Batch scheduling of simple linear deteriorating jobs on a single machine to minimize makespan

We consider a scheduling problem in which n jobs are to be processed on a single machine. The jobs are processed in batches and the processing time of each job is a simple linear function of its waiting time, i.e., the time between the start of the processing of the batch to which the job belongs an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 202; číslo 1; s. 90 - 98
Hlavní autoři: Ji, Min, Cheng, T.C.E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.04.2010
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a scheduling problem in which n jobs are to be processed on a single machine. The jobs are processed in batches and the processing time of each job is a simple linear function of its waiting time, i.e., the time between the start of the processing of the batch to which the job belongs and the start of the processing of the job. The objective is to minimize the makespan, i.e., the completion time of the last job. We first show that the problem is strongly NP-hard. Then we show that, if the number of batches is B, the problem remains strongly NP-hard when B ⩽ U for a variable U ⩾ 2 or B ⩾ U for any constant U ⩾ 2 . For the case of B ⩽ U , we present a dynamic programming algorithm that runs in pseudo-polynomial time and a fully polynomial time approximation scheme (FPTAS) for any constant U ⩾ 2 . Furthermore, we provide an optimal linear time algorithm for the special case where the jobs are subject to a linear precedence constraint, which subsumes the case where all the job growth rates are equal.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2009.05.021