53.091401.143329 10.1111/jipb.13046 10.1073/pnas.1519555113 10.1186/s12864-019-6098-y 10.4161/psb.6.1.14202 10.1073/pnas.0707912104 10.1186/gb-2008-9-8-r130 10.1105/tpc.112.104182 10.1111/j.1365-3040.2006.01576.x 10.1186/s12870-016-0771-y 10.1105/tpc.114.130849 10.1186/s12870-020-2279-8 10.1105/tpc.106.042291 10.1016/j.cell.2015.08.028 10.1038/ncomms2357 10.1073/pnas.1816991115 10.1098/rspb.2012.1005 10.1093/jxb/erf079 10.1007/s00425-011-1510-0 10.1093/pcp/pcm123 10.1016/j.cell.2016.08.029 10.1111/plb.12052 10.1093/pcp/pcr185 10.1016/j.plantsci.2020.110719 10.1111/tpj.13747 10.1073/pnas.1316717111 10.1007/s00299-012-1348-3 10.1111/tpj.13299 10.1111/nph.14920 10.1371/journal.pgen.1007662 10.1104/pp.15.01486 10.1105/tpc.113.117887 10.1093/pcp/pcv014 10.3390/ijms21155208 10.1093/pcp/pcx048 10.1105/tpc.114.125187 10.1038/s41467-019-08780-3 10.1007/s00425-010-1293-8 10.1016/j.plantsci.2019.110188 10.1016/j.molcel.2017.12.002 10.1073/pnas.2010911118 10.1007/s12571-020-01093-0 10.1111/j.1438-8677.2009.00201.x 10.1016/j.devcel.2019.02.010 10.1016/j.jplph.2013.09.021 10.1016/j.devcel.2016.06.032 10.1016/j.pbi.2016.10.010 10.1080/15592324.2020.1836883 10.3389/fpls.2020.00164 10.1016/j.celrep.2018.05.044 10.1093/aob/mcaa121 10.1111/j.1365-313X.2007.03255.x 10.1093/mp/ssr031 10.1371/journal.pone.0092900 10.3390/ijms20092366 10.1111/jipb.13008 10.1104/pp.19.01084 10.1111/jipb.12899 10.1093/mp/ssq079 10.1111/jipb.12689 10.3389/fpls.2020.00038 10.1105/tpc.19.00335 10.1080/15592324.2015.1135281 10.3390/ijms21228648 10.1016/j.devcel.2018.12.025 10.14348/molcells.2016.0083 10.1021/acs.chemrestox.9b00028 10.3390/ijms160613561 10.3389/fpls.2020.621859 10.15252/embj.2020105086 10.1038/s41467-020-14477-9 10.1111/pce.12763 10.1016/j.molp.2020.11.023 10.1093/mp/sss158 10.1111/nph.14882 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.3390/ijms22094609 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC8125386 33924753 10_3390_ijms22094609 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Open project of State Key Laboratory of Plant Physiology and Biochemistry grantid: SKLPPBKF1704 – fundername: National Natural Science Foundation of China grantid: 31700222 – fundername: China Postdoctoral Science Foundation grantid: 2017M610444 – fundername: Shandong Provincial National Science Foundation, China grantid: ZR2017BC026 |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M ALIPV NPM 3V. 7XB 8FK ESTFP K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c478t-e9e61d2b7a46c36377bee0d3904dd781c0d33558f2bd39109a6a7ea39d97014a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 693 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 1661-6596 |
| IngestDate | Tue Nov 04 01:50:59 EST 2025 Fri Sep 05 13:08:37 EDT 2025 Tue Oct 07 07:46:40 EDT 2025 Thu Apr 03 06:59:23 EDT 2025 Sat Nov 29 07:12:35 EST 2025 Tue Nov 18 21:50:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | hormone mediation salt stress ion transport cell wall regulation osmotic homeostasis |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-e9e61d2b7a46c36377bee0d3904dd781c0d33558f2bd39109a6a7ea39d97014a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6802-7440 0000-0002-4162-8684 |
| OpenAccessLink | https://www.proquest.com/docview/2528271803?pq-origsite=%requestingapplication% |
| PMID | 33924753 |
| PQID | 2528271803 |
| PQPubID | 2032341 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8125386 proquest_miscellaneous_2520869855 proquest_journals_2528271803 pubmed_primary_33924753 crossref_citationtrail_10_3390_ijms22094609 crossref_primary_10_3390_ijms22094609 |
| PublicationCentury | 2000 |
| PublicationDate | 20210428 |
| PublicationDateYYYYMMDD | 2021-04-28 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210428 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sofo (ref_58) 2015; 16 Tohge (ref_83) 2018; 9 Yang (ref_41) 2017; 217 ref_14 Kesten (ref_116) 2019; 10 Liu (ref_81) 2013; 16 Covington (ref_44) 2008; 9 Endler (ref_103) 2015; 162 Hazell (ref_2) 2007; 363 Chapman (ref_63) 2019; 32 Sakuraba (ref_45) 2017; 92 Chen (ref_49) 2021; 63 ref_120 Ye (ref_97) 2013; 32 ref_122 Chen (ref_13) 2015; 69 Wei (ref_46) 2021; 40 Gong (ref_10) 2021; 63 Huang (ref_69) 2019; 287 Pan (ref_20) 2019; 48 Latz (ref_37) 2007; 52 Xiong (ref_121) 2019; 20 Ohta (ref_78) 2003; 100 Nolan (ref_79) 2020; 32 Zhou (ref_50) 2016; 1860 Park (ref_9) 2013; 8 Kim (ref_25) 2013; 4 Dong (ref_85) 2020; 11 Quan (ref_8) 2007; 19 Wang (ref_100) 2009; 12 Chen (ref_68) 2020; 62 Wang (ref_91) 2019; 52 Yoshida (ref_77) 2010; 61 Zhu (ref_11) 2002; 53 Tan (ref_26) 2016; 92 Lin (ref_74) 2020; 11 Zhang (ref_53) 2013; 16 Liao (ref_105) 2017; 58 Moreno (ref_27) 2017; 93 Wang (ref_99) 2007; 48 Endler (ref_114) 2016; 11 Choudhury (ref_57) 2016; 90 Cheong (ref_34) 2007; 52 Chun (ref_117) 2019; 14 Park (ref_4) 2016; 39 Jia (ref_84) 2021; 302 Ziska (ref_5) 2012; 279 Zhao (ref_106) 2018; 115 Zhu (ref_66) 2016; 167 Lee (ref_35) 2007; 104 Jia (ref_65) 2002; 53 Ren (ref_30) 2013; 74 Yan (ref_90) 2015; 56 Wang (ref_73) 2018; 69 Zhong (ref_109) 2012; 53 Feng (ref_19) 2018; 28 ref_56 Seo (ref_62) 2010; 233 Liu (ref_115) 2016; 38 Su (ref_80) 2020; 11 Li (ref_29) 2020; 55 Lu (ref_59) 2007; 26 Chen (ref_55) 2020; 30 Jiang (ref_18) 2019; 572 Raddatz (ref_33) 2020; 182 Lan (ref_36) 2011; 4 Wang (ref_111) 2020; 126 Fujita (ref_76) 2013; 147 Hu (ref_87) 2014; 26 Zhang (ref_12) 2020; 71 Yang (ref_40) 2018; 60 Yang (ref_23) 2019; 10 ref_61 ref_60 Zhong (ref_107) 2010; 15 Ma (ref_28) 2019; 48 Liu (ref_112) 2021; 118 Horie (ref_7) 2012; 5 Yan (ref_118) 2021; 14 Qadir (ref_3) 2014; 38 Cai (ref_88) 2014; 111 Ma (ref_95) 2020; 22 Li (ref_54) 2014; 26 Zhao (ref_72) 2018; 23 Zhao (ref_102) 2013; 25 Zhou (ref_98) 2010; 52 Stephan (ref_17) 2016; 113 Tian (ref_21) 2019; 572 Moustafa (ref_51) 2014; 33 Zhang (ref_42) 2017; 217 Yang (ref_89) 2016; 39 Barrero (ref_71) 2006; 29 Shang (ref_86) 2019; 71 Zhang (ref_16) 2020; 15 Zhou (ref_24) 2014; 26 ref_119 Savary (ref_1) 2020; 12 Endler (ref_110) 2011; 4 Liu (ref_96) 2012; 31 Pan (ref_52) 2011; 235 ref_113 Monniaux (ref_104) 2016; 34 Rubio (ref_31) 2014; 171 ref_39 Zhang (ref_92) 2012; 24 Wang (ref_94) 2014; 6 Lian (ref_93) 2021; 63 Bucholc (ref_75) 2016; 16 Wu (ref_22) 2020; 578 Yuan (ref_15) 2014; 514 ref_47 Yu (ref_64) 2020; 25 ref_101 Du (ref_108) 2015; 10 Takahashi (ref_70) 2018; 556 Su (ref_6) 2020; 11 Chu (ref_43) 2021; 63 ref_48 Xu (ref_32) 2006; 125 Latz (ref_38) 2013; 6 Cai (ref_123) 2020; 20 Verma (ref_67) 2016; 16 Krishna (ref_82) 2017; 1564 |
| References_xml | – volume: 38 start-page: 282 year: 2014 ident: ref_3 article-title: Economics of salt-induced land degradation and restoration publication-title: Nat. Resour. Forum doi: 10.1111/1477-8947.12054 – volume: 26 start-page: 1909 year: 2007 ident: ref_59 article-title: Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis publication-title: Plant Cell Rep. doi: 10.1007/s00299-007-0395-7 – volume: 22 start-page: 971 year: 2020 ident: ref_95 article-title: Microtubule organization defects in Arabidopsis thaliana publication-title: Plant Biol. doi: 10.1111/plb.13114 – volume: 74 start-page: 258 year: 2013 ident: ref_30 article-title: Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.12123 – volume: 363 start-page: 495 year: 2007 ident: ref_2 article-title: Drivers of change in global agriculture publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2007.2166 – volume: 125 start-page: 1347 year: 2006 ident: ref_32 article-title: A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2006.06.011 – ident: ref_47 doi: 10.3390/ijms20102389 – ident: ref_120 doi: 10.3390/ijms21176036 – volume: 514 start-page: 367 year: 2014 ident: ref_15 article-title: OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis publication-title: Nat. Cell Biol. – volume: 8 start-page: e24820 year: 2013 ident: ref_9 article-title: A role for GIGANTEA publication-title: Plant Signal. Behav. doi: 10.4161/psb.24820 – volume: 52 start-page: 86 year: 2019 ident: ref_91 article-title: Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2019.08.002 – volume: 15 start-page: 625 year: 2010 ident: ref_107 article-title: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.08.007 – volume: 93 start-page: 107 year: 2017 ident: ref_27 article-title: Upstream kinases of plant SnRKs are involved in salt stress tolerance publication-title: Plant J. – volume: 10 start-page: e1078955 year: 2015 ident: ref_108 article-title: The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2015.1078955 – volume: 26 start-page: 1166 year: 2014 ident: ref_24 article-title: Inhibition of the Arabidopsis Salt Overly Sensitive Pathway by 14-3-3 Proteins publication-title: Plant Cell doi: 10.1105/tpc.113.117069 – volume: 28 start-page: 666 year: 2018 ident: ref_19 article-title: The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.023 – volume: 61 start-page: 672 year: 2010 ident: ref_77 article-title: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04092.x – volume: 63 start-page: 429 year: 2021 ident: ref_10 article-title: Plant abiotic stress: New insights into the factors that activate and modulate plant responses publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13079 – volume: 147 start-page: 15 year: 2013 ident: ref_76 article-title: Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2012.01635.x – volume: 100 start-page: 11771 year: 2003 ident: ref_78 article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2034853100 – volume: 33 start-page: 1217 year: 2014 ident: ref_51 article-title: MAPK cascades and major abiotic stresses publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1629-0 – volume: 52 start-page: 223 year: 2007 ident: ref_34 article-title: Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03236.x – ident: ref_39 doi: 10.3390/ijms20051059 – volume: 1564 start-page: 193 year: 2017 ident: ref_82 article-title: Brassinosteroid Action in Plant Abiotic Stress Tolerance publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6813-8_16 – volume: 25 start-page: 1117 year: 2020 ident: ref_64 article-title: How Plant Hormones Mediate Salt Stress Responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.06.008 – ident: ref_101 doi: 10.3390/ijms20061403 – volume: 31 start-page: 1219 year: 2012 ident: ref_96 article-title: Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress publication-title: Plant Cell Rep. doi: 10.1007/s00299-012-1242-z – volume: 16 start-page: 558 year: 2013 ident: ref_53 article-title: The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco publication-title: Plant Biol. doi: 10.1111/plb.12084 – volume: 71 start-page: 403 year: 2020 ident: ref_12 article-title: Salt Tolerance Mechanisms of Plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100005 – volume: 92 start-page: 391 year: 2016 ident: ref_26 article-title: Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis publication-title: Plant Mol. Biol. doi: 10.1007/s11103-016-0520-5 – ident: ref_122 doi: 10.1371/journal.pone.0200938 – volume: 52 start-page: 952 year: 2010 ident: ref_98 article-title: Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00981.x – volume: 55 start-page: 367 year: 2020 ident: ref_29 article-title: The GSK3-like Kinase BIN2 Is a Molecular Switch between the Salt Stress Response and Growth Recovery in Arabidopsis thaliana publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.08.005 – volume: 1860 start-page: 2037 year: 2016 ident: ref_50 article-title: Mitogen-activated protein kinases as key players in osmotic stress signaling publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2016.05.032 – volume: 5 start-page: 1 year: 2012 ident: ref_7 article-title: Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants publication-title: Rice doi: 10.1186/1939-8433-5-11 – volume: 30 start-page: 4815 year: 2020 ident: ref_55 article-title: The Calcium-Responsive Phospholipid-Binding BONZAI Proteins Control Global Osmotic Stress Responses in Plants Through Repression of Immune Signaling publication-title: SSRN Electron. J. – volume: 63 start-page: 53 year: 2021 ident: ref_49 article-title: Protein kinases in plant responses to drought, salt, and cold stress publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13061 – volume: 14 start-page: 1625697 year: 2019 ident: ref_117 article-title: Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2019.1625697 – ident: ref_119 doi: 10.3390/ijms20235910 – ident: ref_113 doi: 10.3390/ijms19020335 – volume: 53 start-page: 247 year: 2002 ident: ref_11 article-title: Salt and drought stress signal transduction in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 63 start-page: 241 year: 2021 ident: ref_93 article-title: Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13046 – volume: 113 start-page: E5242 year: 2016 ident: ref_17 article-title: Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and invovlement of plastidial KEA transporters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519555113 – volume: 20 start-page: 1 year: 2019 ident: ref_121 article-title: RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress publication-title: BMC Genom. doi: 10.1186/s12864-019-6098-y – volume: 6 start-page: 29 year: 2014 ident: ref_94 article-title: Cytoskeleton and plant salt stress tolerance publication-title: Plant Signal Behav. doi: 10.4161/psb.6.1.14202 – volume: 104 start-page: 15959 year: 2007 ident: ref_35 article-title: A protein phosphorylation/dephosphorylation network regulates a plant potassium channel publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0707912104 – volume: 9 start-page: R130 year: 2008 ident: ref_44 article-title: Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development publication-title: Genome Biol. doi: 10.1186/gb-2008-9-8-r130 – volume: 24 start-page: 4555 year: 2012 ident: ref_92 article-title: Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.104182 – volume: 29 start-page: 2000 year: 2006 ident: ref_71 article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01576.x – volume: 10 start-page: 1 year: 2019 ident: ref_23 article-title: Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance publication-title: Nat. Commun. – volume: 16 start-page: 1 year: 2016 ident: ref_67 article-title: Plant hormone-mediated regulation of stress responses publication-title: BMC Plant Biol. doi: 10.1186/s12870-016-0771-y – volume: 26 start-page: 4394 year: 2014 ident: ref_87 article-title: BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.114.130849 – volume: 556 start-page: 235 year: 2018 ident: ref_70 article-title: A small peptide modulates stomatal control via abscisic acid in long-distance signalling publication-title: Nat. Cell Biol. – volume: 20 start-page: 1 year: 2020 ident: ref_123 article-title: Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-2279-8 – volume: 19 start-page: 1415 year: 2007 ident: ref_8 article-title: SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress publication-title: Plant Cell doi: 10.1105/tpc.106.042291 – volume: 572 start-page: 131 year: 2019 ident: ref_21 article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity publication-title: Nat. Cell Biol. – volume: 162 start-page: 1353 year: 2015 ident: ref_103 article-title: A Mechanism for Sustained Cellulose Synthesis during Salt Stress publication-title: Cell doi: 10.1016/j.cell.2015.08.028 – volume: 4 start-page: 1352 year: 2013 ident: ref_25 article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis publication-title: Nat. Commun. doi: 10.1038/ncomms2357 – volume: 115 start-page: 13123 year: 2018 ident: ref_106 article-title: Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1816991115 – volume: 279 start-page: 4097 year: 2012 ident: ref_5 article-title: Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide publication-title: Proc. R. Soc. B Boil. Sci. doi: 10.1098/rspb.2012.1005 – volume: 53 start-page: 2201 year: 2002 ident: ref_65 article-title: Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots publication-title: J. Exp. Bot. doi: 10.1093/jxb/erf079 – volume: 235 start-page: 661 year: 2011 ident: ref_52 article-title: ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses publication-title: Planta doi: 10.1007/s00425-011-1510-0 – volume: 48 start-page: 1534 year: 2007 ident: ref_99 article-title: Salt Tolerance Requires Cortical Microtubule Reorganization in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm123 – volume: 71 start-page: 1491 year: 2019 ident: ref_86 article-title: RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure publication-title: J. Exp. Bot. – volume: 167 start-page: 313 year: 2016 ident: ref_66 article-title: Abiotic Stress Signaling and Responses in Plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 16 start-page: 440 year: 2013 ident: ref_81 article-title: Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola publication-title: Plant Biol. doi: 10.1111/plb.12052 – volume: 53 start-page: 368 year: 2012 ident: ref_109 article-title: MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr185 – volume: 302 start-page: 110719 year: 2021 ident: ref_84 article-title: Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110719 – volume: 92 start-page: 1106 year: 2017 ident: ref_45 article-title: Arabidopsis EARLY FLOWERING 3 increases salt tolerance by suppressing salt stress response pathways publication-title: Plant J. doi: 10.1111/tpj.13747 – volume: 111 start-page: 9651 year: 2014 ident: ref_88 article-title: GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1316717111 – volume: 32 start-page: 139 year: 2013 ident: ref_97 article-title: Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization publication-title: Plant Cell Rep. doi: 10.1007/s00299-012-1348-3 – volume: 90 start-page: 856 year: 2016 ident: ref_57 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J. doi: 10.1111/tpj.13299 – volume: 217 start-page: 523 year: 2017 ident: ref_41 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol. doi: 10.1111/nph.14920 – ident: ref_61 doi: 10.1371/journal.pgen.1007662 – volume: 69 start-page: 3021 year: 2015 ident: ref_13 article-title: Changes in the Phosphosproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.15.01486 – volume: 25 start-page: 4544 year: 2013 ident: ref_102 article-title: The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.117887 – volume: 56 start-page: 883 year: 2015 ident: ref_90 article-title: Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv014 – ident: ref_56 doi: 10.3390/ijms21155208 – volume: 58 start-page: 1143 year: 2017 ident: ref_105 article-title: FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Responses publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx048 – volume: 26 start-page: 2538 year: 2014 ident: ref_54 article-title: The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice publication-title: Plant Cell doi: 10.1105/tpc.114.125187 – volume: 10 start-page: 1 year: 2019 ident: ref_116 article-title: The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants publication-title: Nat. Commun. doi: 10.1038/s41467-019-08780-3 – volume: 233 start-page: 189 year: 2010 ident: ref_62 article-title: An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity publication-title: Planta doi: 10.1007/s00425-010-1293-8 – volume: 287 start-page: 110188 year: 2019 ident: ref_69 article-title: OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110188 – volume: 69 start-page: 100 year: 2018 ident: ref_73 article-title: Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.002 – volume: 118 start-page: e2010911118 year: 2021 ident: ref_112 article-title: Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2010911118 – volume: 12 start-page: 695 year: 2020 ident: ref_1 article-title: Mapping disruption and resilience mechanisms in food systems publication-title: Food Secur. doi: 10.1007/s12571-020-01093-0 – volume: 12 start-page: 70 year: 2009 ident: ref_100 article-title: The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2009.00201.x – volume: 48 start-page: 697 year: 2019 ident: ref_28 article-title: The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.02.010 – volume: 171 start-page: 688 year: 2014 ident: ref_31 article-title: K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.09.021 – volume: 38 start-page: 305 year: 2016 ident: ref_115 article-title: Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.06.032 – volume: 34 start-page: 114 year: 2016 ident: ref_104 article-title: Cells, walls, and endless forms publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.10.010 – volume: 15 start-page: 1836883 year: 2020 ident: ref_16 article-title: Osmotic stress alters circadian cytosolic Ca2+ oscillations and OSCA1 is required in circadian gated stress adaptation publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2020.1836883 – volume: 11 start-page: 164 year: 2020 ident: ref_6 article-title: Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00164 – volume: 23 start-page: 3340 year: 2018 ident: ref_72 article-title: Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.044 – volume: 126 start-page: 807 year: 2020 ident: ref_111 article-title: Associations between phytohormones and cellulose biosynthesis in land plants publication-title: Ann. Bot. doi: 10.1093/aob/mcaa121 – volume: 578 start-page: 577 year: 2020 ident: ref_22 article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis publication-title: Nat. Cell Biol. – volume: 52 start-page: 449 year: 2007 ident: ref_37 article-title: TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03255.x – volume: 4 start-page: 527 year: 2011 ident: ref_36 article-title: Mechanistic Analysis of AKT1 Regulation by the CBL–CIPK–PP2CA Interactions publication-title: Mol. Plant doi: 10.1093/mp/ssr031 – ident: ref_60 doi: 10.1371/journal.pone.0092900 – ident: ref_14 doi: 10.3390/ijms20092366 – volume: 63 start-page: 528 year: 2021 ident: ref_43 article-title: The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13008 – volume: 182 start-page: 2143 year: 2020 ident: ref_33 article-title: Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23 publication-title: Plant Physiol. doi: 10.1104/pp.19.01084 – volume: 62 start-page: 25 year: 2020 ident: ref_68 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12899 – volume: 4 start-page: 199 year: 2011 ident: ref_110 article-title: Cellulose Synthases and Synthesis in Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/ssq079 – volume: 60 start-page: 796 year: 2018 ident: ref_40 article-title: Unraveling salt stress signaling in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12689 – volume: 11 start-page: 38 year: 2020 ident: ref_80 article-title: Exogenous Brassinolide Alleviates Salt Stress in Malus hupehensis Rehd. by Regulating the Transcription of NHX-Type Na+(K+)/H+ Antiporters publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00038 – volume: 32 start-page: 295 year: 2020 ident: ref_79 article-title: Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses publication-title: Plant Cell doi: 10.1105/tpc.19.00335 – volume: 11 start-page: e1135281 year: 2016 ident: ref_114 article-title: The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6 publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2015.1135281 – ident: ref_48 doi: 10.3390/ijms21228648 – volume: 16 start-page: 1 year: 2016 ident: ref_75 article-title: Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase publication-title: BMC Plant Biol. – volume: 572 start-page: 341 year: 2019 ident: ref_18 article-title: Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx publication-title: Nat. Cell Biol. – volume: 48 start-page: 710 year: 2019 ident: ref_20 article-title: Dynamic Interactions of Plant CNGC Subunits and Calmodulins Drive Oscillatory Ca2+ Channel Activities publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.12.025 – volume: 9 start-page: 1 year: 2018 ident: ref_83 article-title: Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth publication-title: Nat. Commun. – volume: 39 start-page: 447 year: 2016 ident: ref_4 article-title: A New Insight of Salt Stress Signaling in Plant publication-title: Mol. Cells doi: 10.14348/molcells.2016.0083 – volume: 32 start-page: 370 year: 2019 ident: ref_63 article-title: RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.9b00028 – volume: 16 start-page: 13561 year: 2015 ident: ref_58 article-title: Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160613561 – volume: 11 start-page: 621859 year: 2020 ident: ref_85 article-title: Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.621859 – volume: 40 start-page: e105086 year: 2021 ident: ref_46 article-title: Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1 -mediated sodium homeostasis publication-title: EMBO J. doi: 10.15252/embj.2020105086 – volume: 11 start-page: 613 year: 2020 ident: ref_74 article-title: A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants publication-title: Nat. Commun. doi: 10.1038/s41467-020-14477-9 – volume: 39 start-page: 1994 year: 2016 ident: ref_89 article-title: The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1 publication-title: Plant Cell Environ. doi: 10.1111/pce.12763 – volume: 14 start-page: 411 year: 2021 ident: ref_118 article-title: Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana publication-title: Mol. Plant doi: 10.1016/j.molp.2020.11.023 – volume: 6 start-page: 1274 year: 2013 ident: ref_38 article-title: Salt Stress Triggers Phosphorylation of the Arabidopsis Vacuolar K+ Channel TPK1 by Calcium-Dependent Protein Kinases (CDPKs) publication-title: Mol. Plant doi: 10.1093/mp/sss158 – volume: 217 start-page: 1161 year: 2017 ident: ref_42 article-title: A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+exclusion and salt tolerance in maize publication-title: New Phytol. doi: 10.1111/nph.14882 |
| SSID | ssj0023259 |
| Score | 2.7190735 |
| SecondaryResourceType | review_article |
| Snippet | Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4609 |
| SubjectTerms | Agricultural production Kinases Osmosis Plant growth Review Sensors |
| Title | Regulation of Plant Responses to Salt Stress |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33924753 https://www.proquest.com/docview/2528271803 https://www.proquest.com/docview/2520869855 https://pubmed.ncbi.nlm.nih.gov/PMC8125386 |
| Volume | 22 |
| WOSCitedRecordID | wos000650413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (subscription) customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7B0kq9AH3QhgJKpfbUWiR-xPGpggrUHtiullbaniI7dtStaAIkVOq_Z5xkw1JULlyiJB7F1vgx89mT-QDeWnQ5BDWciNgWxDvwJKWuQNRqjImE0Jp3ZBNyPE5nMzXpN9zqPqxysSa2C7Wtcr9Hvk8FggNcSCP28fyCeNYof7raU2iswprPVMZHsHZ4NJ5MB8jFaEuXFqMVIolQSRf6zhDo789__a4pRXST-GDEZaN0x9P8N2ByyQIdbzy07Zuw3vue4UE3WJ7CiiufweOOjfLvc_gw7XjpsafCqgg9nVETTrsYWleHTRWe6rMmPG3_LnkB34-Pvn36THoyBZJzmTbEKZfElhqpeZKzhElpnIssaoJbK9M4x3ufar2gBl_GkdKJlk4zZZVEGKXZFozKqnSvICwKoT2TgtHoG7BCGZsapgqJH8od5zqA9wttZnmfadwTXpxliDi87rNl3QfwbpA-7zJs_EduZ6HcrJ9ndXaj2QDeDMU4Q_yxhy5dddXKIG5TqRABvOz6cagIa6EcEVsA8lYPDwI--_btknL-s83CjZ4RGotk-_5mvYYn1EfBRJzQdAdGzeWV24VH-Z9mXl_uwaqcyfaa7vVDF59O6Fd8mnw5mfy4BrMi-LU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguPAukFAgSPYHVxHbi-IAQAqqu2q5WbZHKKbVjp11UktKkRf1T_EbGebEFwa0HblE8sq3MeDxfPJ4P4KXBkCOimpMoNDlxATxJqM0RtWqtgyhSirdkE2IySfb35XQBfvR3YVxaZe8TG0dtysz9I1-jEYIDdKQBe3vyjTjWKHe62lNotGaxaS--I2Sr3ow_oH5XKV3_uPd-g3SsAiTjIqmJlTYODdVC8ThjMRNCWxsYxP7cGJGEGT67muM51fgyDKSKlbCKSSMF4gnFsN9rsMjR2JMRLE7H29PPA8RjtKFnC3HXI3Ek4zbVnmHna7MvXytKEU3FLvlxfhP8I7L9PUFzbsdbv_O_fau7cLuLrf137WK4Bwu2uA83WrbNiwfwescedmRlfpn7jq6p9nfaHGFb-XXp76rj2t9tbs8swacrmepDGBVlYR-Dn-eRckwRWmHsw3KpTaKZzAV2lFnOlQeveu2lWVdJ3RF6HKeIqJyu03lde7A6SJ-0FUT-IrfSKzPt_EiV_tKkBy-GZvQA7lhHFbY8a2QQl8okijx41NrNMBCOQjkiUg_EJYsaBFx18cstxeyoqTKOkR9uhvHyv6f1HG5u7G1vpVvjyeYTuEVdxk_ACU1WYFSfntmncD07r2fV6bNuqfhwcNUW9xO-Y1Cu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3tBAgSDRE1ib2E4cHxBClBVV0VK1IPWW2rENi9qkNGmr_jV-HeO82ILg1gO3KLZsKzOemS8ezwfw3GDIkVDNSRIbR3wATzJqHaJWrXWUJErxjmxCzGbZ7q7cWoIfw10Yn1Y52MTWUJuq8P_IJzRBcICGNGIT16dFbK1PXx9-J55Byp-0DnQanYps2rNThG_1q411lPUapdN3n96-Jz3DACm4yBpipU1jQ7VQPC1YyoTQ1kaGyYgbI7K4wGdff9xRjS_jSKpUCauYNFIgtlAMx70ElwVHp-zTBunHEewx2hK1xej_SJrItEu6Zzj0ZP7toKYUcVXq0yAX3eEfMe7vqZoLvm9683_-arfgRh9xh2-6LXIblmx5B652HJxnd-Hltv3SU5iFlQs9iVMTbneZw7YOmyrcUftNuNPeqbkHny9kqfdhuaxKuwKhc4ny_BFaYUTEnNQm00w6gQMVlnMVwItBknnR11f3NB_7OeIsL_d8Ue4BrI29D7u6In_ptzoINu-tS53_kmoAz8ZmtAv-sEeVtjpu-yBalVmSBPCg06FxIpyFcsSpAYhz2jV28DXHz7eU869t7XGMB9FFpg__vayncA3VLP-wMdt8BNepTwOKOKHZKiw3R8f2MVwpTpp5ffSk3TMh7F20uv0EbyBX6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Plant+Responses+to+Salt+Stress&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Zhao%2C+Shuangshuang&rft.au=Zhang%2C+Qikun&rft.au=Liu%2C+Mingyue&rft.au=Zhou%2C+Huapeng&rft.date=2021-04-28&rft.eissn=1422-0067&rft.volume=22&rft.issue=9&rft_id=info:doi/10.3390%2Fijms22094609&rft_id=info%3Apmid%2F33924753&rft.externalDocID=33924753 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |