Regulation of Plant Responses to Salt Stress

Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of molecular sciences Ročník 22; číslo 9; s. 4609
Hlavní autori: Zhao, Shuangshuang, Zhang, Qikun, Liu, Mingyue, Zhou, Huapeng, Ma, Changle, Wang, Pingping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 28.04.2021
MDPI
Predmet:
ISSN:1422-0067, 1661-6596, 1422-0067
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
AbstractList Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
Author Zhang, Qikun
Zhou, Huapeng
Ma, Changle
Zhao, Shuangshuang
Liu, Mingyue
Wang, Pingping
AuthorAffiliation 1 Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; zhangqikun1016@163.com (Q.Z.); lmy312325@163.com (M.L.); machangle@sdnu.edu.cn (C.M.)
2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; zhouhuapeng@scu.edu.cn
AuthorAffiliation_xml – name: 2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; zhouhuapeng@scu.edu.cn
– name: 1 Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; zhangqikun1016@163.com (Q.Z.); lmy312325@163.com (M.L.); machangle@sdnu.edu.cn (C.M.)
Author_xml – sequence: 1
  givenname: Shuangshuang
  surname: Zhao
  fullname: Zhao, Shuangshuang
– sequence: 2
  givenname: Qikun
  surname: Zhang
  fullname: Zhang, Qikun
– sequence: 3
  givenname: Mingyue
  orcidid: 0000-0002-4162-8684
  surname: Liu
  fullname: Liu, Mingyue
– sequence: 4
  givenname: Huapeng
  orcidid: 0000-0002-6802-7440
  surname: Zhou
  fullname: Zhou, Huapeng
– sequence: 5
  givenname: Changle
  surname: Ma
  fullname: Ma, Changle
– sequence: 6
  givenname: Pingping
  surname: Wang
  fullname: Wang, Pingping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33924753$$D View this record in MEDLINE/PubMed
BookMark eNptkctLw0AQxhdR7ENvniXgxUOj-0iyuxdBii8oKK2el00yqSlJtmY3gv-9W9tKLZ5mmP19H9_MDtBhYxpA6IzgK8Ykvi4XtaUUyyjB8gD1SURpiHHCD3f6HhpYu8CYMhrLY9TzQhrxmPXRaArzrtKuNE1giuCl0o0LpmCXprFgA2eCma5cMHMtWHuCjgpdWTjd1CF6u797HT-Gk-eHp_HtJMwiLlwIEhKS05TrKMlYwjhPAXDuw0Z5zgXJfM_iWBQ09UOCpU40B81kLjkmkWZDdLP2XXZpDXkGjWt1pZZtWev2Sxldqr8vTfmu5uZTCUJjJhJvcLkxaM1HB9apurQZVH47MJ1VNKZYJFLEsUcv9tCF6drGr7eiBOVEYOap891Ev1G2h_QAXQNZa6xtoVBZ6X7O6gOWlSJ4xWK1-1teNNoTbX3_xb8B0GKU3A
CitedBy_id crossref_primary_10_3389_fbioe_2022_929681
crossref_primary_10_3390_ijms242216450
crossref_primary_10_3390_plants14091296
crossref_primary_10_3390_ijms25136845
crossref_primary_10_1016_j_jprot_2024_105072
crossref_primary_10_1134_S1021443724609261
crossref_primary_10_1016_j_scitotenv_2024_176333
crossref_primary_10_1093_plcell_koac292
crossref_primary_10_1080_07352689_2024_2354981
crossref_primary_10_1186_s40538_024_00670_1
crossref_primary_10_1111_ppl_13832
crossref_primary_10_3390_ijms23094810
crossref_primary_10_1007_s11816_024_00916_2
crossref_primary_10_3390_ijms26083518
crossref_primary_10_1007_s42729_024_02154_5
crossref_primary_10_3390_ijms26188938
crossref_primary_10_1007_s00253_022_11838_w
crossref_primary_10_1007_s12042_025_09429_w
crossref_primary_10_3389_fpls_2021_736421
crossref_primary_10_3390_plants13020312
crossref_primary_10_1186_s40529_021_00320_x
crossref_primary_10_1186_s12870_025_07037_0
crossref_primary_10_3390_horticulturae11091130
crossref_primary_10_1016_j_plantsci_2023_111706
crossref_primary_10_3390_w15061065
crossref_primary_10_1007_s00344_022_10875_z
crossref_primary_10_3390_genes14101943
crossref_primary_10_1016_j_micres_2022_127225
crossref_primary_10_1038_s41598_024_61576_4
crossref_primary_10_1073_pnas_2407821121
crossref_primary_10_1111_jac_12779
crossref_primary_10_1016_j_gene_2023_147255
crossref_primary_10_3390_horticulturae10080858
crossref_primary_10_1007_s11056_021_09879_6
crossref_primary_10_17221_459_2024_PSE
crossref_primary_10_1088_2515_7620_ad61c5
crossref_primary_10_1007_s42729_024_01616_0
crossref_primary_10_3390_horticulturae9020230
crossref_primary_10_1007_s00344_023_11146_1
crossref_primary_10_3390_plants12244110
crossref_primary_10_3390_agronomy13010174
crossref_primary_10_3390_horticulturae9070770
crossref_primary_10_3390_ijms23158436
crossref_primary_10_3390_plants12142646
crossref_primary_10_1016_j_plaphy_2025_110132
crossref_primary_10_1111_aab_12919
crossref_primary_10_1111_pce_15621
crossref_primary_10_3390_agronomy14112613
crossref_primary_10_3390_metabo11110724
crossref_primary_10_1016_j_plaphy_2025_110135
crossref_primary_10_1016_j_scienta_2024_113793
crossref_primary_10_3390_ijms26136289
crossref_primary_10_1080_15569543_2024_2382989
crossref_primary_10_1093_plphys_kiad135
crossref_primary_10_1134_S1021443724607055
crossref_primary_10_3390_plants13111488
crossref_primary_10_1007_s42729_024_01790_1
crossref_primary_10_1007_s11103_023_01386_w
crossref_primary_10_3390_ijms242216123
crossref_primary_10_3390_ijms24129793
crossref_primary_10_1186_s12870_025_06194_6
crossref_primary_10_3389_fpls_2021_751965
crossref_primary_10_3390_plants13111468
crossref_primary_10_1007_s00344_024_11590_7
crossref_primary_10_3390_ijms23042272
crossref_primary_10_1007_s44154_024_00198_2
crossref_primary_10_3390_cimb47090754
crossref_primary_10_1038_s42003_025_08077_w
crossref_primary_10_1080_00103624_2023_2274032
crossref_primary_10_1016_j_scienta_2023_112178
crossref_primary_10_1093_plcell_koad250
crossref_primary_10_1186_s12870_025_06599_3
crossref_primary_10_48130_vegres_0024_0017
crossref_primary_10_1007_s40626_023_00270_8
crossref_primary_10_1093_plphys_kiae335
crossref_primary_10_1134_S1021443724609248
crossref_primary_10_1016_j_ijbiomac_2024_129971
crossref_primary_10_1007_s42729_023_01401_5
crossref_primary_10_1016_j_sajb_2023_10_047
crossref_primary_10_1007_s11240_022_02260_1
crossref_primary_10_3390_drones6090257
crossref_primary_10_1007_s10343_025_01123_x
crossref_primary_10_1016_j_sajb_2022_09_033
crossref_primary_10_1007_s44154_023_00126_w
crossref_primary_10_1007_s00299_023_03052_3
crossref_primary_10_1007_s11240_023_02511_9
crossref_primary_10_1007_s10343_023_00867_8
crossref_primary_10_1080_03067319_2025_2534027
crossref_primary_10_3389_fpls_2024_1445791
crossref_primary_10_1186_s13059_025_03766_5
crossref_primary_10_1016_j_focha_2025_100886
crossref_primary_10_1002_tpg2_20502
crossref_primary_10_3390_f15112051
crossref_primary_10_1016_j_plaphy_2022_08_021
crossref_primary_10_3390_plants11243503
crossref_primary_10_4014_jmb_2304_04005
crossref_primary_10_3390_ijms23147645
crossref_primary_10_1016_j_envres_2023_117907
crossref_primary_10_1002_advs_202506590
crossref_primary_10_3390_su141610032
crossref_primary_10_1016_j_eti_2024_103947
crossref_primary_10_3390_f13111864
crossref_primary_10_1007_s00344_024_11429_1
crossref_primary_10_3389_fmicb_2025_1589415
crossref_primary_10_3390_ijms26052095
crossref_primary_10_1111_tpj_16614
crossref_primary_10_1007_s11104_023_06444_2
crossref_primary_10_1016_j_cj_2022_06_007
crossref_primary_10_1016_j_egg_2024_100266
crossref_primary_10_1016_j_sajb_2024_04_047
crossref_primary_10_3390_plants14091268
crossref_primary_10_3389_fpls_2021_753099
crossref_primary_10_3390_ijms26010329
crossref_primary_10_3390_life13071454
crossref_primary_10_1016_j_plaphy_2023_107858
crossref_primary_10_1007_s10142_023_01140_x
crossref_primary_10_3390_soilsystems8010011
crossref_primary_10_1007_s11240_024_02822_5
crossref_primary_10_1016_j_micres_2024_127707
crossref_primary_10_3390_horticulturae11060697
crossref_primary_10_1093_plcell_koad167
crossref_primary_10_1016_j_scienta_2024_113754
crossref_primary_10_3389_fpls_2022_1012186
crossref_primary_10_1093_plcell_koaf103
crossref_primary_10_3390_agronomy11122500
crossref_primary_10_3390_ijms242216157
crossref_primary_10_3390_genes15070958
crossref_primary_10_1111_ppl_13805
crossref_primary_10_1186_s12870_025_06562_2
crossref_primary_10_1007_s10725_023_01017_w
crossref_primary_10_3390_ijms241612761
crossref_primary_10_1016_j_plantsci_2023_111658
crossref_primary_10_1111_pce_14844
crossref_primary_10_1093_bbb_zbae057
crossref_primary_10_3390_ijms24065605
crossref_primary_10_3390_f15040605
crossref_primary_10_3390_plants12071439
crossref_primary_10_1007_s00572_025_01209_4
crossref_primary_10_3390_plants13020217
crossref_primary_10_1007_s12298_024_01476_z
crossref_primary_10_1007_s10142_024_01347_6
crossref_primary_10_1038_s41596_024_01068_x
crossref_primary_10_3390_genes14122203
crossref_primary_10_1016_j_jhazmat_2024_136013
crossref_primary_10_1093_plcell_koac082
crossref_primary_10_3389_fpls_2022_949541
crossref_primary_10_1007_s00344_024_11494_6
crossref_primary_10_1098_rstb_2024_0245
crossref_primary_10_1093_hr_uhae068
crossref_primary_10_1111_ppl_13702
crossref_primary_10_3389_fpls_2022_1072782
crossref_primary_10_3390_ijms231912053
crossref_primary_10_3390_agronomy15092103
crossref_primary_10_1007_s00425_023_04188_y
crossref_primary_10_3389_fpls_2022_881039
crossref_primary_10_1111_pce_70194
crossref_primary_10_3389_fmicb_2025_1587491
crossref_primary_10_3390_su15075805
crossref_primary_10_1016_j_plaphy_2024_109048
crossref_primary_10_3390_horticulturae10050466
crossref_primary_10_1016_j_sajb_2024_10_004
crossref_primary_10_3390_plants13020283
crossref_primary_10_1002_sae2_12083
crossref_primary_10_1016_j_jenvman_2025_126948
crossref_primary_10_1111_pce_14946
crossref_primary_10_3390_f14081686
crossref_primary_10_1080_10407790_2023_2269605
crossref_primary_10_1111_ppl_14644
crossref_primary_10_1016_j_scitotenv_2023_165446
crossref_primary_10_1186_s12864_024_10962_3
crossref_primary_10_3390_ijms26115043
crossref_primary_10_1016_j_jplph_2025_154608
crossref_primary_10_1134_S1021443724609893
crossref_primary_10_1016_j_crope_2023_03_002
crossref_primary_10_1111_ppl_13675
crossref_primary_10_12944_CARJ_12_2_05
crossref_primary_10_3390_ijms23094539
crossref_primary_10_1016_j_sajb_2024_06_039
crossref_primary_10_1007_s44154_024_00195_5
crossref_primary_10_1016_j_psep_2022_10_040
crossref_primary_10_1016_j_saa_2025_126267
crossref_primary_10_3390_metabo13080895
crossref_primary_10_3389_fpls_2022_920881
crossref_primary_10_1016_j_jplph_2022_153806
crossref_primary_10_1080_23311932_2024_2327666
crossref_primary_10_3390_plants13223201
crossref_primary_10_1016_j_ncrops_2024_100023
crossref_primary_10_1093_gigascience_giad053
crossref_primary_10_3390_horticulturae10111150
crossref_primary_10_1007_s10725_024_01127_z
crossref_primary_10_3390_agronomy13092310
crossref_primary_10_3390_antiox11122362
crossref_primary_10_1007_s11756_023_01554_9
crossref_primary_10_3390_plants14020254
crossref_primary_10_1016_j_plantsci_2024_112371
crossref_primary_10_3390_agronomy14081771
crossref_primary_10_3390_plants14050803
crossref_primary_10_3390_biology11040597
crossref_primary_10_3390_cells12151960
crossref_primary_10_3390_genes14040892
crossref_primary_10_1111_pbi_13729
crossref_primary_10_3390_genes15050555
crossref_primary_10_1007_s11104_025_07292_y
crossref_primary_10_3390_app12178640
crossref_primary_10_1134_S1062359024607171
crossref_primary_10_3389_fpls_2022_996765
crossref_primary_10_3390_ijms26167978
crossref_primary_10_3390_plants13060752
crossref_primary_10_1002_pei3_70036
crossref_primary_10_1186_s12870_024_05524_4
crossref_primary_10_1007_s42729_025_02536_3
crossref_primary_10_1016_j_indcrop_2024_119854
crossref_primary_10_3389_fpls_2022_866265
crossref_primary_10_1111_jac_70116
crossref_primary_10_1016_j_plaphy_2025_109666
crossref_primary_10_1186_s12870_025_06803_4
crossref_primary_10_1007_s10265_024_01528_1
crossref_primary_10_3389_fpls_2025_1522534
crossref_primary_10_48130_tihort_0025_0022
crossref_primary_10_1111_pce_14818
crossref_primary_10_1093_jxb_eraf058
crossref_primary_10_1186_s13007_022_00915_w
crossref_primary_10_1016_j_sajb_2023_04_049
crossref_primary_10_1016_j_scienta_2023_112453
crossref_primary_10_1093_plcell_koaf035
crossref_primary_10_1038_s41598_024_72614_6
crossref_primary_10_3389_fpls_2023_1090366
crossref_primary_10_3390_genes15091176
crossref_primary_10_3390_agronomy13092213
crossref_primary_10_3390_agronomy14081670
crossref_primary_10_1186_s12870_024_04966_0
crossref_primary_10_3390_ijms26062500
crossref_primary_10_1007_s44372_025_00249_6
crossref_primary_10_17221_127_2024_PPS
crossref_primary_10_3390_ijerph191610399
crossref_primary_10_1007_s11105_024_01488_9
crossref_primary_10_1007_s12298_024_01504_y
crossref_primary_10_1016_j_envpol_2024_123363
crossref_primary_10_3390_agriculture12122070
crossref_primary_10_3389_fpls_2024_1397552
crossref_primary_10_3390_plants12081666
crossref_primary_10_3390_agronomy13010036
crossref_primary_10_1016_j_plaphy_2025_110476
crossref_primary_10_1134_S1021443724608644
crossref_primary_10_3390_plants13141990
crossref_primary_10_1007_s10343_024_01018_3
crossref_primary_10_1016_j_jare_2024_12_031
crossref_primary_10_1007_s00284_023_03288_y
crossref_primary_10_1007_s11676_022_01486_1
crossref_primary_10_3390_horticulturae10090966
crossref_primary_10_3390_biology14040416
crossref_primary_10_3390_life15081294
crossref_primary_10_1016_j_ecolind_2025_113789
crossref_primary_10_1016_j_plaphy_2025_109478
crossref_primary_10_3390_f15111905
crossref_primary_10_1186_s40538_023_00510_8
crossref_primary_10_1080_09064710_2025_2466433
crossref_primary_10_3389_fpls_2025_1561280
crossref_primary_10_15835_nbha50112607
crossref_primary_10_3389_fpls_2024_1375478
crossref_primary_10_3390_ijms23116167
crossref_primary_10_3390_plants12183329
crossref_primary_10_3389_fpls_2024_1374142
crossref_primary_10_1038_s41598_023_49629_6
crossref_primary_10_1111_ppl_14611
crossref_primary_10_1186_s12870_023_04465_8
crossref_primary_10_1111_ppl_13647
crossref_primary_10_3390_plants13060805
crossref_primary_10_3390_horticulturae8111002
crossref_primary_10_1186_s12870_025_06288_1
crossref_primary_10_1007_s11033_025_10830_7
crossref_primary_10_3390_plants14131932
crossref_primary_10_1016_j_watres_2023_120864
crossref_primary_10_3390_agronomy13010016
crossref_primary_10_3390_life14050595
crossref_primary_10_3390_plants13162307
crossref_primary_10_3389_fpls_2022_1054064
crossref_primary_10_3389_fpls_2024_1353436
crossref_primary_10_3390_genes13101803
crossref_primary_10_3390_plants13233311
crossref_primary_10_3389_fmicb_2024_1336533
crossref_primary_10_3390_ijms26010085
crossref_primary_10_3390_plants12142606
crossref_primary_10_3389_fpls_2022_1002302
crossref_primary_10_1016_j_ygeno_2022_110398
crossref_primary_10_3390_plants13010141
crossref_primary_10_1007_s11240_024_02684_x
crossref_primary_10_3389_fpls_2021_777119
crossref_primary_10_12791_KSBEC_2025_34_3_335
crossref_primary_10_3389_fpls_2022_1049954
crossref_primary_10_1108_PIJPSM_06_2023_0081
crossref_primary_10_1080_15592324_2022_2081419
crossref_primary_10_3390_plants14020145
crossref_primary_10_1007_s11356_024_34275_w
crossref_primary_10_3390_agronomy15020270
crossref_primary_10_3389_fpls_2022_988845
crossref_primary_10_3390_antiox12051043
crossref_primary_10_1016_j_sajb_2023_04_008
crossref_primary_10_1016_j_envexpbot_2022_104917
crossref_primary_10_3390_f15010159
crossref_primary_10_7717_peerj_18236
crossref_primary_10_1016_j_jprot_2024_105328
crossref_primary_10_1111_ppl_13786
crossref_primary_10_3389_fpls_2022_1023696
crossref_primary_10_1111_ppl_70403
crossref_primary_10_1186_s12870_025_06858_3
crossref_primary_10_1016_j_plaphy_2023_108075
crossref_primary_10_15835_nbha50212704
crossref_primary_10_1007_s13562_025_00958_9
crossref_primary_10_12944_CARJ_11_2_03
crossref_primary_10_1016_j_indcrop_2025_120823
crossref_primary_10_1021_acs_est_5c01063
crossref_primary_10_3390_plants14182864
crossref_primary_10_1016_j_sajb_2023_06_029
crossref_primary_10_3389_fpls_2024_1395696
crossref_primary_10_3390_plants13081162
crossref_primary_10_3390_genes16030296
crossref_primary_10_3390_genes14081586
crossref_primary_10_32604_phyton_2024_053914
crossref_primary_10_1016_j_indcrop_2024_119319
crossref_primary_10_3390_plants11233358
crossref_primary_10_1007_s00299_024_03219_6
crossref_primary_10_3390_metabo13090994
crossref_primary_10_1039_D5EN00292C
crossref_primary_10_1016_j_plaphy_2024_108599
crossref_primary_10_1016_j_plaphy_2025_109600
crossref_primary_10_1080_19315260_2024_2383847
crossref_primary_10_1016_j_envexpbot_2023_105604
crossref_primary_10_3390_ijms231710185
crossref_primary_10_1111_ppl_70197
crossref_primary_10_3390_ijms24043693
crossref_primary_10_1007_s13225_025_00550_5
crossref_primary_10_3390_antiox11040671
crossref_primary_10_1186_s12870_023_04509_z
crossref_primary_10_3390_cimb47060421
crossref_primary_10_3390_horticulturae11030309
crossref_primary_10_1111_ppl_14252
crossref_primary_10_3390_ijms252312537
crossref_primary_10_1111_ppl_70044
crossref_primary_10_1016_j_plaphy_2024_108372
crossref_primary_10_1016_j_scienta_2025_114323
crossref_primary_10_3390_ijms24010734
crossref_primary_10_3390_plants14111687
crossref_primary_10_3390_agronomy14071462
crossref_primary_10_1007_s10265_023_01487_z
crossref_primary_10_3390_jof10040283
crossref_primary_10_1111_grs_12417
crossref_primary_10_1007_s11105_024_01450_9
crossref_primary_10_1007_s11738_024_03713_0
crossref_primary_10_1038_s41598_024_70427_1
crossref_primary_10_1038_s41598_022_10767_y
crossref_primary_10_1111_ppl_14262
crossref_primary_10_1111_pce_15183
crossref_primary_10_1007_s10343_025_01174_0
crossref_primary_10_3390_ijms242015374
crossref_primary_10_1111_ppl_14266
crossref_primary_10_1111_ppl_14146
crossref_primary_10_36253_phyto_15444
crossref_primary_10_1007_s00344_025_11846_w
crossref_primary_10_1186_s13068_023_02286_3
crossref_primary_10_3390_agronomy13030693
crossref_primary_10_1016_j_sajb_2024_08_040
crossref_primary_10_1016_j_scienta_2024_112911
crossref_primary_10_3389_fpls_2023_1196319
crossref_primary_10_1016_j_jplph_2022_153862
crossref_primary_10_3390_cimb47070481
crossref_primary_10_1016_j_heliyon_2024_e26389
crossref_primary_10_1186_s12870_022_03887_0
crossref_primary_10_3389_fpls_2023_1185440
crossref_primary_10_3390_ijms26030896
crossref_primary_10_2166_wrd_2025_108
crossref_primary_10_3390_plants12122253
crossref_primary_10_48130_grares_0024_0029
crossref_primary_10_3390_plants13010051
crossref_primary_10_3390_ijms26041780
crossref_primary_10_1071_FP25031
crossref_primary_10_3390_plants12081704
crossref_primary_10_1111_ppl_70387
crossref_primary_10_1007_s42729_024_01676_2
crossref_primary_10_1111_brv_13172
crossref_primary_10_3390_ijms23031603
crossref_primary_10_3390_ijms25042084
crossref_primary_10_3390_plants14172743
crossref_primary_10_1016_j_scienta_2022_111437
crossref_primary_10_1071_FP25034
crossref_primary_10_3390_plants14172623
crossref_primary_10_3390_ijms232416146
crossref_primary_10_1007_s12355_024_01495_w
crossref_primary_10_3390_antiox12091779
crossref_primary_10_3390_ijms24032592
crossref_primary_10_3389_fenvs_2022_998141
crossref_primary_10_1016_j_plantsci_2024_112201
crossref_primary_10_3389_fpls_2023_1127532
crossref_primary_10_3390_agronomy14040730
crossref_primary_10_3390_agronomy14123044
crossref_primary_10_3390_agriculture13030734
crossref_primary_10_3390_ijms23020702
crossref_primary_10_35118_apjmbb_2025_033_3_01
crossref_primary_10_3390_plants11121565
crossref_primary_10_1007_s40626_025_00379_y
crossref_primary_10_1016_j_sajb_2023_07_037
crossref_primary_10_1111_ppl_14563
crossref_primary_10_3390_agronomy13020595
crossref_primary_10_3389_fpls_2022_956410
crossref_primary_10_3390_ijms25042198
crossref_primary_10_1007_s00299_025_03446_5
crossref_primary_10_3390_ijms25073651
crossref_primary_10_3390_microorganisms13081820
crossref_primary_10_3390_antiox13040448
crossref_primary_10_1007_s44154_024_00190_w
crossref_primary_10_1016_j_scienta_2025_114376
crossref_primary_10_3390_horticulturae10060588
crossref_primary_10_1016_j_phytochem_2024_114367
crossref_primary_10_1186_s12870_024_05708_y
crossref_primary_10_1111_tpj_16052
crossref_primary_10_1080_01140671_2025_2454619
crossref_primary_10_1111_tpj_70420
crossref_primary_10_7717_peerj_14602
crossref_primary_10_1111_jac_70047
crossref_primary_10_1007_s11240_023_02550_2
crossref_primary_10_1134_S1021443725601600
crossref_primary_10_3389_fagro_2025_1568758
crossref_primary_10_1016_j_ecoenv_2022_113938
crossref_primary_10_3390_f16010094
crossref_primary_10_3390_ijms232416048
crossref_primary_10_1007_s00425_025_04787_x
crossref_primary_10_1007_s11033_022_08064_y
crossref_primary_10_1016_j_pmpp_2025_102807
crossref_primary_10_32604_phyton_2022_019572
crossref_primary_10_3390_antiox14080994
crossref_primary_10_3389_fpls_2023_1161334
crossref_primary_10_3390_agronomy12112708
crossref_primary_10_3390_agronomy12092014
crossref_primary_10_1016_j_plaphy_2025_109505
crossref_primary_10_1016_j_sajb_2024_01_069
crossref_primary_10_1186_s12284_023_00663_y
crossref_primary_10_1007_s10725_025_01364_w
crossref_primary_10_3390_ijms23095006
crossref_primary_10_1111_ppl_14222
crossref_primary_10_3390_ijms25052639
crossref_primary_10_3390_plants12213680
crossref_primary_10_1590_1983_21252023v36n420rc
crossref_primary_10_3390_horticulturae10020147
crossref_primary_10_3390_ijms24087290
crossref_primary_10_1007_s00344_023_11194_7
crossref_primary_10_3390_su152115569
crossref_primary_10_1007_s10725_025_01276_9
crossref_primary_10_3390_ijms25105437
crossref_primary_10_1093_jxb_eraf253
crossref_primary_10_3389_fpls_2024_1520457
crossref_primary_10_1007_s00344_024_11237_7
crossref_primary_10_3389_fpls_2023_1201730
crossref_primary_10_3390_plants13050744
crossref_primary_10_3390_ijms242316812
crossref_primary_10_3389_fpls_2022_1030138
crossref_primary_10_3390_plants14132065
crossref_primary_10_1089_ars_2024_0889
crossref_primary_10_1111_ppl_14111
crossref_primary_10_1111_ppl_14592
crossref_primary_10_3390_plants13010092
crossref_primary_10_1007_s00344_024_11544_z
crossref_primary_10_3389_fpls_2022_976341
crossref_primary_10_3390_ijms23126376
crossref_primary_10_1089_omi_2021_0210
crossref_primary_10_1016_j_tplants_2023_04_003
crossref_primary_10_3389_fpls_2023_1274684
crossref_primary_10_3390_plants12051016
crossref_primary_10_1186_s12864_024_10114_7
crossref_primary_10_1093_plphys_kiae520
crossref_primary_10_1111_ppl_14082
crossref_primary_10_3390_ijms24076647
crossref_primary_10_1007_s13199_025_01037_2
crossref_primary_10_3390_ijms25052521
crossref_primary_10_3390_agronomy13122984
crossref_primary_10_1002_jpln_202300101
crossref_primary_10_3389_fpls_2025_1568423
crossref_primary_10_3390_cells12162082
crossref_primary_10_3390_ijms24010242
crossref_primary_10_1007_s00344_023_11021_z
crossref_primary_10_1016_j_envexpbot_2025_106097
crossref_primary_10_3390_biom14020227
crossref_primary_10_1093_hr_uhac277
crossref_primary_10_1007_s42729_024_01821_x
crossref_primary_10_3390_agronomy12112841
crossref_primary_10_1016_j_scienta_2023_111905
crossref_primary_10_1111_gcbb_13084
crossref_primary_10_1007_s13205_024_03943_6
crossref_primary_10_1007_s13562_024_00941_w
crossref_primary_10_1007_s42976_024_00522_6
crossref_primary_10_1016_j_heliyon_2024_e26526
crossref_primary_10_1007_s12298_023_01370_0
crossref_primary_10_3390_ijms25052654
crossref_primary_10_1007_s11103_024_01431_2
crossref_primary_10_3389_fpls_2022_1052569
crossref_primary_10_1088_1755_1315_1226_1_012022
crossref_primary_10_1186_s12870_023_04711_z
crossref_primary_10_1186_s12284_025_00787_3
crossref_primary_10_1007_s12298_024_01521_x
crossref_primary_10_1016_j_plaphy_2024_108767
crossref_primary_10_1016_j_envexpbot_2023_105450
crossref_primary_10_1016_j_sajb_2024_03_041
crossref_primary_10_3390_ijms23074016
crossref_primary_10_3390_app131810420
crossref_primary_10_3390_ijms241813965
crossref_primary_10_1016_j_envexpbot_2023_105455
crossref_primary_10_3389_fpls_2022_978066
crossref_primary_10_3390_plants13152142
crossref_primary_10_3390_ijms26136438
crossref_primary_10_3390_plants14071064
crossref_primary_10_1093_treephys_tpae113
crossref_primary_10_1016_j_ijbiomac_2025_139542
crossref_primary_10_3389_fpls_2022_1053699
crossref_primary_10_3390_horticulturae11050532
crossref_primary_10_3390_membranes11120984
crossref_primary_10_1007_s00344_025_11656_0
crossref_primary_10_3389_fgene_2025_1617034
crossref_primary_10_3390_ijms25063310
crossref_primary_10_3389_fpls_2022_1040142
crossref_primary_10_1016_j_plaphy_2024_108655
crossref_primary_10_1016_j_plaphy_2024_108776
crossref_primary_10_1007_s00299_025_03486_x
crossref_primary_10_3389_fpls_2023_1173857
crossref_primary_10_1016_j_jafr_2024_100994
crossref_primary_10_1007_s00299_024_03292_x
crossref_primary_10_1186_s12870_023_04050_z
crossref_primary_10_3390_ijms25169124
crossref_primary_10_1016_j_plana_2025_100171
crossref_primary_10_3390_agriculture13101932
crossref_primary_10_3390_genes15101311
crossref_primary_10_3390_plants13121672
crossref_primary_10_3390_ijms24043623
crossref_primary_10_1007_s42729_024_02145_6
crossref_primary_10_1371_journal_pone_0326093
crossref_primary_10_3389_fpls_2025_1611975
crossref_primary_10_3390_f14051035
crossref_primary_10_1111_nph_18928
crossref_primary_10_1016_j_bbrc_2024_150509
crossref_primary_10_1038_s41598_022_09061_8
crossref_primary_10_1016_j_envexpbot_2023_105515
crossref_primary_10_3389_fpls_2022_1042855
crossref_primary_10_1007_s00344_024_11601_7
crossref_primary_10_3390_horticulturae9091015
crossref_primary_10_1111_ppl_14280
crossref_primary_10_3390_plants12234059
crossref_primary_10_3390_biology14030287
crossref_primary_10_3390_plants14050781
crossref_primary_10_1111_pce_14359
crossref_primary_10_1016_j_plantsci_2025_112601
crossref_primary_10_1007_s12633_024_03122_5
crossref_primary_10_1080_15592324_2023_2276611
crossref_primary_10_1007_s00299_025_03509_7
crossref_primary_10_3389_fpls_2022_1060154
crossref_primary_10_1007_s44371_024_00046_2
crossref_primary_10_1111_pbi_14326
crossref_primary_10_3390_j7010006
crossref_primary_10_3389_fpls_2022_874579
crossref_primary_10_1038_s41598_025_04235_6
crossref_primary_10_3390_plants11192525
crossref_primary_10_1007_s00299_025_03607_6
crossref_primary_10_3390_plants12122356
crossref_primary_10_1093_hr_uhac189
crossref_primary_10_3390_agriculture14081337
crossref_primary_10_1007_s00344_022_10740_z
crossref_primary_10_1007_s00344_024_11392_x
crossref_primary_10_1007_s10725_023_00997_z
crossref_primary_10_3390_ijms25158216
crossref_primary_10_1016_j_plaphy_2024_108843
crossref_primary_10_1016_j_envexpbot_2024_105937
crossref_primary_10_1080_15592324_2025_2479513
crossref_primary_10_1007_s10725_024_01187_1
crossref_primary_10_3390_plants13213029
crossref_primary_10_3390_w16081095
crossref_primary_10_1016_j_cj_2023_06_001
crossref_primary_10_3390_horticulturae8070568
crossref_primary_10_1080_07388551_2022_2093695
crossref_primary_10_1111_pce_15544
crossref_primary_10_1093_hr_uhac291
crossref_primary_10_1038_s41598_025_92555_y
crossref_primary_10_3389_fpls_2022_970651
crossref_primary_10_1007_s42729_024_01754_5
crossref_primary_10_3390_f16030538
crossref_primary_10_3390_plants12061356
crossref_primary_10_1016_j_indcrop_2023_116826
crossref_primary_10_3390_agronomy13020613
crossref_primary_10_1007_s44372_025_00330_0
crossref_primary_10_3390_ijms241813998
crossref_primary_10_3390_agronomy13030771
crossref_primary_10_1016_j_indcrop_2024_120251
crossref_primary_10_1186_s12870_025_06424_x
crossref_primary_10_1111_ppl_14195
crossref_primary_10_1186_s12870_022_03541_9
crossref_primary_10_3390_ijms24054426
crossref_primary_10_3389_fpls_2022_1061141
crossref_primary_10_1007_s42729_024_02090_4
crossref_primary_10_1016_j_jgg_2022_06_009
crossref_primary_10_3390_plants14071013
crossref_primary_10_1007_s12038_024_00424_z
crossref_primary_10_3389_fpls_2024_1408642
crossref_primary_10_1111_ppl_14075
crossref_primary_10_1515_biol_2022_0734
crossref_primary_10_3389_fpls_2023_1284480
Cites_doi 10.1111/1477-8947.12054
10.1007/s00299-007-0395-7
10.1111/plb.13114
10.1111/tpj.12123
10.1098/rstb.2007.2166
10.1016/j.cell.2006.06.011
10.3390/ijms20102389
10.3390/ijms21176036
10.4161/psb.24820
10.1016/j.pbi.2019.08.002
10.1016/j.tplants.2010.08.007
10.1080/15592324.2015.1078955
10.1105/tpc.113.117069
10.1016/j.cub.2018.01.023
10.1111/j.1365-313X.2009.04092.x
10.1111/jipb.13079
10.1111/j.1399-3054.2012.01635.x
10.1073/pnas.2034853100
10.1007/s00299-014-1629-0
10.1111/j.1365-313X.2007.03236.x
10.3390/ijms20051059
10.1007/978-1-4939-6813-8_16
10.1016/j.tplants.2020.06.008
10.3390/ijms20061403
10.1007/s00299-012-1242-z
10.1111/plb.12084
10.1146/annurev-arplant-050718-100005
10.1007/s11103-016-0520-5
10.1371/journal.pone.0200938
10.1111/j.1744-7909.2010.00981.x
10.1016/j.devcel.2020.08.005
10.1016/j.bbagen.2016.05.032
10.1186/1939-8433-5-11
10.1111/jipb.13061
10.1080/15592324.2019.1625697
10.3390/ijms20235910
10.3390/ijms19020335
10.1146/annurev.arplant.53.091401.143329
10.1111/jipb.13046
10.1073/pnas.1519555113
10.1186/s12864-019-6098-y
10.4161/psb.6.1.14202
10.1073/pnas.0707912104
10.1186/gb-2008-9-8-r130
10.1105/tpc.112.104182
10.1111/j.1365-3040.2006.01576.x
10.1186/s12870-016-0771-y
10.1105/tpc.114.130849
10.1186/s12870-020-2279-8
10.1105/tpc.106.042291
10.1016/j.cell.2015.08.028
10.1038/ncomms2357
10.1073/pnas.1816991115
10.1098/rspb.2012.1005
10.1093/jxb/erf079
10.1007/s00425-011-1510-0
10.1093/pcp/pcm123
10.1016/j.cell.2016.08.029
10.1111/plb.12052
10.1093/pcp/pcr185
10.1016/j.plantsci.2020.110719
10.1111/tpj.13747
10.1073/pnas.1316717111
10.1007/s00299-012-1348-3
10.1111/tpj.13299
10.1111/nph.14920
10.1371/journal.pgen.1007662
10.1104/pp.15.01486
10.1105/tpc.113.117887
10.1093/pcp/pcv014
10.3390/ijms21155208
10.1093/pcp/pcx048
10.1105/tpc.114.125187
10.1038/s41467-019-08780-3
10.1007/s00425-010-1293-8
10.1016/j.plantsci.2019.110188
10.1016/j.molcel.2017.12.002
10.1073/pnas.2010911118
10.1007/s12571-020-01093-0
10.1111/j.1438-8677.2009.00201.x
10.1016/j.devcel.2019.02.010
10.1016/j.jplph.2013.09.021
10.1016/j.devcel.2016.06.032
10.1016/j.pbi.2016.10.010
10.1080/15592324.2020.1836883
10.3389/fpls.2020.00164
10.1016/j.celrep.2018.05.044
10.1093/aob/mcaa121
10.1111/j.1365-313X.2007.03255.x
10.1093/mp/ssr031
10.1371/journal.pone.0092900
10.3390/ijms20092366
10.1111/jipb.13008
10.1104/pp.19.01084
10.1111/jipb.12899
10.1093/mp/ssq079
10.1111/jipb.12689
10.3389/fpls.2020.00038
10.1105/tpc.19.00335
10.1080/15592324.2015.1135281
10.3390/ijms21228648
10.1016/j.devcel.2018.12.025
10.14348/molcells.2016.0083
10.1021/acs.chemrestox.9b00028
10.3390/ijms160613561
10.3389/fpls.2020.621859
10.15252/embj.2020105086
10.1038/s41467-020-14477-9
10.1111/pce.12763
10.1016/j.molp.2020.11.023
10.1093/mp/sss158
10.1111/nph.14882
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms22094609
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8125386
33924753
10_3390_ijms22094609
Genre Journal Article
Review
GrantInformation_xml – fundername: Open project of State Key Laboratory of Plant Physiology and Biochemistry
  grantid: SKLPPBKF1704
– fundername: National Natural Science Foundation of China
  grantid: 31700222
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M610444
– fundername: Shandong Provincial National Science Foundation, China
  grantid: ZR2017BC026
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
ALIPV
NPM
3V.
7XB
8FK
ESTFP
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c478t-e9e61d2b7a46c36377bee0d3904dd781c0d33558f2bd39109a6a7ea39d97014a3
IEDL.DBID BENPR
ISICitedReferencesCount 693
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
1661-6596
IngestDate Tue Nov 04 01:50:59 EST 2025
Fri Sep 05 13:08:37 EDT 2025
Tue Oct 07 07:46:40 EDT 2025
Thu Apr 03 06:59:23 EDT 2025
Sat Nov 29 07:12:35 EST 2025
Tue Nov 18 21:50:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords hormone mediation
salt stress
ion transport
cell wall regulation
osmotic homeostasis
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-e9e61d2b7a46c36377bee0d3904dd781c0d33558f2bd39109a6a7ea39d97014a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6802-7440
0000-0002-4162-8684
OpenAccessLink https://www.proquest.com/docview/2528271803?pq-origsite=%requestingapplication%
PMID 33924753
PQID 2528271803
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8125386
proquest_miscellaneous_2520869855
proquest_journals_2528271803
pubmed_primary_33924753
crossref_citationtrail_10_3390_ijms22094609
crossref_primary_10_3390_ijms22094609
PublicationCentury 2000
PublicationDate 20210428
PublicationDateYYYYMMDD 2021-04-28
PublicationDate_xml – month: 4
  year: 2021
  text: 20210428
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sofo (ref_58) 2015; 16
Tohge (ref_83) 2018; 9
Yang (ref_41) 2017; 217
ref_14
Kesten (ref_116) 2019; 10
Liu (ref_81) 2013; 16
Covington (ref_44) 2008; 9
Endler (ref_103) 2015; 162
Hazell (ref_2) 2007; 363
Chapman (ref_63) 2019; 32
Sakuraba (ref_45) 2017; 92
Chen (ref_49) 2021; 63
ref_120
Ye (ref_97) 2013; 32
ref_122
Chen (ref_13) 2015; 69
Wei (ref_46) 2021; 40
Gong (ref_10) 2021; 63
Huang (ref_69) 2019; 287
Pan (ref_20) 2019; 48
Latz (ref_37) 2007; 52
Xiong (ref_121) 2019; 20
Ohta (ref_78) 2003; 100
Nolan (ref_79) 2020; 32
Zhou (ref_50) 2016; 1860
Park (ref_9) 2013; 8
Kim (ref_25) 2013; 4
Dong (ref_85) 2020; 11
Quan (ref_8) 2007; 19
Wang (ref_100) 2009; 12
Chen (ref_68) 2020; 62
Wang (ref_91) 2019; 52
Yoshida (ref_77) 2010; 61
Zhu (ref_11) 2002; 53
Tan (ref_26) 2016; 92
Lin (ref_74) 2020; 11
Zhang (ref_53) 2013; 16
Liao (ref_105) 2017; 58
Moreno (ref_27) 2017; 93
Wang (ref_99) 2007; 48
Endler (ref_114) 2016; 11
Choudhury (ref_57) 2016; 90
Cheong (ref_34) 2007; 52
Chun (ref_117) 2019; 14
Park (ref_4) 2016; 39
Jia (ref_84) 2021; 302
Ziska (ref_5) 2012; 279
Zhao (ref_106) 2018; 115
Zhu (ref_66) 2016; 167
Lee (ref_35) 2007; 104
Jia (ref_65) 2002; 53
Ren (ref_30) 2013; 74
Yan (ref_90) 2015; 56
Wang (ref_73) 2018; 69
Zhong (ref_109) 2012; 53
Feng (ref_19) 2018; 28
ref_56
Seo (ref_62) 2010; 233
Liu (ref_115) 2016; 38
Su (ref_80) 2020; 11
Li (ref_29) 2020; 55
Lu (ref_59) 2007; 26
Chen (ref_55) 2020; 30
Jiang (ref_18) 2019; 572
Raddatz (ref_33) 2020; 182
Lan (ref_36) 2011; 4
Wang (ref_111) 2020; 126
Fujita (ref_76) 2013; 147
Hu (ref_87) 2014; 26
Zhang (ref_12) 2020; 71
Yang (ref_40) 2018; 60
Yang (ref_23) 2019; 10
ref_61
ref_60
Zhong (ref_107) 2010; 15
Ma (ref_28) 2019; 48
Liu (ref_112) 2021; 118
Horie (ref_7) 2012; 5
Yan (ref_118) 2021; 14
Qadir (ref_3) 2014; 38
Cai (ref_88) 2014; 111
Ma (ref_95) 2020; 22
Li (ref_54) 2014; 26
Zhao (ref_72) 2018; 23
Zhao (ref_102) 2013; 25
Zhou (ref_98) 2010; 52
Stephan (ref_17) 2016; 113
Tian (ref_21) 2019; 572
Moustafa (ref_51) 2014; 33
Zhang (ref_42) 2017; 217
Yang (ref_89) 2016; 39
Barrero (ref_71) 2006; 29
Shang (ref_86) 2019; 71
Zhang (ref_16) 2020; 15
Zhou (ref_24) 2014; 26
ref_119
Savary (ref_1) 2020; 12
Endler (ref_110) 2011; 4
Liu (ref_96) 2012; 31
Pan (ref_52) 2011; 235
ref_113
Monniaux (ref_104) 2016; 34
Rubio (ref_31) 2014; 171
ref_39
Zhang (ref_92) 2012; 24
Wang (ref_94) 2014; 6
Lian (ref_93) 2021; 63
Bucholc (ref_75) 2016; 16
Wu (ref_22) 2020; 578
Yuan (ref_15) 2014; 514
ref_47
Yu (ref_64) 2020; 25
ref_101
Du (ref_108) 2015; 10
Takahashi (ref_70) 2018; 556
Su (ref_6) 2020; 11
Chu (ref_43) 2021; 63
ref_48
Xu (ref_32) 2006; 125
Latz (ref_38) 2013; 6
Cai (ref_123) 2020; 20
Verma (ref_67) 2016; 16
Krishna (ref_82) 2017; 1564
References_xml – volume: 38
  start-page: 282
  year: 2014
  ident: ref_3
  article-title: Economics of salt-induced land degradation and restoration
  publication-title: Nat. Resour. Forum
  doi: 10.1111/1477-8947.12054
– volume: 26
  start-page: 1909
  year: 2007
  ident: ref_59
  article-title: Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-007-0395-7
– volume: 22
  start-page: 971
  year: 2020
  ident: ref_95
  article-title: Microtubule organization defects in Arabidopsis thaliana
  publication-title: Plant Biol.
  doi: 10.1111/plb.13114
– volume: 74
  start-page: 258
  year: 2013
  ident: ref_30
  article-title: Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/tpj.12123
– volume: 363
  start-page: 495
  year: 2007
  ident: ref_2
  article-title: Drivers of change in global agriculture
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2007.2166
– volume: 125
  start-page: 1347
  year: 2006
  ident: ref_32
  article-title: A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.011
– ident: ref_47
  doi: 10.3390/ijms20102389
– ident: ref_120
  doi: 10.3390/ijms21176036
– volume: 514
  start-page: 367
  year: 2014
  ident: ref_15
  article-title: OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis
  publication-title: Nat. Cell Biol.
– volume: 8
  start-page: e24820
  year: 2013
  ident: ref_9
  article-title: A role for GIGANTEA
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.24820
– volume: 52
  start-page: 86
  year: 2019
  ident: ref_91
  article-title: Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2019.08.002
– volume: 15
  start-page: 625
  year: 2010
  ident: ref_107
  article-title: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.08.007
– volume: 93
  start-page: 107
  year: 2017
  ident: ref_27
  article-title: Upstream kinases of plant SnRKs are involved in salt stress tolerance
  publication-title: Plant J.
– volume: 10
  start-page: e1078955
  year: 2015
  ident: ref_108
  article-title: The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2015.1078955
– volume: 26
  start-page: 1166
  year: 2014
  ident: ref_24
  article-title: Inhibition of the Arabidopsis Salt Overly Sensitive Pathway by 14-3-3 Proteins
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117069
– volume: 28
  start-page: 666
  year: 2018
  ident: ref_19
  article-title: The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.023
– volume: 61
  start-page: 672
  year: 2010
  ident: ref_77
  article-title: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04092.x
– volume: 63
  start-page: 429
  year: 2021
  ident: ref_10
  article-title: Plant abiotic stress: New insights into the factors that activate and modulate plant responses
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13079
– volume: 147
  start-page: 15
  year: 2013
  ident: ref_76
  article-title: Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2012.01635.x
– volume: 100
  start-page: 11771
  year: 2003
  ident: ref_78
  article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2034853100
– volume: 33
  start-page: 1217
  year: 2014
  ident: ref_51
  article-title: MAPK cascades and major abiotic stresses
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1629-0
– volume: 52
  start-page: 223
  year: 2007
  ident: ref_34
  article-title: Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03236.x
– ident: ref_39
  doi: 10.3390/ijms20051059
– volume: 1564
  start-page: 193
  year: 2017
  ident: ref_82
  article-title: Brassinosteroid Action in Plant Abiotic Stress Tolerance
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6813-8_16
– volume: 25
  start-page: 1117
  year: 2020
  ident: ref_64
  article-title: How Plant Hormones Mediate Salt Stress Responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.06.008
– ident: ref_101
  doi: 10.3390/ijms20061403
– volume: 31
  start-page: 1219
  year: 2012
  ident: ref_96
  article-title: Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-012-1242-z
– volume: 16
  start-page: 558
  year: 2013
  ident: ref_53
  article-title: The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco
  publication-title: Plant Biol.
  doi: 10.1111/plb.12084
– volume: 71
  start-page: 403
  year: 2020
  ident: ref_12
  article-title: Salt Tolerance Mechanisms of Plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100005
– volume: 92
  start-page: 391
  year: 2016
  ident: ref_26
  article-title: Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-016-0520-5
– ident: ref_122
  doi: 10.1371/journal.pone.0200938
– volume: 52
  start-page: 952
  year: 2010
  ident: ref_98
  article-title: Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.00981.x
– volume: 55
  start-page: 367
  year: 2020
  ident: ref_29
  article-title: The GSK3-like Kinase BIN2 Is a Molecular Switch between the Salt Stress Response and Growth Recovery in Arabidopsis thaliana
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.08.005
– volume: 1860
  start-page: 2037
  year: 2016
  ident: ref_50
  article-title: Mitogen-activated protein kinases as key players in osmotic stress signaling
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2016.05.032
– volume: 5
  start-page: 1
  year: 2012
  ident: ref_7
  article-title: Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants
  publication-title: Rice
  doi: 10.1186/1939-8433-5-11
– volume: 30
  start-page: 4815
  year: 2020
  ident: ref_55
  article-title: The Calcium-Responsive Phospholipid-Binding BONZAI Proteins Control Global Osmotic Stress Responses in Plants Through Repression of Immune Signaling
  publication-title: SSRN Electron. J.
– volume: 63
  start-page: 53
  year: 2021
  ident: ref_49
  article-title: Protein kinases in plant responses to drought, salt, and cold stress
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13061
– volume: 14
  start-page: 1625697
  year: 2019
  ident: ref_117
  article-title: Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2019.1625697
– ident: ref_119
  doi: 10.3390/ijms20235910
– ident: ref_113
  doi: 10.3390/ijms19020335
– volume: 53
  start-page: 247
  year: 2002
  ident: ref_11
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.53.091401.143329
– volume: 63
  start-page: 241
  year: 2021
  ident: ref_93
  article-title: Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13046
– volume: 113
  start-page: E5242
  year: 2016
  ident: ref_17
  article-title: Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and invovlement of plastidial KEA transporters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519555113
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_121
  article-title: RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress
  publication-title: BMC Genom.
  doi: 10.1186/s12864-019-6098-y
– volume: 6
  start-page: 29
  year: 2014
  ident: ref_94
  article-title: Cytoskeleton and plant salt stress tolerance
  publication-title: Plant Signal Behav.
  doi: 10.4161/psb.6.1.14202
– volume: 104
  start-page: 15959
  year: 2007
  ident: ref_35
  article-title: A protein phosphorylation/dephosphorylation network regulates a plant potassium channel
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0707912104
– volume: 9
  start-page: R130
  year: 2008
  ident: ref_44
  article-title: Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-8-r130
– volume: 24
  start-page: 4555
  year: 2012
  ident: ref_92
  article-title: Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.104182
– volume: 29
  start-page: 2000
  year: 2006
  ident: ref_71
  article-title: Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01576.x
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_23
  article-title: Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1
  year: 2016
  ident: ref_67
  article-title: Plant hormone-mediated regulation of stress responses
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0771-y
– volume: 26
  start-page: 4394
  year: 2014
  ident: ref_87
  article-title: BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.130849
– volume: 556
  start-page: 235
  year: 2018
  ident: ref_70
  article-title: A small peptide modulates stomatal control via abscisic acid in long-distance signalling
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 1
  year: 2020
  ident: ref_123
  article-title: Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2279-8
– volume: 19
  start-page: 1415
  year: 2007
  ident: ref_8
  article-title: SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.042291
– volume: 572
  start-page: 131
  year: 2019
  ident: ref_21
  article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity
  publication-title: Nat. Cell Biol.
– volume: 162
  start-page: 1353
  year: 2015
  ident: ref_103
  article-title: A Mechanism for Sustained Cellulose Synthesis during Salt Stress
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.028
– volume: 4
  start-page: 1352
  year: 2013
  ident: ref_25
  article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2357
– volume: 115
  start-page: 13123
  year: 2018
  ident: ref_106
  article-title: Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1816991115
– volume: 279
  start-page: 4097
  year: 2012
  ident: ref_5
  article-title: Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide
  publication-title: Proc. R. Soc. B Boil. Sci.
  doi: 10.1098/rspb.2012.1005
– volume: 53
  start-page: 2201
  year: 2002
  ident: ref_65
  article-title: Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erf079
– volume: 235
  start-page: 661
  year: 2011
  ident: ref_52
  article-title: ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses
  publication-title: Planta
  doi: 10.1007/s00425-011-1510-0
– volume: 48
  start-page: 1534
  year: 2007
  ident: ref_99
  article-title: Salt Tolerance Requires Cortical Microtubule Reorganization in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm123
– volume: 71
  start-page: 1491
  year: 2019
  ident: ref_86
  article-title: RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure
  publication-title: J. Exp. Bot.
– volume: 167
  start-page: 313
  year: 2016
  ident: ref_66
  article-title: Abiotic Stress Signaling and Responses in Plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 16
  start-page: 440
  year: 2013
  ident: ref_81
  article-title: Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola
  publication-title: Plant Biol.
  doi: 10.1111/plb.12052
– volume: 53
  start-page: 368
  year: 2012
  ident: ref_109
  article-title: MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr185
– volume: 302
  start-page: 110719
  year: 2021
  ident: ref_84
  article-title: Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110719
– volume: 92
  start-page: 1106
  year: 2017
  ident: ref_45
  article-title: Arabidopsis EARLY FLOWERING 3 increases salt tolerance by suppressing salt stress response pathways
  publication-title: Plant J.
  doi: 10.1111/tpj.13747
– volume: 111
  start-page: 9651
  year: 2014
  ident: ref_88
  article-title: GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1316717111
– volume: 32
  start-page: 139
  year: 2013
  ident: ref_97
  article-title: Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-012-1348-3
– volume: 90
  start-page: 856
  year: 2016
  ident: ref_57
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J.
  doi: 10.1111/tpj.13299
– volume: 217
  start-page: 523
  year: 2017
  ident: ref_41
  article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses
  publication-title: New Phytol.
  doi: 10.1111/nph.14920
– ident: ref_61
  doi: 10.1371/journal.pgen.1007662
– volume: 69
  start-page: 3021
  year: 2015
  ident: ref_13
  article-title: Changes in the Phosphosproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01486
– volume: 25
  start-page: 4544
  year: 2013
  ident: ref_102
  article-title: The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117887
– volume: 56
  start-page: 883
  year: 2015
  ident: ref_90
  article-title: Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv014
– ident: ref_56
  doi: 10.3390/ijms21155208
– volume: 58
  start-page: 1143
  year: 2017
  ident: ref_105
  article-title: FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Responses
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx048
– volume: 26
  start-page: 2538
  year: 2014
  ident: ref_54
  article-title: The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.125187
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_116
  article-title: The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08780-3
– volume: 233
  start-page: 189
  year: 2010
  ident: ref_62
  article-title: An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity
  publication-title: Planta
  doi: 10.1007/s00425-010-1293-8
– volume: 287
  start-page: 110188
  year: 2019
  ident: ref_69
  article-title: OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110188
– volume: 69
  start-page: 100
  year: 2018
  ident: ref_73
  article-title: Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.002
– volume: 118
  start-page: e2010911118
  year: 2021
  ident: ref_112
  article-title: Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2010911118
– volume: 12
  start-page: 695
  year: 2020
  ident: ref_1
  article-title: Mapping disruption and resilience mechanisms in food systems
  publication-title: Food Secur.
  doi: 10.1007/s12571-020-01093-0
– volume: 12
  start-page: 70
  year: 2009
  ident: ref_100
  article-title: The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2009.00201.x
– volume: 48
  start-page: 697
  year: 2019
  ident: ref_28
  article-title: The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.02.010
– volume: 171
  start-page: 688
  year: 2014
  ident: ref_31
  article-title: K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.09.021
– volume: 38
  start-page: 305
  year: 2016
  ident: ref_115
  article-title: Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.06.032
– volume: 34
  start-page: 114
  year: 2016
  ident: ref_104
  article-title: Cells, walls, and endless forms
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.10.010
– volume: 15
  start-page: 1836883
  year: 2020
  ident: ref_16
  article-title: Osmotic stress alters circadian cytosolic Ca2+ oscillations and OSCA1 is required in circadian gated stress adaptation
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2020.1836883
– volume: 11
  start-page: 164
  year: 2020
  ident: ref_6
  article-title: Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00164
– volume: 23
  start-page: 3340
  year: 2018
  ident: ref_72
  article-title: Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.044
– volume: 126
  start-page: 807
  year: 2020
  ident: ref_111
  article-title: Associations between phytohormones and cellulose biosynthesis in land plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcaa121
– volume: 578
  start-page: 577
  year: 2020
  ident: ref_22
  article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis
  publication-title: Nat. Cell Biol.
– volume: 52
  start-page: 449
  year: 2007
  ident: ref_37
  article-title: TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03255.x
– volume: 4
  start-page: 527
  year: 2011
  ident: ref_36
  article-title: Mechanistic Analysis of AKT1 Regulation by the CBL–CIPK–PP2CA Interactions
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr031
– ident: ref_60
  doi: 10.1371/journal.pone.0092900
– ident: ref_14
  doi: 10.3390/ijms20092366
– volume: 63
  start-page: 528
  year: 2021
  ident: ref_43
  article-title: The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13008
– volume: 182
  start-page: 2143
  year: 2020
  ident: ref_33
  article-title: Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01084
– volume: 62
  start-page: 25
  year: 2020
  ident: ref_68
  article-title: Abscisic acid dynamics, signaling, and functions in plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12899
– volume: 4
  start-page: 199
  year: 2011
  ident: ref_110
  article-title: Cellulose Synthases and Synthesis in Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq079
– volume: 60
  start-page: 796
  year: 2018
  ident: ref_40
  article-title: Unraveling salt stress signaling in plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12689
– volume: 11
  start-page: 38
  year: 2020
  ident: ref_80
  article-title: Exogenous Brassinolide Alleviates Salt Stress in Malus hupehensis Rehd. by Regulating the Transcription of NHX-Type Na+(K+)/H+ Antiporters
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00038
– volume: 32
  start-page: 295
  year: 2020
  ident: ref_79
  article-title: Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00335
– volume: 11
  start-page: e1135281
  year: 2016
  ident: ref_114
  article-title: The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2015.1135281
– ident: ref_48
  doi: 10.3390/ijms21228648
– volume: 16
  start-page: 1
  year: 2016
  ident: ref_75
  article-title: Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase
  publication-title: BMC Plant Biol.
– volume: 572
  start-page: 341
  year: 2019
  ident: ref_18
  article-title: Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx
  publication-title: Nat. Cell Biol.
– volume: 48
  start-page: 710
  year: 2019
  ident: ref_20
  article-title: Dynamic Interactions of Plant CNGC Subunits and Calmodulins Drive Oscillatory Ca2+ Channel Activities
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.12.025
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_83
  article-title: Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth
  publication-title: Nat. Commun.
– volume: 39
  start-page: 447
  year: 2016
  ident: ref_4
  article-title: A New Insight of Salt Stress Signaling in Plant
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.0083
– volume: 32
  start-page: 370
  year: 2019
  ident: ref_63
  article-title: RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.9b00028
– volume: 16
  start-page: 13561
  year: 2015
  ident: ref_58
  article-title: Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160613561
– volume: 11
  start-page: 621859
  year: 2020
  ident: ref_85
  article-title: Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.621859
– volume: 40
  start-page: e105086
  year: 2021
  ident: ref_46
  article-title: Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1 -mediated sodium homeostasis
  publication-title: EMBO J.
  doi: 10.15252/embj.2020105086
– volume: 11
  start-page: 613
  year: 2020
  ident: ref_74
  article-title: A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14477-9
– volume: 39
  start-page: 1994
  year: 2016
  ident: ref_89
  article-title: The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12763
– volume: 14
  start-page: 411
  year: 2021
  ident: ref_118
  article-title: Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.11.023
– volume: 6
  start-page: 1274
  year: 2013
  ident: ref_38
  article-title: Salt Stress Triggers Phosphorylation of the Arabidopsis Vacuolar K+ Channel TPK1 by Calcium-Dependent Protein Kinases (CDPKs)
  publication-title: Mol. Plant
  doi: 10.1093/mp/sss158
– volume: 217
  start-page: 1161
  year: 2017
  ident: ref_42
  article-title: A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+exclusion and salt tolerance in maize
  publication-title: New Phytol.
  doi: 10.1111/nph.14882
SSID ssj0023259
Score 2.7190735
SecondaryResourceType review_article
Snippet Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4609
SubjectTerms Agricultural production
Kinases
Osmosis
Plant growth
Review
Sensors
Title Regulation of Plant Responses to Salt Stress
URI https://www.ncbi.nlm.nih.gov/pubmed/33924753
https://www.proquest.com/docview/2528271803
https://www.proquest.com/docview/2520869855
https://pubmed.ncbi.nlm.nih.gov/PMC8125386
Volume 22
WOSCitedRecordID wos000650413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7B0kq9AH3QhgJKpfbUWiR-xPGpggrUHtiullbaniI7dtStaAIkVOq_Z5xkw1JULlyiJB7F1vgx89mT-QDeWnQ5BDWciNgWxDvwJKWuQNRqjImE0Jp3ZBNyPE5nMzXpN9zqPqxysSa2C7Wtcr9Hvk8FggNcSCP28fyCeNYof7raU2iswprPVMZHsHZ4NJ5MB8jFaEuXFqMVIolQSRf6zhDo789__a4pRXST-GDEZaN0x9P8N2ByyQIdbzy07Zuw3vue4UE3WJ7CiiufweOOjfLvc_gw7XjpsafCqgg9nVETTrsYWleHTRWe6rMmPG3_LnkB34-Pvn36THoyBZJzmTbEKZfElhqpeZKzhElpnIssaoJbK9M4x3ufar2gBl_GkdKJlk4zZZVEGKXZFozKqnSvICwKoT2TgtHoG7BCGZsapgqJH8od5zqA9wttZnmfadwTXpxliDi87rNl3QfwbpA-7zJs_EduZ6HcrJ9ndXaj2QDeDMU4Q_yxhy5dddXKIG5TqRABvOz6cagIa6EcEVsA8lYPDwI--_btknL-s83CjZ4RGotk-_5mvYYn1EfBRJzQdAdGzeWV24VH-Z9mXl_uwaqcyfaa7vVDF59O6Fd8mnw5mfy4BrMi-LU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguPAukFAgSPYHVxHbi-IAQAqqu2q5WbZHKKbVjp11UktKkRf1T_EbGebEFwa0HblE8sq3MeDxfPJ4P4KXBkCOimpMoNDlxATxJqM0RtWqtgyhSirdkE2IySfb35XQBfvR3YVxaZe8TG0dtysz9I1-jEYIDdKQBe3vyjTjWKHe62lNotGaxaS--I2Sr3ow_oH5XKV3_uPd-g3SsAiTjIqmJlTYODdVC8ThjMRNCWxsYxP7cGJGEGT67muM51fgyDKSKlbCKSSMF4gnFsN9rsMjR2JMRLE7H29PPA8RjtKFnC3HXI3Ek4zbVnmHna7MvXytKEU3FLvlxfhP8I7L9PUFzbsdbv_O_fau7cLuLrf137WK4Bwu2uA83WrbNiwfwescedmRlfpn7jq6p9nfaHGFb-XXp76rj2t9tbs8swacrmepDGBVlYR-Dn-eRckwRWmHsw3KpTaKZzAV2lFnOlQeveu2lWVdJ3RF6HKeIqJyu03lde7A6SJ-0FUT-IrfSKzPt_EiV_tKkBy-GZvQA7lhHFbY8a2QQl8okijx41NrNMBCOQjkiUg_EJYsaBFx18cstxeyoqTKOkR9uhvHyv6f1HG5u7G1vpVvjyeYTuEVdxk_ACU1WYFSfntmncD07r2fV6bNuqfhwcNUW9xO-Y1Cu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3tBAgSDRE1ib2E4cHxBClBVV0VK1IPWW2rENi9qkNGmr_jV-HeO82ILg1gO3KLZsKzOemS8ezwfw3GDIkVDNSRIbR3wATzJqHaJWrXWUJErxjmxCzGbZ7q7cWoIfw10Yn1Y52MTWUJuq8P_IJzRBcICGNGIT16dFbK1PXx9-J55Byp-0DnQanYps2rNThG_1q411lPUapdN3n96-Jz3DACm4yBpipU1jQ7VQPC1YyoTQ1kaGyYgbI7K4wGdff9xRjS_jSKpUCauYNFIgtlAMx70ElwVHp-zTBunHEewx2hK1xej_SJrItEu6Zzj0ZP7toKYUcVXq0yAX3eEfMe7vqZoLvm9683_-arfgRh9xh2-6LXIblmx5B652HJxnd-Hltv3SU5iFlQs9iVMTbneZw7YOmyrcUftNuNPeqbkHny9kqfdhuaxKuwKhc4ny_BFaYUTEnNQm00w6gQMVlnMVwItBknnR11f3NB_7OeIsL_d8Ue4BrI29D7u6In_ptzoINu-tS53_kmoAz8ZmtAv-sEeVtjpu-yBalVmSBPCg06FxIpyFcsSpAYhz2jV28DXHz7eU869t7XGMB9FFpg__vayncA3VLP-wMdt8BNepTwOKOKHZKiw3R8f2MVwpTpp5ffSk3TMh7F20uv0EbyBX6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Plant+Responses+to+Salt+Stress&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Zhao%2C+Shuangshuang&rft.au=Zhang%2C+Qikun&rft.au=Liu%2C+Mingyue&rft.au=Zhou%2C+Huapeng&rft.date=2021-04-28&rft.eissn=1422-0067&rft.volume=22&rft.issue=9&rft_id=info:doi/10.3390%2Fijms22094609&rft_id=info%3Apmid%2F33924753&rft.externalDocID=33924753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon