Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis

Abstract A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-3...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nucleic acids research Ročník 49; číslo 13; s. 7389 - 7405
Hlavní autori: Herman, Allison B, Anerillas, Carlos, Harris, Sophia C, Munk, Rachel, Martindale, Jennifer L, Yang, Xiaoling, Mazan-Mamczarz, Krystyna, Zhang, Yongqing, Heckenbach, Indra J, Scheibye-Knudsen, Morten, De, Supriyo, Sen, Payel, Abdelmohsen, Kotb, Gorospe, Myriam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 21.07.2021
Predmet:
ISSN:0305-1048, 1362-4962, 1362-4962
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
AbstractList A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
Abstract A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
Author Mazan-Mamczarz, Krystyna
Gorospe, Myriam
Heckenbach, Indra J
De, Supriyo
Sen, Payel
Anerillas, Carlos
Harris, Sophia C
Scheibye-Knudsen, Morten
Abdelmohsen, Kotb
Herman, Allison B
Zhang, Yongqing
Yang, Xiaoling
Munk, Rachel
Martindale, Jennifer L
Author_xml – sequence: 1
  givenname: Allison B
  surname: Herman
  fullname: Herman, Allison B
– sequence: 2
  givenname: Carlos
  surname: Anerillas
  fullname: Anerillas, Carlos
– sequence: 3
  givenname: Sophia C
  surname: Harris
  fullname: Harris, Sophia C
– sequence: 4
  givenname: Rachel
  surname: Munk
  fullname: Munk, Rachel
– sequence: 5
  givenname: Jennifer L
  surname: Martindale
  fullname: Martindale, Jennifer L
– sequence: 6
  givenname: Xiaoling
  surname: Yang
  fullname: Yang, Xiaoling
– sequence: 7
  givenname: Krystyna
  surname: Mazan-Mamczarz
  fullname: Mazan-Mamczarz, Krystyna
– sequence: 8
  givenname: Yongqing
  surname: Zhang
  fullname: Zhang, Yongqing
– sequence: 9
  givenname: Indra J
  surname: Heckenbach
  fullname: Heckenbach, Indra J
– sequence: 10
  givenname: Morten
  surname: Scheibye-Knudsen
  fullname: Scheibye-Knudsen, Morten
– sequence: 11
  givenname: Supriyo
  surname: De
  fullname: De, Supriyo
– sequence: 12
  givenname: Payel
  surname: Sen
  fullname: Sen, Payel
– sequence: 13
  givenname: Kotb
  surname: Abdelmohsen
  fullname: Abdelmohsen, Kotb
– sequence: 14
  givenname: Myriam
  orcidid: 0000-0001-5439-3434
  surname: Gorospe
  fullname: Gorospe, Myriam
  email: gorospem@grc.nia.nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34181735$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoO02G31ynvJlQh12nzOZG4KWqoWCoWi1yGTOdONziRjklnYf2-W3YqKeJXDyXPe93ycoiMfPCD0ipILSlp-6U28fPxuOsnVM7SivGaVaGt2hFaEE1lRItQJOk3pGyFUUCmeoxMuqKINlyu0eYB-sdkFj8OARzM5jz_gCBbmHCIeYQNjwt0WT-6h4oJUcsa9S3GZc8J2HcNksvPv8FyikKHkYBxxAg_JgreAje8x-LUpcdrlw7hNLr1Ax4MZE7w8vGfo68ebL9efq7v7T7fX7-8qKxqVKxCdAqOsHLiSg-lFA4oM0rZDo7hhvEzRSmIpGwSzHaMdEDaYVhnRWejamp-hq73uvHQT9KWlHM2o5-gmE7c6GKf__PFurR_DRiummlbyIvD2IBDDjwVS1pNLuxmNh7AkzaSoa8KoEgV9_bvXL5OnZReA7gEbQ0oRBm1dNrvdF2s3akr07qC6HFQfDlpqzv-qeZL9N_1mT4dl_i_4E_7lsys
CitedBy_id crossref_primary_10_1007_s11684_025_1125_7
crossref_primary_10_3389_fcell_2022_913458
crossref_primary_10_1016_j_mad_2025_112099
crossref_primary_10_1172_JCI165933
crossref_primary_10_1016_j_jgg_2024_10_005
crossref_primary_10_3389_fcell_2022_869011
crossref_primary_10_1016_j_imu_2022_100920
crossref_primary_10_3390_cells10123367
crossref_primary_10_1155_2022_9096436
crossref_primary_10_1016_j_ceb_2022_01_004
crossref_primary_10_3389_fmolb_2025_1538806
crossref_primary_10_1002_jcb_30531
crossref_primary_10_1016_j_ncrna_2025_05_002
crossref_primary_10_1002_advs_202303614
crossref_primary_10_1111_febs_17113
crossref_primary_10_1038_s43587_025_00889_z
Cites_doi 10.1093/nar/gkaa425
10.1016/j.molcel.2019.01.021
10.1038/onc.2009.497
10.1016/j.cell.2017.02.031
10.1016/j.celrep.2019.08.045
10.1016/0047-6374(78)90041-6
10.1016/j.cell.2013.01.009
10.1101/2021.03.18.435987
10.1038/nature13193
10.1016/j.ccr.2010.09.005
10.1038/srep10201
10.1093/bioinformatics/bty648
10.1111/acel.12047
10.1073/pnas.92.20.9363
10.1089/omi.2011.0118
10.1111/acel.12344
10.1073/pnas.0402943101
10.1016/j.cell.2009.01.002
10.1016/j.cub.2017.07.033
10.1093/bioinformatics/btv145
10.1038/nature24050
10.1111/acel.12911
10.1038/sigtrans.2015.4
10.1042/BCJ20160459
10.1038/emboj.2011.463
10.2174/1871527317666181114163515
10.1038/nrg2843
10.3389/fgene.2020.00867
10.1038/nature03918
10.1038/s41467-018-05065-z
10.1093/nar/gkz555
10.1002/cyto.a.20983
10.3390/cells9030718
10.1038/nmeth.2688
10.1002/emmm.201201986
10.1016/j.omtn.2019.05.022
10.1093/bioinformatics/btt656
10.1038/ncomms11190
10.1016/j.jare.2020.08.012
10.1091/mbc.e11-10-0884
10.1016/bs.ircmb.2017.03.008
10.3389/fgene.2015.00169
10.1186/s13059-014-0550-8
10.1186/gb-2008-9-9-r137
10.3390/cells7020011
10.2147/OTT.S152462
10.5483/BMBRep.2018.51.10.209
10.1371/journal.pbio.3000599
10.1667/RR14445.1
10.1126/science.1127168
10.1038/s41598-018-29297-7
10.1042/bj3270291
10.1101/gad.223834.113
10.1016/j.mad.2019.01.001
10.3389/fncel.2020.00016
10.1186/s11658-019-0161-1
10.1161/CIRCULATIONAHA.110.007021
10.1016/S0092-8674(00)81902-9
10.1186/1471-2105-11-237
10.1007/978-3-319-24574-4_28
10.3390/cells8070737
10.3389/fgene.2019.00478
10.1111/acel.12592
10.1016/j.tcb.2018.02.001
10.1038/s41586-018-0784-9
10.1016/0014-4827(61)90192-6
10.1007/978-1-4939-8624-8_6
10.1371/journal.pone.0042522
10.7554/eLife.05005
10.1016/j.omtn.2018.12.014
10.1016/0014-4827(76)90336-0
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of Nucleic Acids Research 2021. 2021
Published by Oxford University Press on behalf of Nucleic Acids Research 2021.
Copyright_xml – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2021. 2021
– notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkab538
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 7405
ExternalDocumentID PMC8287953
34181735
10_1093_nar_gkab538
10.1093/nar/gkab538
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 AG000511
– fundername: ; ;
  grantid: Z01-AG000511
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-e4b8ea8c5f385fad47e80f5c9f783a23181950c12f42cb21be02fa98a4bceb963
IEDL.DBID TOX
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685211300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 15:22:10 EDT 2025
Mon Sep 08 05:33:40 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Tue Nov 18 22:12:43 EST 2025
Sat Nov 29 03:25:09 EST 2025
Wed Aug 28 03:18:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License This work is written by (a) US Government employee(s) and is in the public domain in the US.
Published by Oxford University Press on behalf of Nucleic Acids Research 2021.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-e4b8ea8c5f385fad47e80f5c9f783a23181950c12f42cb21be02fa98a4bceb963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5439-3434
OpenAccessLink https://academic.oup.com/nar/article-pdf/49/13/7389/39116721/gkab538.pdf
PMID 34181735
PQID 2546602184
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8287953
proquest_miscellaneous_2546602184
pubmed_primary_34181735
crossref_citationtrail_10_1093_nar_gkab538
crossref_primary_10_1093_nar_gkab538
oup_primary_10_1093_nar_gkab538
PublicationCentury 2000
PublicationDate 2021-07-21
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kim (2021071913012834100_B16) 2019; 17
Baar (2021071913012834100_B10) 2017; 169
Buenrostro (2021071913012834100_B30) 2013; 10
Lukášová (2021071913012834100_B63) 2018; 7
Hu (2021071913012834100_B26) 2020; 48
Hanna (2021071913012834100_B48) 2019; 10
Louloupi (2021071913012834100_B21) 2018; 1823
Ronneberger (2021071913012834100_B36) 2015
De Cecco (2021071913012834100_B66) 2013; 12
Langmead (2021071913012834100_B31) 2019; 35
Liao (2021071913012834100_B27) 2014; 30
Love (2021071913012834100_B28) 2014; 15
Borgdorff (2021071913012834100_B54) 2010; 29
Natarelli (2021071913012834100_B20) 2018; 9
Bartel (2021071913012834100_B2) 2009; 136
Casella (2021071913012834100_B12) 2019; 47
Chen (2021071913012834100_B52) 2005; 436
Wu (2021071913012834100_B33) 2015; 6
Pichiorri (2021071913012834100_B55) 2010; 18
Peng (2021071913012834100_B4) 2016; 1
Serrano (2021071913012834100_B51) 1997; 88
Kristiani (2021071913012834100_B62) 2020; 9
Gupta (2021071913012834100_B72) 2019; 18
Hayflick (2021071913012834100_B7) 1961; 25
Martínez-Cué (2021071913012834100_B9) 2020; 14
Hu (2021071913012834100_B70) 2018; 11
Hernandez-Segura (2021071913012834100_B22) 2019; 18
Zhao (2021071913012834100_B42) 2010; 77
Bemiller (2021071913012834100_B69) 1978; 8
Zhu (2021071913012834100_B49) 2015; 14
Filippi-Chiela (2021071913012834100_B37) 2012; 7
Xiao (2021071913012834100_B56) 2011; 30
Yosef (2021071913012834100_B50) 2016; 7
De Cecco (2021071913012834100_B47) 2019; 566
Chakraborty (2021071913012834100_B3) 2020; 28
van Deursen (2021071913012834100_B44) 2014; 509
Solovei (2021071913012834100_B46) 2013; 152
Duan (2021071913012834100_B23) 2018; 8
Heckenbach (2021071913012834100_B38) 2021
Arai (2021071913012834100_B58) 2019; 178
Wang (2021071913012834100_B71) 2015; 5
Zhao (2021071913012834100_B19) 2019; 14
Krol (2021071913012834100_B1) 2010; 11
Zhu (2021071913012834100_B34) 2010; 11
Yang (2021071913012834100_B17) 2018; 22
Agarwal (2021071913012834100_B39) 2015; 4
Scaffidi (2021071913012834100_B65) 2006; 312
Hernandez-Segura (2021071913012834100_B15) 2017; 27
Lu (2021071913012834100_B18) 2019; 24
Indig (2021071913012834100_B24) 1997; 327
Mitsui (2021071913012834100_B68) 1976; 100
Hernandez-Segura (2021071913012834100_B11) 2018; 28
Yu (2021071913012834100_B29) 2012; 16
Basisty (2021071913012834100_B13) 2020; 18
Wang (2021071913012834100_B41) 2016; 186
Sen (2021071913012834100_B25) 2019; 73
Freund (2021071913012834100_B59) 2012; 23
Dimmeler (2021071913012834100_B6) 2013; 5
Kovacic (2021071913012834100_B8) 2011; 123
Goldman (2021071913012834100_B64) 2004; 101
Zhang (2021071913012834100_B32) 2008; 9
Munk (2021071913012834100_B57) 2017; 334
Colpaert (2021071913012834100_B5) 2019; 8
Lukášová (2021071913012834100_B45) 2017; 474
Chiang (2021071913012834100_B61) 2019; 28
Biran (2021071913012834100_B43) 2017; 16
Shah (2021071913012834100_B60) 2013; 27
Chen (2021071913012834100_B14) 2020; 11
Dimri (2021071913012834100_B40) 1995; 92
Suh (2021071913012834100_B53) 2018; 51
Yu (2021071913012834100_B35) 2015; 31
Dou (2021071913012834100_B67) 2017; 550
References_xml – volume: 48
  start-page: 6001
  year: 2020
  ident: 2021071913012834100_B26
  article-title: ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa425
– volume: 73
  start-page: 684
  year: 2019
  ident: 2021071913012834100_B25
  article-title: Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.021
– volume: 29
  start-page: 2262
  year: 2010
  ident: 2021071913012834100_B54
  article-title: Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1)
  publication-title: Oncogene
  doi: 10.1038/onc.2009.497
– volume: 169
  start-page: 132
  year: 2017
  ident: 2021071913012834100_B10
  article-title: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.031
– volume: 28
  start-page: 3212
  year: 2019
  ident: 2021071913012834100_B61
  article-title: Polymer modeling predicts chromosome reorganization in senescence
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.045
– volume: 8
  start-page: 417
  year: 1978
  ident: 2021071913012834100_B69
  article-title: Nucleolar changes in senescing WI-38 cells
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/0047-6374(78)90041-6
– volume: 152
  start-page: 584
  year: 2013
  ident: 2021071913012834100_B46
  article-title: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.009
– year: 2021
  ident: 2021071913012834100_B38
  article-title: Deep learning shows cellular senescence is a barrier to cancer development
  doi: 10.1101/2021.03.18.435987
– volume: 509
  start-page: 439
  year: 2014
  ident: 2021071913012834100_B44
  article-title: The role of senescent cells in ageing
  publication-title: Nature
  doi: 10.1038/nature13193
– volume: 18
  start-page: 367
  year: 2010
  ident: 2021071913012834100_B55
  article-title: Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.09.005
– volume: 5
  start-page: 10201
  year: 2015
  ident: 2021071913012834100_B71
  article-title: Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy
  publication-title: Sci. Rep.
  doi: 10.1038/srep10201
– volume: 35
  start-page: 421
  year: 2019
  ident: 2021071913012834100_B31
  article-title: Scaling read aligners to hundreds of threads on general-purpose processors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty648
– volume: 12
  start-page: 247
  year: 2013
  ident: 2021071913012834100_B66
  article-title: Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements
  publication-title: Aging Cell
  doi: 10.1111/acel.12047
– volume: 92
  start-page: 9363
  year: 1995
  ident: 2021071913012834100_B40
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.20.9363
– volume: 16
  start-page: 284
  year: 2012
  ident: 2021071913012834100_B29
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS J. Integr. Biol.
  doi: 10.1089/omi.2011.0118
– volume: 14
  start-page: 644
  year: 2015
  ident: 2021071913012834100_B49
  article-title: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs
  publication-title: Aging Cell
  doi: 10.1111/acel.12344
– volume: 101
  start-page: 8963
  year: 2004
  ident: 2021071913012834100_B64
  article-title: Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0402943101
– volume: 136
  start-page: 215
  year: 2009
  ident: 2021071913012834100_B2
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 27
  start-page: 2652
  year: 2017
  ident: 2021071913012834100_B15
  article-title: Unmasking transcriptional heterogeneity in senescent cells
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.07.033
– volume: 31
  start-page: 2382
  year: 2015
  ident: 2021071913012834100_B35
  article-title: ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv145
– volume: 550
  start-page: 402
  year: 2017
  ident: 2021071913012834100_B67
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
  doi: 10.1038/nature24050
– volume: 18
  start-page: e12911
  year: 2019
  ident: 2021071913012834100_B22
  article-title: Identification of stable senescence-associated reference genes
  publication-title: Aging Cell
  doi: 10.1111/acel.12911
– volume: 1
  start-page: 15004
  year: 2016
  ident: 2021071913012834100_B4
  article-title: The role of microRNAs in human cancer
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/sigtrans.2015.4
– volume: 474
  start-page: 281
  year: 2017
  ident: 2021071913012834100_B45
  article-title: Loss of lamin B receptor is necessary to induce cellular senescence
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160459
– volume: 30
  start-page: 5021
  year: 2011
  ident: 2021071913012834100_B56
  article-title: miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.463
– volume: 18
  start-page: 172
  year: 2019
  ident: 2021071913012834100_B72
  article-title: Extending arms of insulin resistance from diabetes to Alzheimer’s disease: identification of potential therapeutic targets
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527317666181114163515
– volume: 11
  start-page: 597
  year: 2010
  ident: 2021071913012834100_B1
  article-title: The widespread regulation of microRNA biogenesis, function and decay
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2843
– volume: 11
  start-page: 867
  year: 2020
  ident: 2021071913012834100_B14
  article-title: Single-cell transcriptome analysis reveals six subpopulations reflecting distinct cellular fates in senescent mouse embryonic fibroblasts
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00867
– volume: 436
  start-page: 725
  year: 2005
  ident: 2021071913012834100_B52
  article-title: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature03918
– volume: 9
  start-page: 2645
  year: 2018
  ident: 2021071913012834100_B20
  article-title: miR-103 promotes endothelial maladaptation by targeting lncWDR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05065-z
– volume: 47
  start-page: 7294
  year: 2019
  ident: 2021071913012834100_B12
  article-title: Transcriptome signature of cellular senescence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz555
– volume: 77
  start-page: 999
  year: 2010
  ident: 2021071913012834100_B42
  article-title: New biomarkers probing depth of cell senescence assessed by laser scanning cytometry
  publication-title: Cytom. Part A: J. Int. Soc. Anal. Cytol.
  doi: 10.1002/cyto.a.20983
– volume: 9
  start-page: 718
  year: 2020
  ident: 2021071913012834100_B62
  article-title: Role of the nuclear lamina in age-associated nuclear reorganization and inflammation
  publication-title: Cells
  doi: 10.3390/cells9030718
– volume: 10
  start-page: 1213
  year: 2013
  ident: 2021071913012834100_B30
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 5
  start-page: 180
  year: 2013
  ident: 2021071913012834100_B6
  article-title: MicroRNAs in age-related diseases
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201201986
– volume: 17
  start-page: 245
  year: 2019
  ident: 2021071913012834100_B16
  article-title: miR-340-5p suppresses aggressiveness in glioblastoma multiforme by targeting Bcl-w and Sox2
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.05.022
– volume: 30
  start-page: 923
  year: 2014
  ident: 2021071913012834100_B27
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 7
  start-page: 11190
  year: 2016
  ident: 2021071913012834100_B50
  article-title: Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11190
– volume: 28
  start-page: 127
  year: 2020
  ident: 2021071913012834100_B3
  article-title: Therapeutic advances of miRNAs: a preclinical and clinical update
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.08.012
– volume: 23
  start-page: 2066
  year: 2012
  ident: 2021071913012834100_B59
  article-title: Lamin B1 loss is a senescence-associated biomarker
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-10-0884
– volume: 334
  start-page: 177
  year: 2017
  ident: 2021071913012834100_B57
  article-title: Senescence-associated microRNAs
  publication-title: Int. Rev. Cell Mol. Biol.
  doi: 10.1016/bs.ircmb.2017.03.008
– volume: 6
  start-page: 169
  year: 2015
  ident: 2021071913012834100_B33
  article-title: Identifying differential transcription factor binding in ChIP-seq
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00169
– volume: 15
  start-page: 550
  year: 2014
  ident: 2021071913012834100_B28
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 9
  start-page: R137
  year: 2008
  ident: 2021071913012834100_B32
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 7
  start-page: 11
  year: 2018
  ident: 2021071913012834100_B63
  article-title: Consequences of lamin B1 and lamin B receptor downregulation in senescence
  publication-title: Cells
  doi: 10.3390/cells7020011
– volume: 11
  start-page: 1529
  year: 2018
  ident: 2021071913012834100_B70
  article-title: Functional miRNAs in breast cancer drug resistance
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S152462
– volume: 51
  start-page: 493
  year: 2018
  ident: 2021071913012834100_B53
  article-title: MicroRNA controls of cellular senescence
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2018.51.10.209
– volume: 18
  start-page: e3000599
  year: 2020
  ident: 2021071913012834100_B13
  article-title: A proteomic atlas of senescence-associated secretomes for aging biomarker development
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000599
– volume: 186
  start-page: 153
  year: 2016
  ident: 2021071913012834100_B41
  article-title: Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases
  publication-title: Radiat. Res.
  doi: 10.1667/RR14445.1
– volume: 312
  start-page: 1059
  year: 2006
  ident: 2021071913012834100_B65
  article-title: Lamin A-dependent nuclear defects in human aging
  publication-title: Science
  doi: 10.1126/science.1127168
– volume: 8
  start-page: 10875
  year: 2018
  ident: 2021071913012834100_B23
  article-title: U6 can be used as a housekeeping gene for urinary sediment miRNA studies of IgA nephropathy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29297-7
– volume: 327
  start-page: 291
  year: 1997
  ident: 2021071913012834100_B24
  article-title: Analysis of the tetraspanin CD9–integrin αIIbβ3 (GPIIb–IIIa) complex in platelet membranes and transfected cells
  publication-title: Biochem. J.
  doi: 10.1042/bj3270291
– volume: 27
  start-page: 1787
  year: 2013
  ident: 2021071913012834100_B60
  article-title: Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape
  publication-title: Genes Dev.
  doi: 10.1101/gad.223834.113
– volume: 178
  start-page: 25
  year: 2019
  ident: 2021071913012834100_B58
  article-title: Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2019.01.001
– volume: 14
  start-page: 16
  year: 2020
  ident: 2021071913012834100_B9
  article-title: Cellular senescence in neurodegenerative diseases
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2020.00016
– volume: 24
  start-page: 34
  year: 2019
  ident: 2021071913012834100_B18
  article-title: MicroRNA-340-5p suppresses non-small cell lung cancer cell growth and metastasis by targeting ZNF503
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-019-0161-1
– volume: 123
  start-page: 1650
  year: 2011
  ident: 2021071913012834100_B8
  article-title: Cellular senescence, vascular disease, and aging: part 1 of a 2-part review
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.007021
– volume: 88
  start-page: 593
  year: 1997
  ident: 2021071913012834100_B51
  article-title: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81902-9
– volume: 11
  start-page: 237
  year: 2010
  ident: 2021071913012834100_B34
  article-title: ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-237
– volume-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015
  year: 2015
  ident: 2021071913012834100_B36
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– volume: 8
  start-page: 737
  year: 2019
  ident: 2021071913012834100_B5
  article-title: MicroRNAs in cardiac diseases
  publication-title: Cells
  doi: 10.3390/cells8070737
– volume: 10
  start-page: 478
  year: 2019
  ident: 2021071913012834100_B48
  article-title: The potential for microRNA therapeutics and clinical research
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00478
– volume: 16
  start-page: 661
  year: 2017
  ident: 2021071913012834100_B43
  article-title: Quantitative identification of senescent cells in aging and disease
  publication-title: Aging Cell
  doi: 10.1111/acel.12592
– volume: 28
  start-page: 436
  year: 2018
  ident: 2021071913012834100_B11
  article-title: Hallmarks of cellular senescence
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.02.001
– volume: 566
  start-page: 73
  year: 2019
  ident: 2021071913012834100_B47
  article-title: L1 drives IFN in senescent cells and promotes age-associated inflammation
  publication-title: Nature
  doi: 10.1038/s41586-018-0784-9
– volume: 25
  start-page: 585
  year: 1961
  ident: 2021071913012834100_B7
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(61)90192-6
– volume: 1823
  start-page: 63
  year: 2018
  ident: 2021071913012834100_B21
  article-title: Inhibiting pri-miRNA processing with target site blockers
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8624-8_6
– volume: 7
  start-page: e42522
  year: 2012
  ident: 2021071913012834100_B37
  article-title: Nuclear morphometric analysis (NMA): screening of senescence, apoptosis and nuclear irregularities
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042522
– volume: 4
  start-page: e05005
  year: 2015
  ident: 2021071913012834100_B39
  article-title: Predicting effective microRNA target sites in mammalian mRNAs
  publication-title: eLife
  doi: 10.7554/eLife.05005
– volume: 22
  start-page: 4837
  year: 2018
  ident: 2021071913012834100_B17
  article-title: MiR-340-5p is a potential prognostic indicator of colorectal cancer and modulates ANXA3
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 14
  start-page: 509
  year: 2019
  ident: 2021071913012834100_B19
  article-title: The downregulation of microRNA hsa-miR-340-5p in IAV-infected A549 cells suppresses viral replication by targeting RIG-I and OAS2
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.12.014
– volume: 100
  start-page: 147
  year: 1976
  ident: 2021071913012834100_B68
  article-title: Increased nuclear sizes in senescent human diploid fibroblast cultures
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(76)90336-0
SSID ssj0014154
Score 2.4673517
Snippet Abstract A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here,...
A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7389
SubjectTerms Cell Line
Cell Proliferation
Cells, Cultured
Cellular Senescence - drug effects
Cellular Senescence - genetics
Gene Expression Regulation
Gene regulation, Chromatin and Epigenetics
Heterochromatin
Humans
Lamin B Receptor
MicroRNAs - metabolism
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
Title Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis
URI https://www.ncbi.nlm.nih.gov/pubmed/34181735
https://www.proquest.com/docview/2546602184
https://pubmed.ncbi.nlm.nih.gov/PMC8287953
Volume 49
WOSCitedRecordID wos000685211300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-2Mthe9tHuI9uaaVD2MCZqS7IlP7ZlZU_dKB3kzciytISlsomTQv_7nWQnNKWsfZVPRuhO96E7_Q7gQAvDZZ0ayqQOt1WOUZ0rQdHVxdAttagsdWw2Ic_O1GRS_BoKZLs7UvgFP_R6cfjnr67waKKqTTMVxPni52STLEAb1KNERVBNoYZneLfmbhmercdsN3zK26WRN2zN6YuHrvIlPB-8SXLUs_8VPLJ-F_aOPEbSl9fkC4n1nfHifBeenqx7u-3B1XlAbA08IY0jKBQzT44JKj_bYgxO5qGSqCPVNbmcnVMuEpq1pJ51i1W77IiZLprg5_pvpI3FfBbH7HxOuqA3TVAVRPuaWD8NItWF8SYin7yG36ffL05-0KEDAzVCqiW1olJWK5M5rjKnayGtSlxmCicV1-gahixcYlLmBDMVSyubMKcLpUVlbIVn-w3s-Mbbd0CKvDIm4Vq43AhX5FrqJHHorFnNauTgCL6u2VOaAZ48dMmYl32anJe4w-WwwyM42BC3PSrH3WSfkM__p_i8loESWRA2S3vbrLoy9AnIYwA8gre9TGx-hJZfpZLjmuWWtGwIAmb39hc_m0bs7tBfoMj4-3tX9gGesVA-k0jK0o-ws1ys7D48MVdL5PYYHsuJGscLhHE8DP8AJqoIvw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+lamin+B+receptor+levels+by+miR-340-5p+disrupts+chromatin%2C+promotes+cell+senescence+and+enhances+senolysis&rft.jtitle=Nucleic+acids+research&rft.au=Herman%2C+Allison+B&rft.au=Anerillas%2C+Carlos&rft.au=Harris%2C+Sophia+C&rft.au=Munk%2C+Rachel&rft.date=2021-07-21&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=13&rft.spage=7389&rft.epage=7405&rft_id=info:doi/10.1093%2Fnar%2Fgkab538&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkab538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon