Unmanned vehicle path planning using a novel ant colony algorithm
The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment model of the unmanned vehicle path planning, process and describe the environmental information, and finally realize the division of the problem space. N...
Uloženo v:
| Vydáno v: | EURASIP journal on wireless communications and networking Ročník 2019; číslo 1; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
28.05.2019
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment model of the unmanned vehicle path planning, process and describe the environmental information, and finally realize the division of the problem space. Next, the biomimetic behavior of the ant colony algorithm is described. The ant colony algorithm has been improved by adding a penalty strategy. This penalty strategy can enhance the utilization of resources and guide the ants to explore other unknown areas by using the worse value in the search history to enhance the volatility of the pheromone. |
|---|---|
| AbstractList | The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment model of the unmanned vehicle path planning, process and describe the environmental information, and finally realize the division of the problem space. Next, the biomimetic behavior of the ant colony algorithm is described. The ant colony algorithm has been improved by adding a penalty strategy. This penalty strategy can enhance the utilization of resources and guide the ants to explore other unknown areas by using the worse value in the search history to enhance the volatility of the pheromone. Abstract The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment model of the unmanned vehicle path planning, process and describe the environmental information, and finally realize the division of the problem space. Next, the biomimetic behavior of the ant colony algorithm is described. The ant colony algorithm has been improved by adding a penalty strategy. This penalty strategy can enhance the utilization of resources and guide the ants to explore other unknown areas by using the worse value in the search history to enhance the volatility of the pheromone. |
| ArticleNumber | 136 |
| Author | Yue, Longwang Chen, Hanning |
| Author_xml | – sequence: 1 givenname: Longwang surname: Yue fullname: Yue, Longwang organization: School of Mechanical and Electrical Engineering, Henan University of Technology – sequence: 2 givenname: Hanning orcidid: 0000-0002-9885-6653 surname: Chen fullname: Chen, Hanning email: perfect_chn@hotmail.com organization: School of Computer Science and Technology, Tianjin Polytechnic University |
| BookMark | eNp9kEtLxDAUhYMo-PwB7gquq7lJmyZLEV8guNF1uE3TmQ6dZEwygv_e1CqKoJs8bs53ODmHZNd5Zwk5BXoOIMVFBC64LCmoEqqmKusdcgBCNvmm1O6P8z45jHFFKeeVYgfk8tmt0TnbFa92OZjRFhtMy2Iz5uHgFsU2TisWzr_asUCXCuNH794KHBc-DGm5PiZ7PY7RnnzuR-T55vrp6q58eLy9v7p8KE3VyFRakFy1jHGsLVXAQLSSVX2jQEFNwVC0HbW2zc-SI-VoWNe1bY-IvTSm4UfkfvbtPK70JgxrDG_a46A_Bj4sNIY0fUE3HHvGmECBXdV3ohV9UzNulaRCSJi8zmavTfAvWxuTXvltcDm-zgmBSSUZZFUzq0zwMQbbazMkTIN3KeAwaqB66l7P3evcvZ6613Um4Rf5lfc_hs1MzFq3sOE709_QO6tXl9w |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3020629 crossref_primary_10_1007_s11370_020_00313_y crossref_primary_10_1109_ACCESS_2020_2982040 crossref_primary_10_1177_15501329221123933 crossref_primary_10_1108_IR_10_2020_0218 crossref_primary_10_1177_0954406220963148 crossref_primary_10_1007_s12065_020_00456_y crossref_primary_10_1109_TVT_2021_3097203 crossref_primary_10_1088_1361_6501_ae02af crossref_primary_10_1038_s41598_024_52750_9 crossref_primary_10_1016_j_compag_2025_110207 crossref_primary_10_3390_ijerph18136863 crossref_primary_10_1007_s11265_023_01838_y crossref_primary_10_1007_s11760_023_02989_y crossref_primary_10_1016_j_swevo_2021_100844 crossref_primary_10_1109_ACCESS_2022_3229171 crossref_primary_10_1177_14727978251366518 crossref_primary_10_1016_j_robot_2021_103949 crossref_primary_10_3390_s23156873 crossref_primary_10_1109_JSEN_2025_3557437 crossref_primary_10_1007_s11831_022_09742_7 crossref_primary_10_1088_1742_6596_1631_1_012092 crossref_primary_10_1177_17298806241278170 crossref_primary_10_3233_JIFS_231280 crossref_primary_10_1016_j_cja_2020_08_033 crossref_primary_10_1088_1742_6596_2891_11_112001 crossref_primary_10_3390_machines12120853 crossref_primary_10_1016_j_oceaneng_2023_114464 crossref_primary_10_1038_s41598_021_95518_1 crossref_primary_10_3390_s23063051 crossref_primary_10_1111_itor_13596 crossref_primary_10_3390_app15137023 crossref_primary_10_1007_s11042_020_09245_2 crossref_primary_10_1016_j_compag_2025_110835 crossref_primary_10_1109_TVT_2021_3093318 crossref_primary_10_1016_j_ast_2021_106857 crossref_primary_10_3390_app13042291 crossref_primary_10_1109_ACCESS_2020_2982617 crossref_primary_10_1186_s13638_022_02205_4 crossref_primary_10_3390_drones7020089 crossref_primary_10_1155_2021_4109821 crossref_primary_10_3390_s24154998 crossref_primary_10_1002_tee_23592 crossref_primary_10_3390_math10193420 crossref_primary_10_1109_ACCESS_2025_3531931 crossref_primary_10_1088_1742_6596_2365_1_012051 |
| Cites_doi | 10.1016/j.ins.2017.12.047 10.1109/TEVC.2017.2682899 10.1016/j.asoc.2016.05.011 10.1109/SMC.2013.474 10.1007/978-3-319-91086-4_10 10.1017/S0263574714001878 10.1016/j.asoc.2014.12.002 10.1016/j.asoc.2018.07.050 10.1016/j.ins.2014.11.050 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13638-019-1474-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-1499 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_73af2226a6ad4fd6b6f7523e98066817 10_1186_s13638_019_1474_5 |
| GrantInformation_xml | – fundername: National key Research and Development Program of China grantid: 2017YFB1103603; 2017YFB1103003 – fundername: National Natural Science Foundation of China grantid: 61602343; 61772365; 41772123; 61802280; 61806143; 61502318 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Federal State Budget Scientific Institution Research Institute - Republican Research and Consulting Center of Expertise (RU) grantid: 2017KJ093, 2017KJ094 – fundername: National Natural Science Foundation of China (CN) grantid: 51607122 – fundername: Tianjin Province Science and Technology Projects grantid: 17JCYBJC15100; 17JCQNJC04500 – fundername: Natural Science Foundation of Henan Province grantid: 182300410286 funderid: http://dx.doi.org/10.13039/501100006407 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c478t-e1839b223a5e091216b824f79191501c0aed0eeba5e83a03ac2ddbbfaaaf8cc73 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469495600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1499 1687-1472 |
| IngestDate | Fri Oct 03 12:46:08 EDT 2025 Sat Oct 11 05:52:29 EDT 2025 Sat Nov 29 01:43:52 EST 2025 Tue Nov 18 22:42:46 EST 2025 Fri Feb 21 02:35:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Path planning Penalty strategy Grid method Ant colony algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-e1839b223a5e091216b824f79191501c0aed0eeba5e83a03ac2ddbbfaaaf8cc73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9885-6653 |
| OpenAccessLink | https://link.springer.com/10.1186/s13638-019-1474-5 |
| PQID | 2231289821 |
| PQPubID | 237293 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_73af2226a6ad4fd6b6f7523e98066817 proquest_journals_2231289821 crossref_citationtrail_10_1186_s13638_019_1474_5 crossref_primary_10_1186_s13638_019_1474_5 springer_journals_10_1186_s13638_019_1474_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-28 |
| PublicationDateYYYYMMDD | 2019-05-28 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on wireless communications and networking |
| PublicationTitleAbbrev | J Wireless Com Network |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | S.P. Carabaza, E. Besada-Portas, J.A. Lopez-Orozco, et al, Ant colony optimization for Multi-UAV minimum time search in uncertain domains[J]. Appl. Soft Comput. 62, 789-806 (2017). WuWTianYJinTA label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaulAppl. Soft Comput..20164722423410.1016/j.asoc.2016.05.011 BououdenSChadliMKarimiHRAn ant colony optimization-based fuzzy predictive control approach for nonlinear processesInf. Sci.2015299C143158330250810.1016/j.ins.2014.11.050 CastilloONeyoyHSoriaJA new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robotAppl. Soft Comput.201528C15015910.1016/j.asoc.2014.12.002 ZhengFeifeiZecchinAaron C.NewmanJeffery P.MaierHolger R.DandyGraeme C.An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design ProblemsIEEE Transactions on Evolutionary Computation201721577379110.1109/TEVC.2017.2682899 NingJZhangQZhangCA best-path-updating information-guided ant colony optimization algorithmInf. Sci.2018s 433–434142162375901710.1016/j.ins.2017.12.047 ChengJMiaoZLiBAn improved ACO algorithm for mobile robot path planning2017A ShorakaeiHVahdaniMImaniBOptimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]Robotica2016340482383610.1017/S0263574714001878 FanYWZhangCMHybrid differential evolution algorithm for path planning of mobile robotsJ Taiyuan Univer Sci Technol20194001612 ChengJMiaoZLiBAn improved ACO algorithm for mobile robot path planning2016963968 HsuCCHouRYWangWYPath Planning for Mobile Robots Based on Improved Ant Colony Optimization[C]201310.1109/SMC.2013.474A L. Wang, R.H. Shi, Application of particle swam optimization algorithm to path planning of unmanned aerial vehicle[J]. Comput. Simul. 28(4), 74-77 (2011). DorigoMStützleTAnt colony optimization: overview and recent advancesHandbook of Metaheuristics2019ChamSpringer31135110.1007/978-3-319-91086-4_10 ZhangQXiongSRouting optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithmAppl. Soft Comput..20187191792510.1016/j.asoc.2018.07.050 H. Qu, L.W. Huang, X. Ke, Research of improved ant colony based robot path planning under dynamic environment[J]. Dianzi Keji Daxue Xuebao/J. Univ. Electron. Sci. Technol. China, 44(2), 260-265 (2015). BaoqingGShuyunHLiqiangZMulti-AGV parking path planning based on improved ant colony algorithmJ. Transp. Syst. Eng. Eng.20181865562, 80 M Dorigo (1474_CR5) 2019 G Baoqing (1474_CR9) 2018; 18 J Ning (1474_CR12) 2018; s 433–434 1474_CR3 O Castillo (1474_CR16) 2015; 28 YW Fan (1474_CR4) 2019; 40 1474_CR8 1474_CR11 W Wu (1474_CR14) 2016; 47 J Cheng (1474_CR10) 2016 J Cheng (1474_CR7) 2017 CC Hsu (1474_CR1) 2013 H Shorakaei (1474_CR2) 2016; 34 Feifei Zheng (1474_CR6) 2017; 21 S Bououden (1474_CR13) 2015; 299 Q Zhang (1474_CR15) 2018; 71 |
| References_xml | – reference: HsuCCHouRYWangWYPath Planning for Mobile Robots Based on Improved Ant Colony Optimization[C]201310.1109/SMC.2013.474A – reference: BououdenSChadliMKarimiHRAn ant colony optimization-based fuzzy predictive control approach for nonlinear processesInf. Sci.2015299C143158330250810.1016/j.ins.2014.11.050 – reference: FanYWZhangCMHybrid differential evolution algorithm for path planning of mobile robotsJ Taiyuan Univer Sci Technol20194001612 – reference: ShorakaeiHVahdaniMImaniBOptimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]Robotica2016340482383610.1017/S0263574714001878 – reference: ZhengFeifeiZecchinAaron C.NewmanJeffery P.MaierHolger R.DandyGraeme C.An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design ProblemsIEEE Transactions on Evolutionary Computation201721577379110.1109/TEVC.2017.2682899 – reference: S.P. Carabaza, E. Besada-Portas, J.A. Lopez-Orozco, et al, Ant colony optimization for Multi-UAV minimum time search in uncertain domains[J]. Appl. Soft Comput. 62, 789-806 (2017). – reference: L. Wang, R.H. Shi, Application of particle swam optimization algorithm to path planning of unmanned aerial vehicle[J]. Comput. Simul. 28(4), 74-77 (2011). – reference: ZhangQXiongSRouting optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithmAppl. Soft Comput..20187191792510.1016/j.asoc.2018.07.050 – reference: BaoqingGShuyunHLiqiangZMulti-AGV parking path planning based on improved ant colony algorithmJ. Transp. Syst. Eng. Eng.20181865562, 80 – reference: DorigoMStützleTAnt colony optimization: overview and recent advancesHandbook of Metaheuristics2019ChamSpringer31135110.1007/978-3-319-91086-4_10 – reference: WuWTianYJinTA label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaulAppl. Soft Comput..20164722423410.1016/j.asoc.2016.05.011 – reference: ChengJMiaoZLiBAn improved ACO algorithm for mobile robot path planning2016963968 – reference: H. Qu, L.W. Huang, X. Ke, Research of improved ant colony based robot path planning under dynamic environment[J]. Dianzi Keji Daxue Xuebao/J. Univ. Electron. Sci. Technol. China, 44(2), 260-265 (2015). – reference: ChengJMiaoZLiBAn improved ACO algorithm for mobile robot path planning2017A – reference: NingJZhangQZhangCA best-path-updating information-guided ant colony optimization algorithmInf. Sci.2018s 433–434142162375901710.1016/j.ins.2017.12.047 – reference: CastilloONeyoyHSoriaJA new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robotAppl. Soft Comput.201528C15015910.1016/j.asoc.2014.12.002 – start-page: 963 volume-title: An improved ACO algorithm for mobile robot path planning year: 2016 ident: 1474_CR10 – ident: 1474_CR3 – ident: 1474_CR11 – volume: s 433–434 start-page: 142 year: 2018 ident: 1474_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.047 – volume: 21 start-page: 773 issue: 5 year: 2017 ident: 1474_CR6 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2682899 – volume: 47 start-page: 224 year: 2016 ident: 1474_CR14 publication-title: Appl. Soft Comput.. doi: 10.1016/j.asoc.2016.05.011 – ident: 1474_CR8 – volume-title: An improved ACO algorithm for mobile robot path planning year: 2017 ident: 1474_CR7 – volume: 40 start-page: 6 issue: 01 year: 2019 ident: 1474_CR4 publication-title: J Taiyuan Univer Sci Technol – volume-title: Path Planning for Mobile Robots Based on Improved Ant Colony Optimization[C] year: 2013 ident: 1474_CR1 doi: 10.1109/SMC.2013.474 – start-page: 311 volume-title: Handbook of Metaheuristics year: 2019 ident: 1474_CR5 doi: 10.1007/978-3-319-91086-4_10 – volume: 34 start-page: 823 issue: 04 year: 2016 ident: 1474_CR2 publication-title: Robotica doi: 10.1017/S0263574714001878 – volume: 28 start-page: 150 issue: C year: 2015 ident: 1474_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.12.002 – volume: 71 start-page: 917 year: 2018 ident: 1474_CR15 publication-title: Appl. Soft Comput.. doi: 10.1016/j.asoc.2018.07.050 – volume: 18 start-page: 55 issue: 6 year: 2018 ident: 1474_CR9 publication-title: J. Transp. Syst. Eng. Eng. – volume: 299 start-page: 143 issue: C year: 2015 ident: 1474_CR13 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.11.050 |
| SSID | ssj0033492 |
| Score | 2.4663835 |
| Snippet | The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment model of the... Abstract The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning. First, establish the environment... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Ant colony algorithm Ant colony optimization Biomimetics Communications Engineering Distributed Big Data Processing in SCADA Communication Networks Engineering Environment models Grid method Information Systems Applications (incl.Internet) Networks Path planning Penalty strategy Product design Signal,Image and Speech Processing Unmanned vehicles Volatility |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfGK1Sg6elKXZVx7HKhYPUjxY6S0k2WxbaLelXQv-eyf7qK2gXrwmszB8M8nMMNlvELqBRcGM67ASZbwoCYUntEqhag20YRYy9KJj-vbMej0-GIiXjVFf7k1YSQ9cAtdmoUohhlFFVRKlCdU0ZVA8WcEhWHK_-I-cMFEXU-UdHDrOvaqH6XPaXvoh-BkoIDw_YpEXb0Whgqx_K8P81hQtYk33EB1USSLulModoR2bHaP9DerAE9TpZ1Pl7ki8siMnhd1sYTyvZhBh9559iBXOZis7wQAfdvTU2QdWk-FsMc5H01PU7z6-Pjx51TgEz0SM5551yYyGcK5iC1E-8KnmQZQyASVXTHxDlE2ItRq2eahIqEyQJFqnSqmUG8PCM9TIZpk9R5gmsXEDHuDA0shozY2vTQS1EhEW6kHeRKSGR5qKK9yNrJjIombgVJaISkBUOkRl3ES360_mJVHGb8L3DvO1oOO4LhbA8rKyvPzL8k3Uqi0mq4O3lAAPRFzBA7-J7morfm3_qNHFf2h0ifYC52Pg-gFvoUa-eLdXaNes8vFycV146CfjguZz priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7R0kN74I0IBOQDp6JV9unHCRVExAFVOZAq4mLZXm-ClGxCso3Ev2dm420IUnPhanvXI894POOxvg_gPTYq4ajCGhsX5WWmImVNhVlrap3wGKG3FdObb-L6Wk4mahQu3DbhWWXnE1tHXS4d3ZEP8BhDV6pkmnxc_YqINYqqq4FC4wQeEkoCUTeMih-dJ84IeY8SLpwvSnKRhqpmIvlgk2RoeSiSop48Kg7OpRa-_yDm_KdM2p4-w8f_K_cTeBTiTna1M5Sn8MDXz-DiLzTC53A1rheG3C7b-hmNYkRXzFaB1ojRE_kpM6xebv2coUYYIV7Xv5mZT3HGZrZ4AePhl--fv0aBYSFyuZBN5Ck-siiiKTwGDmnCrUzzSijM4oo4cbHxZey9xW6ZmTgzLi1LaytjTCWdE9lLOK2XtX8FjJeFI84I9AE8d9ZKl1iXY_oVK48ppuxB3K2vdgF-nFgw5rpNQyTXO5VoVIkmleiiB5d3n6x22BvHBn8ipd0NJNjstmG5nuqwC7XITIUBETfclHlVcssrgZm4VxIjL5mIHvQ7Jeqwlzd6r8EefOjMYN99r0Svj__sDZynZH64T1LZh9NmfevfwpnbNj8363etIf8BTYn2-w priority: 102 providerName: ProQuest |
| Title | Unmanned vehicle path planning using a novel ant colony algorithm |
| URI | https://link.springer.com/article/10.1186/s13638-019-1474-5 https://www.proquest.com/docview/2231289821 https://doaj.org/article/73af2226a6ad4fd6b6f7523e98066817 |
| Volume | 2019 |
| WOSCitedRecordID | wos000469495600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BwoEeWp4ibRr5wAm0Yp9-HJMoFRUQrRBFgYtle71ppWQTJWmk_vuOnd1AECDBxQd7vLLGM56ZHfsbgNfYKZhxGdZQmSAtEhEIrUqMWmNtmEUP3WdMv35k4zGfTERev-NeN7fdm5SkP6m9WnP6bh0lKCv4ERFEKUuD7CG0s4gLd49v6J447I7fxMHt1enL3047MEAep__AufwlH-rNzMXJfy3wCRzXXiXp78TgKTyw1TM4-glr8Dn0r6q5cocq2dprR0VcMWKyrIsWEXcBfkoUqRZbOyPIb-LwrKs7ombTxepmcz1_AVcXoy_D90FdPyEwKeObwDrvR6P9V5lFtyCOqOZxWjKBMVoWRiZUtgit1TjMExUmysRFoXWplCq5MSx5Ca1qUdlXQGiRGVcRAjWcpkZrbiJtUgyuQmExgOQdCBumSlODi7saFzPpgwxO5Y47ErkjHXdk1oE3-ynLHbLG34gHbqf2hA4U23csVlNZ65hkiSrR3aGKqiItC6ppyTDOtoKjX8Uj1oFus8-y1tS1RPagiRY8jjrwttnXH8N_XNHpP1GfwePYCQYqRcy70Nqsbu05PDLbzc161YP2YDTOP_e8IPf8bwFsP7AA2zz7juP55af82z0TlvAe |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EZdKOADXEBRE9uJ7QNC5aNqtcuKQ4t6M7bjbJG22e3usqh_it_ITDZpKRK99cDVdqw4eX4zk4nnAbzERqMCZVhTFxJZCpMY7yqMWrkPKqKH3mRMvw7UcKgPD82XNfjVnYWh3yo7TmyIupwE-ka-hWYMqdRonr2bniSkGkXZ1U5CYwWLfjz9iSHb_O3eR3y_rzjf-bT_YTdpVQWSIJVeJJF8Ao_TuTyiseRZ4TWXlTIYueRpFlIXyzRGj91auFS4wMvS-8o5V-kQlMB5r8F1KbSifdVXScf8gir9UYCH60syqXibRc10sTXPBCIdH4GhHpnkF-xgIxdwwcf9Ky3bWLudu__bc7oHd1q_mm2vNsJ9WIv1A7j9R7XFh7B9UB87MitsGY9oFCM5ZjZtZZsYHQEYMcfqyTKOGSKOUUXv-pS58QhXuDg6fgQHV7KGx7BeT-q4Aawo80CaGMhxhQze65D5IDG8TE3EEFr3IO3epw1teXVS-RjbJszShV1BwCIELEHA5j14fXbJdFVb5LLB7wkkZwOpLHjTMJmNbMsyVglXocNXuMKVsioLX1Qq5yIajZ6lzlQPNjvQ2Jar5vYcMT1408HuvPufd_Tk8slewM3d_c8DO9gb9p_CLU7QR07gehPWF7Mf8RncCMvF9_nsebOJGHy7ajT-BuvuVcw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcoHyJhdL6UC5U0SZO4o8DQoV21arVag8UVVxc23G2SNvssrss6l_j1zGTTVqKRG89cI0dK3aeZ-ZlnHkAW3hRS08Z1tj6KCtSHWlnS2St3HkZMEKvM6ZfjmS_r05O9GAFfrX_wtCxytYm1oa6GHv6Rt5FN4amVCuedMvmWMRgt_dh8j0iBSnKtLZyGkuIHIaLn0jfZu8PdvFdv-W8t_f5037UKAxEPpNqHgWKDxwObfOAjpMnwimelVIji8njxMc2FHEIDptVauPUel4UzpXW2lJ5L1Mc9w7clcgx6TjhIP_aeoGUqv4R2cO5RkkmeZNRTZTozpIUUY_Loakli_JrPrGWDrgW7_6Voq09X-_x_7xma_CoibfZznKDPIGVUD2Fh39UYXwGO8fVuSV3wxbhjHoxkmlmk0bOidGvAUNmWTVehBFDJDKq9F1dMDsa4gznZ-fP4fhW5vACVqtxFV4CE0XuSSsDbZ_IvHPKJ85nSDtjHZBaqw7E7bs1vim7TuofI1PTLyXMEg4G4WAIDibvwLvLWybLmiM3df5IgLnsSOXC6wvj6dA01sfI1JYYCAorbJGVhXCilDlPg1YYcapEdmC9BZBpbNjMXKGnA9stBK-a__lEr24ebBPuIwjN0UH_8DU84LQL0FRwtQ6r8-mP8Abu-cX822y6Ue8nBqe3DcbfYI5e8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unmanned+vehicle+path+planning+using+a+novel+ant+colony+algorithm&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Yue%2C+Longwang&rft.au=Chen%2C+Hanning&rft.date=2019-05-28&rft.pub=Springer+International+Publishing&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-019-1474-5&rft.externalDocID=10_1186_s13638_019_1474_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |