Resolvable Cluster Target Tracking Based on the DBSCAN Clustering Algorithm and Labeled RFS

When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this paper, we research the tracking problem of resolvable cluster targets with cooperative interaction. Firstly, we use the stochastic differentia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 43364 - 43377
Hlavní autoři: Xue, Xirui, Huang, Shucai, Xie, Jiahao, Ma, Jiashun, Li, Ning
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this paper, we research the tracking problem of resolvable cluster targets with cooperative interaction. Firstly, we use the stochastic differential equation to model the cluster coordination rules, and the state equation of the single target in the cluster is derived. On this basis, a Bayes recursive filter tracking method based on the combination of the DBSCAN clustering algorithm and the <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-GLMB filter is proposed. In the <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-GLMB filter prediction stage, the DBSCAN algorithm is used to determine the cluster where the target is located in real time. Then, the collaborative noise of the target is estimated, which will be used as the input to correct the prediction state of the target. The simulation and experiment results demonstrate the effectiveness of the proposed algorithm when the cluster is splitting, merging, and in reorganization.
AbstractList When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this paper, we research the tracking problem of resolvable cluster targets with cooperative interaction. Firstly, we use the stochastic differential equation to model the cluster coordination rules, and the state equation of the single target in the cluster is derived. On this basis, a Bayes recursive filter tracking method based on the combination of the DBSCAN clustering algorithm and the <tex-math notation="LaTeX">$\delta $ </tex-math>-GLMB filter is proposed. In the <tex-math notation="LaTeX">$\delta $ </tex-math>-GLMB filter prediction stage, the DBSCAN algorithm is used to determine the cluster where the target is located in real time. Then, the collaborative noise of the target is estimated, which will be used as the input to correct the prediction state of the target. The simulation and experiment results demonstrate the effectiveness of the proposed algorithm when the cluster is splitting, merging, and in reorganization.
When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this paper, we research the tracking problem of resolvable cluster targets with cooperative interaction. Firstly, we use the stochastic differential equation to model the cluster coordination rules, and the state equation of the single target in the cluster is derived. On this basis, a Bayes recursive filter tracking method based on the combination of the DBSCAN clustering algorithm and the <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-GLMB filter is proposed. In the <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-GLMB filter prediction stage, the DBSCAN algorithm is used to determine the cluster where the target is located in real time. Then, the collaborative noise of the target is estimated, which will be used as the input to correct the prediction state of the target. The simulation and experiment results demonstrate the effectiveness of the proposed algorithm when the cluster is splitting, merging, and in reorganization.
When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this paper, we research the tracking problem of resolvable cluster targets with cooperative interaction. Firstly, we use the stochastic differential equation to model the cluster coordination rules, and the state equation of the single target in the cluster is derived. On this basis, a Bayes recursive filter tracking method based on the combination of the DBSCAN clustering algorithm and the [Formula Omitted]-GLMB filter is proposed. In the [Formula Omitted]-GLMB filter prediction stage, the DBSCAN algorithm is used to determine the cluster where the target is located in real time. Then, the collaborative noise of the target is estimated, which will be used as the input to correct the prediction state of the target. The simulation and experiment results demonstrate the effectiveness of the proposed algorithm when the cluster is splitting, merging, and in reorganization.
Author Li, Ning
Xue, Xirui
Huang, Shucai
Ma, Jiashun
Xie, Jiahao
Author_xml – sequence: 1
  givenname: Xirui
  orcidid: 0000-0001-5410-2051
  surname: Xue
  fullname: Xue, Xirui
  email: rayngu@126.com
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 2
  givenname: Shucai
  surname: Huang
  fullname: Huang, Shucai
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 3
  givenname: Jiahao
  orcidid: 0000-0002-0654-3335
  surname: Xie
  fullname: Xie, Jiahao
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 4
  givenname: Jiashun
  surname: Ma
  fullname: Ma, Jiashun
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 5
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
BookMark eNqFkUtvEzEUhS1UJErpL-jGEusEP2b8WKZDSytFIDVhxcLyeK5Th-m42A4S_74OUyrEBm9sXZ_v3Ht13qKTKU6A0AUlS0qJ_rDquqvNZskIo0tOhBBMv0KnjAq94C0XJ3-936DznPekHlVLrTxF3-4gx_Gn7UfA3XjIBRLe2rSDgrfJuu9h2uFLm2HAccLlHvDHy023-vxHe_xejbuYQrl_wHYa8Nr2MFb53fXmHXrt7Zjh_Pk-Q1-vr7bdzWL95dNtt1ovXCNVWTilmNRKt45D7xmT3hE_EOmZarXXvQDPiPZ8kFw24IFL1VAleEuc1lRafoZuZ98h2r15TOHBpl8m2mB-F2LaGZtKcCMYOsi6eiWZco33WjtNeN9yN_RcNY5Wr_ez12OKPw6Qi9nHQ5rq-Ia1pJVEC8aris8ql2LOCfxLV0rMMRQzh2KOoZjnUCql_6FcKLaEOJVkw_gf9mJmAwC8dNNcESoUfwICLJm7
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSEN_2022_3227012
crossref_primary_10_1109_TAES_2023_3276732
crossref_primary_10_1109_TAES_2024_3488685
crossref_primary_10_32604_cmc_2024_056824
crossref_primary_10_1109_LSP_2025_3605294
crossref_primary_10_1049_ipr2_12490
crossref_primary_10_1088_1361_6501_acc267
crossref_primary_10_1109_JSEN_2024_3514137
crossref_primary_10_1109_TAES_2024_3373561
crossref_primary_10_1109_LWC_2025_3566545
crossref_primary_10_1155_2022_8556477
crossref_primary_10_1155_2022_8220029
crossref_primary_10_1016_j_eswa_2023_123121
crossref_primary_10_1109_TSP_2024_3472068
Cites_doi 10.1109/TAES.2008.4655362
10.1038/nature03236
10.1109/MAES.2004.1263228
10.1140/epjst/e2012-01529-y
10.1109/TAES.2011.5705687
10.1007/BF02289588
10.1007/s00285-003-0209-7
10.1103/PhysRevLett.76.3870
10.1109/TSP.2011.2128316
10.1109/TSP.2012.2212888
10.1145/37401.37406
10.1109/TSP.2011.2161294
10.1016/j.automatica.2017.12.004
10.1109/ICCAIS.2018.8570570
10.3390/s20123384
10.1109/ICACC.2010.5486859
10.1016/j.neunet.2017.06.004
10.1109/AERO.2009.4839491
10.1109/TSP.2014.2364014
10.1109/JSTSP.2013.2250911
10.1109/AERO.2008.4526445
10.1109/TSP.2008.2007924
10.1109/TSP.2010.2103062
10.1103/PhysRevLett.75.1226
10.1016/j.dsp.2013.11.006
10.1109/TSP.2013.2259822
10.2307/2533435
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3066629
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 43377
ExternalDocumentID oai_doaj_org_article_1d708150c28c4ff99c903b53cdb384c1
10_1109_ACCESS_2021_3066629
9380168
Genre orig-research
GrantInformation_xml – fundername: Young Talent Support Project for Military Science and Technology
  grantid: 18-JC-JQ-QT-007
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-c88279895c3ebf227fc0fd07f2859f9b6ef209f3d7374efe3784186350c9917a3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633624700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:23 EDT 2025
Mon Jun 30 14:44:05 EDT 2025
Sat Nov 29 06:12:04 EST 2025
Tue Nov 18 21:49:03 EST 2025
Wed Aug 27 02:45:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-c88279895c3ebf227fc0fd07f2859f9b6ef209f3d7374efe3784186350c9917a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5410-2051
0000-0002-0654-3335
OpenAccessLink https://doaj.org/article/1d708150c28c4ff99c903b53cdb384c1
PQID 2505709623
PQPubID 4845423
PageCount 14
ParticipantIDs proquest_journals_2505709623
crossref_primary_10_1109_ACCESS_2021_3066629
crossref_citationtrail_10_1109_ACCESS_2021_3066629
ieee_primary_9380168
doaj_primary_oai_doaj_org_article_1d708150c28c4ff99c903b53cdb384c1
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
vo (ref27) 2009; 57
yu (ref31) 2007; 24
ref23
ref26
ref25
ref20
ref22
ref21
oksendal (ref32) 2013
ref28
granstrom (ref24) 2015
schuhmacher (ref33) 2008
ester (ref15) 1996
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
macqueen (ref14) 1967
References_xml – ident: ref1
  doi: 10.1109/TAES.2008.4655362
– ident: ref8
  doi: 10.1038/nature03236
– ident: ref21
  doi: 10.1109/MAES.2004.1263228
– year: 2013
  ident: ref32
  publication-title: Stochastic Differential Equations An Introduction with Applications
– ident: ref9
  doi: 10.1140/epjst/e2012-01529-y
– ident: ref2
  doi: 10.1109/TAES.2011.5705687
– ident: ref13
  doi: 10.1007/BF02289588
– ident: ref10
  doi: 10.1007/s00285-003-0209-7
– ident: ref11
  doi: 10.1103/PhysRevLett.76.3870
– ident: ref25
  doi: 10.1109/TSP.2011.2128316
– ident: ref23
  doi: 10.1109/TSP.2012.2212888
– ident: ref6
  doi: 10.1145/37401.37406
– ident: ref22
  doi: 10.1109/TSP.2011.2161294
– ident: ref4
  doi: 10.1016/j.automatica.2017.12.004
– ident: ref5
  doi: 10.1109/ICCAIS.2018.8570570
– ident: ref3
  doi: 10.3390/s20123384
– ident: ref28
  doi: 10.1109/ICACC.2010.5486859
– ident: ref16
  doi: 10.1016/j.neunet.2017.06.004
– ident: ref18
  doi: 10.1109/AERO.2009.4839491
– ident: ref30
  doi: 10.1109/TSP.2014.2364014
– ident: ref26
  doi: 10.1109/JSTSP.2013.2250911
– start-page: 2
  year: 1996
  ident: ref15
  article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
– volume: 24
  start-page: 79
  year: 2007
  ident: ref31
  article-title: Flocking motion control of flock in directed networks
  publication-title: Control Theory Appl
– ident: ref19
  doi: 10.1109/AERO.2008.4526445
– start-page: 281
  year: 1967
  ident: ref14
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probab
– volume: 57
  start-page: 409
  year: 2009
  ident: ref27
  article-title: The cardinality balanced multi-target multi-Bernoulli filter and its implementations
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.2007924
– ident: ref20
  doi: 10.1109/TSP.2010.2103062
– ident: ref7
  doi: 10.1103/PhysRevLett.75.1226
– ident: ref17
  doi: 10.1016/j.dsp.2013.11.006
– start-page: 1
  year: 2008
  ident: ref33
  article-title: On performance evaluation of multi-object filters
  publication-title: 2008 11th International Conference on Information Fusion FUSION
– ident: ref29
  doi: 10.1109/TSP.2013.2259822
– ident: ref12
  doi: 10.2307/2533435
– start-page: 6
  year: 2015
  ident: ref24
  article-title: PHD filter with approximate multiobject density measurement update
  publication-title: Proc 18th Int Conf Inf Fusion
SSID ssj0000816957
Score 2.342837
Snippet When a sensor can resolve the members in a cluster, it is difficult to accurately track each target due to cooperative interaction among the targets. In this...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43364
SubjectTerms Algorithms
Clustering
Clustering algorithms
cooperative interaction modeling
DBSCAN clustering algorithm
Differential equations
Equations of state
Filtering algorithms
Filtering theory
Force
Formulas (mathematics)
IIR filters
Mathematical model
Prediction algorithms
Resolvable cluster target tracking
stochastic differential equation
Target tracking
Tracking problem
δ-GLMB filter
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Libary (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc48FUQWwrygWPTZu1sbB93AysO1QrRgipxsPxJKy1ZtN3t7--Mkw1IICRuUWJHcZ7teTO23wC84y65WvJYCJFcUVn0WZWqVCGsFpWVQtc5D9nXc7lYqKsr_WkPToazMDHGvPksntJlXssPK7-lUNmZFjif1mof9qWsu7NaQzyFEkjoieyFhcalPps2DbYBXUA-PhVE0zON_GV8skZ_n1Tlj5k4m5f5k__7sKfwuKeRbNrh_gz2YvscHv0mLngI3ygyv7yjo1GsWW5JEIFd5n3fDA2UpxA5m6ENC2zVMqSB7P3sopkudmXp8XT5fbW-2Vz_YLYN7Nw6tFGBfZ5fvIAv8w-XzceiT6VQ-EqqTeGRSEut9MSL6BLnMvkyhVIm0q9L2tUx8VInEaSQVUxR0HKkQjJSeiSQ0oqXcNCu2vgKmAto4AK6lTFynGWTVckiyyQpPJt48CPgu39sfK8zTukulib7G6U2HTCGgDE9MCM4GSr97GQ2_l18RuANRUkjO99AVEw_5Mw4SOwU2AKufJWS1l6Xwk2ED06oyo9HcEhIDi_pQRzB8a4rmH483xoiihK9PS6O_l7rNTykD-yCM8dwsFlv4xt44O82N7frt7mr3gNMluRb
  priority: 102
  providerName: IEEE
Title Resolvable Cluster Target Tracking Based on the DBSCAN Clustering Algorithm and Labeled RFS
URI https://ieeexplore.ieee.org/document/9380168
https://www.proquest.com/docview/2505709623
https://doaj.org/article/1d708150c28c4ff99c903b53cdb384c1
Volume 9
WOSCitedRecordID wos000633624700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQxIEd0GBMK2yTDxwJc-00to9tWLXDqBAb06QdLP-ESSVFXdvj_va956Sl0qRx4ZJD4iT284u_7zn29wj5yF1yleSxECK5orQQsypVqkJYLUorha5yHrLrCzmZqJsb_W0r1ReuCWvlgVvDnfaDBNQaMM-VL1PS2msm3ED44IQqfQ58mNRbwVQeg1W_0gPZyQz1mT4d1jW0CAJC3v8skLRnUvkXirJif5di5cm4nMFmvEdedyyRDtvavSEvYvOW7G5pB-6TW5x4n65w5xOtp0vUO6BXeVk3BfzxOANORwBRgc4aCiyPfhld1sPJuixeHk5_zuZ3i1-_qW0CvbAOICjQ7-PLd-TH-OyqPi-6TAmFL6VaFB54stRKD7yILnEuk2cpMJlQni5pV8XEmU4iSCHLmKLAv40KuAbzwA-lFQdkp5k18ZBQFwC_AkSNMXIYRJNVyQKJRKU7m3jwPcLXRjO-kxHHbBZTk8MJpk1raYOWNp2le-TT5qY_rYrG88VH2BuboiiBnU-AY5jOMcy_HKNH9rEvNw_RAsC4Uj1ytO5b032u9wZ5oIRgjov3_-PVH8grbE47U3NEdhbzZTwmL_1qcXc_P8meCsevD2cneb_hI1cd6SY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ88GtDFAb4gcdlS-20th_bQDVEqRAraBIPVvwLJpUUde3-fu5cNyCBkHiLEjuK89m-7872dwCvuI12KHkohIi2qBr0WZWqVCEaLapGCj1Mecg-T-Vspi4u9Ic9OO7OwoQQ0uazcEKXaS3fL92GQmWnWuB8OlQ34CZlzsqntbqICqWQ0AOZpYX6pT4d1TW2Ap1A3j8RRNQTkfxlfpJKf06r8sdcnAzM5P7_fdoDuJeJJBttkX8Ie6F9BHd_kxc8gC8Um19c0-EoVi82JInA5mnnN0MT5ShIzsZoxTxbtgyJIHs9Pq9Hs11ZejxafF2uLtffvrOm9WzaWLRSnn2cnB_Cp8mbeX1W5GQKhaukWhcOqbTUSg-cCDZyLqMroy9lJAW7qO0wRF7qKLwUsgoxCFqQVEhHSocUUjbiMey3yzY8AWY9mjiPjmUIHOfZ2KjYIM8kMbwmcu96wHf_2LisNE4JLxYmeRylNltgDAFjMjA9OO4q_dgKbfy7-JjA64qSSna6gaiYPOhM30vsFNgCrlwVo9ZOl8IOhPNWqMr1e3BASHYvySD24GjXFUwe0VeGqKJEf4-Lp3-v9RJun83fT8307ezdM7hDH7sN1RzB_nq1Cc_hlrteX16tXqRu-xNYruek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolvable+Cluster+Target+Tracking+Based+on+the+DBSCAN+Clustering+Algorithm+and+Labeled+RFS&rft.jtitle=IEEE+access&rft.au=Xue%2C+Xirui&rft.au=Huang%2C+Shucai&rft.au=Xie%2C+Jiahao&rft.au=Ma%2C+Jiashun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=43364&rft.epage=43377&rft_id=info:doi/10.1109%2FACCESS.2021.3066629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3066629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon