Comparison and Evaluation of Different MODIS Aerosol Optical Depth Products Over the Beijing-Tianjin-Hebei Region in China
Many aerosol retrieval algorithms based on the remote sensing technology have been developed and applied to produce aerosol optical depth (AOD) products for different satellite sensors. The dark target (DT) and deep blue (DB) algorithms are two main MODIS aerosol retrieval algorithms that are suitab...
Saved in:
| Published in: | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 10; no. 3; pp. 835 - 844 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many aerosol retrieval algorithms based on the remote sensing technology have been developed and applied to produce aerosol optical depth (AOD) products for different satellite sensors. The dark target (DT) and deep blue (DB) algorithms are two main MODIS aerosol retrieval algorithms that are suitable for dark or bright areas. The estimation of land surface reflectance (LSR) is necessary to improve the accuracy of AOD retrievals. Therefore, in this paper, a new procedure to improve LSR estimation using MODIS surface reflectance products is developed. A new high-resolution <;1000 m> aerosol retrieval algorithm with a priori LSR database support (HARLS) is proposed. The purpose of this paper is to evaluate the spatial adaptability of different MODIS AOD products produced by the above three algorithms. The Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, which features complex surface structures and serious air pollution, was chosen as the study area, and the different AOD products are validated using aerosol robotic network (AERONET) AOD ground measurements from four stations located in dark and bright areas. Compared with the DT retrievals (R ≈ 0.88 - 0.95), the C6 DB AOD retrievals yield a stronger correlation (R ≈ 0.94 - 0.97) with AERONET AOD and lower RMSE, MRE and MAE values, resulting in approximately 20%-30% less average overestimation. The C6 DT&DBAODresultsshowaretrievalquality (R ≈ 0.93 - 0.97) similar to that of DB, with approximately 50%-70% of the collections falling within the expected error (EE). Moreover, DT&DB is much better than DT, with more than approximately 10%-20% of the collections falling within the EE. However, HARLS achieves a high correlation (R ≈ 0.93 - 0.96) with the AERONET AODs, with low RMSE (≈ 0.118 - 0.128) and MAE (≈ 0.09 - 0.12) and small offsets (intercept 0.00 - 0.04). HARLS retrievals exhibited 7%-8% less uncertainty than the C6 DB retrievals, 37%-38% less uncertainty than the C6 DT&DB retrievals, and 39%-44% less uncertainty than the C5 and C6 DT retrievals. HARLS achieves greater accuracy and reliability in AOD retrieval, and itis less biased (RMB ≈ 0.90 - 1.10) and better overall than the routine MODIS aerosol products over the Jing-Jin-Ji region. |
|---|---|
| AbstractList | Many aerosol retrieval algorithms based on the remote sensing technology have been developed and applied to produce aerosol optical depth (AOD) products for different satellite sensors. The dark target (DT) and deep blue (DB) algorithms are two main MODIS aerosol retrieval algorithms that are suitable for dark or bright areas. The estimation of land surface reflectance (LSR) is necessary to improve the accuracy of AOD retrievals. Therefore, in this paper, a new procedure to improve LSR estimation using MODIS surface reflectance products is developed. A new high-resolution <;1000 m> aerosol retrieval algorithm with a priori LSR database support (HARLS) is proposed. The purpose of this paper is to evaluate the spatial adaptability of different MODIS AOD products produced by the above three algorithms. The Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, which features complex surface structures and serious air pollution, was chosen as the study area, and the different AOD products are validated using aerosol robotic network (AERONET) AOD ground measurements from four stations located in dark and bright areas. Compared with the DT retrievals (R ≈ 0.88 - 0.95), the C6 DB AOD retrievals yield a stronger correlation (R ≈ 0.94 - 0.97) with AERONET AOD and lower RMSE, MRE and MAE values, resulting in approximately 20%-30% less average overestimation. The C6 DT&DBAODresultsshowaretrievalquality (R ≈ 0.93 - 0.97) similar to that of DB, with approximately 50%-70% of the collections falling within the expected error (EE). Moreover, DT&DB is much better than DT, with more than approximately 10%-20% of the collections falling within the EE. However, HARLS achieves a high correlation (R ≈ 0.93 - 0.96) with the AERONET AODs, with low RMSE (≈ 0.118 - 0.128) and MAE (≈ 0.09 - 0.12) and small offsets (intercept 0.00 - 0.04). HARLS retrievals exhibited 7%-8% less uncertainty than the C6 DB retrievals, 37%-38% less uncertainty than the C6 DT&DB retrievals, and 39%-44% less uncertainty than the C5 and C6 DT retrievals. HARLS achieves greater accuracy and reliability in AOD retrieval, and itis less biased (RMB ≈ 0.90 - 1.10) and better overall than the routine MODIS aerosol products over the Jing-Jin-Ji region. |
| Author | Wei, Jing Sun, Lin |
| Author_xml | – sequence: 1 givenname: Jing surname: Wei fullname: Wei, Jing email: weijing_rs@163.com organization: Geomatics College, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Lin surname: Sun fullname: Sun, Lin email: sunlin6@126.com organization: Geomatics College, Shandong University of Science and Technology, Qingdao, China |
| BookMark | eNqFkc1u2zAQhIkiBeqkfYJcCPQsl7-SeHTttHGRwkXsnglKXNo0FFKl6ADN00eOghx66Wm5BGdmud8luggxAELXlMwpJerLj-1ucb-dM0LLOZNKlky8QzNGJS2o5PICzajiqqCCiA_ochiOhJSsUnyGnpbxoTfJDzFgEyy-eTTdyWQ_ttHhlXcOEoSMf25W6y1eQIpD7PCmz741HV5Bnw_4V4r21OYBbx4h4XwA_BX80Yd9sfMmjIfiFhrw-B72Z18f8PLgg_mI3jvTDfDptV6h399udsvb4m7zfb1c3BWtqOpctBVxANY0VkJtG-6MZJUlnFvbOGJAUcEUlxRKCY43UlWUWUtry3ndMqD8Cq0nXxvNUffJP5j0V0fj9ctFTHtt0vifDjSnlrjWlZV1SlhXN5I3XEJZslaZRrjR6_Pk1af45wRD1sd4SmEcXzNaCSGI5OdEPr1qx3UNCdxbKiX6DExPwPQZmH4FNqrUP6rW5xcUORnf_Ud7PWk9ALylVXLcxoj5GTtnp04 |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1016_j_atmosres_2019_03_040 crossref_primary_10_1007_s12517_020_05911_9 crossref_primary_10_1007_s13351_024_3133_y crossref_primary_10_3390_rs10010117 crossref_primary_10_1029_2018JD029435 crossref_primary_10_1016_j_atmosenv_2019_117057 crossref_primary_10_3390_atmos9030093 crossref_primary_10_1109_LGRS_2018_2827200 crossref_primary_10_1007_s41748_019_00120_1 crossref_primary_10_3390_rs10020197 crossref_primary_10_1016_j_atmosenv_2024_120721 crossref_primary_10_3390_rs11131558 crossref_primary_10_1016_j_atmosres_2025_108160 crossref_primary_10_1029_2019EA001041 crossref_primary_10_1016_j_envpol_2025_126194 crossref_primary_10_1016_j_scitotenv_2020_141671 crossref_primary_10_1073_pnas_1711462114 crossref_primary_10_1109_TGRS_2019_2892813 crossref_primary_10_1016_j_jastp_2017_08_010 crossref_primary_10_3390_atmos8090172 crossref_primary_10_5194_acp_20_3273_2020 crossref_primary_10_1016_j_atmosenv_2025_121026 crossref_primary_10_1109_TGRS_2022_3231699 crossref_primary_10_3390_su151310171 crossref_primary_10_5194_acp_19_7183_2019 crossref_primary_10_3390_rs12203425 crossref_primary_10_3390_atmos10080426 crossref_primary_10_1109_JSTARS_2017_2734331 crossref_primary_10_1016_j_atmosenv_2021_118784 crossref_primary_10_1109_TGRS_2019_2927432 crossref_primary_10_1016_j_atmosenv_2017_11_048 crossref_primary_10_3390_rs13142842 crossref_primary_10_3390_rs13183752 crossref_primary_10_1109_TGRS_2020_3048109 crossref_primary_10_1016_j_apr_2019_01_015 crossref_primary_10_1080_17538947_2024_2344580 crossref_primary_10_1029_2019EA000574 crossref_primary_10_3390_rs16020372 crossref_primary_10_1002_2017JD026922 crossref_primary_10_1016_j_atmosenv_2020_117768 crossref_primary_10_1016_j_atmosres_2022_106374 crossref_primary_10_14358_PERS_22_00122R2 crossref_primary_10_3390_atmos14111610 crossref_primary_10_1016_j_atmosenv_2019_03_001 crossref_primary_10_1016_j_rse_2023_113878 crossref_primary_10_3390_rs9050496 crossref_primary_10_1016_j_apr_2022_101339 crossref_primary_10_1016_j_atmosenv_2019_01_016 crossref_primary_10_1016_j_atmosenv_2018_12_004 crossref_primary_10_3390_atmos8080155 crossref_primary_10_1029_2017JD027795 |
| Cites_doi | 10.1080/01431161.2014.999171 10.1016/S1352-2310(97)00054-X 10.1016/j.rse.2010.02.015 10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 10.1109/36.581987 10.5194/amt-5-1761-2012 10.1029/1999JD900923 10.1364/AO.34.002765 10.1029/2010JD014601 10.5194/amt-6-2989-2013 10.1016/j.atmosenv.2005.05.052 10.1007/s11430-010-4134-5 10.1029/2001GL013205 10.1109/JSTARS.2015.2396491 10.1029/2007JD008479 10.1029/2006JD007811 10.1364/AO.38.007325 10.1001/jama.287.9.1132 10.1109/TGRS.2006.879540 10.1111/j.2153-3490.1964.tb00144.x 10.5194/amt-3-1255-2010 10.1002/2013JD020360 10.1002/2013JD020449 10.1002/jgrd.50712 10.5194/amt-6-1829-2013 10.1029/96JD03988 10.1029/2007JD008809 10.1029/JD093iD12p15955 10.1029/97JD01496 10.1016/j.atmosenv.2005.11.031 10.1109/TGRS.2004.824067 10.1109/JSTARS.2015.2481460 10.1038/nature01091 10.1016/j.envsci.2011.09.007 10.1007/BF02678280 10.1016/S1352-2310(00)00551-3 10.1289/ehp.0800335 10.1029/2001JD900133 10.1016/j.atmosenv.2011.08.017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2016.2595624 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 844 |
| ExternalDocumentID | oai_doaj_org_article_31d0fcf67df94df8b53b35e662c9ab4f 10_1109_JSTARS_2016_2595624 7559779 |
| Genre | orig-research |
| GeographicLocations | Beijing China China Hebei China |
| GeographicLocations_xml | – name: Hebei China – name: China – name: Beijing China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41171270 funderid: 10.13039/501100001809 – fundername: Outstanding Youth Foundation of Shandong Province grantid: JQ201211 – fundername: Graduate Innovation Foundation of Shandong University of Science and Technology grantid: YC150103 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c478t-c70feedabd5e8db3fa527d033ddbf0ae91429351e65ef3b59712dd18d338c2e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395876100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:34:00 EDT 2025 Fri Jul 25 19:01:27 EDT 2025 Tue Nov 18 22:23:52 EST 2025 Sat Nov 29 04:50:55 EST 2025 Wed Aug 27 02:51:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-c70feedabd5e8db3fa527d033ddbf0ae91429351e65ef3b59712dd18d338c2e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7559779 |
| PQID | 2174440531 |
| PQPubID | 75722 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2016_2595624 ieee_primary_7559779 proquest_journals_2174440531 crossref_citationtrail_10_1109_JSTARS_2016_2595624 doaj_primary_oai_doaj_org_article_31d0fcf67df94df8b53b35e662c9ab4f |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 liang (ref29) 2005 ref2 ref1 ref17 ref16 ref19 ref18 sun (ref20) 2016; 8 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref42 ref22 ref44 ref21 ref43 wang (ref39) 2012; 16 ref28 ref27 ref8 ref7 vermote (ref41) 2006 ref9 huete (ref36) 2011; 1 ref4 vermote (ref37) 2008 ref3 ref6 ref5 ref40 levy (ref38) 2009 |
| References_xml | – ident: ref40 doi: 10.1080/01431161.2014.999171 – ident: ref1 doi: 10.1016/S1352-2310(97)00054-X – ident: ref48 doi: 10.1016/j.rse.2010.02.015 – ident: ref12 doi: 10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2 – ident: ref30 doi: 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 – ident: ref26 doi: 10.1109/36.581987 – ident: ref16 doi: 10.5194/amt-5-1761-2012 – ident: ref43 doi: 10.1029/1999JD900923 – volume: 16 start-page: 596 year: 2012 ident: ref39 article-title: HJ-1 terrestrial aerosol data retrieval using deep blue algorithm publication-title: J Remote Sens – ident: ref31 doi: 10.1364/AO.34.002765 – ident: ref15 doi: 10.1029/2010JD014601 – ident: ref33 doi: 10.5194/amt-6-2989-2013 – ident: ref4 doi: 10.1016/j.atmosenv.2005.05.052 – ident: ref19 doi: 10.1007/s11430-010-4134-5 – ident: ref46 doi: 10.1029/2001GL013205 – volume: 1 start-page: 579 year: 2011 ident: ref36 article-title: MODIS vegetation indices publication-title: Land Remote Sensing and Global Environmental Change – ident: ref34 doi: 10.1109/JSTARS.2015.2396491 – ident: ref45 doi: 10.1029/2007JD008479 – year: 2008 ident: ref37 article-title: MOD09 user's Guide (J/OL) – volume: 8 start-page: 1 year: 2016 ident: ref20 article-title: Aerosol optical depth retrieval over bright areas using landsat 8 OLI images publication-title: Remote Sens – ident: ref21 doi: 10.1029/2006JD007811 – ident: ref27 doi: 10.1364/AO.38.007325 – year: 2009 ident: ref38 article-title: Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Collections 005 and 051: Revision 2; Feb. 2009 publication-title: MODIS Algorithm Theoretical Basis Document – ident: ref6 doi: 10.1001/jama.287.9.1132 – ident: ref23 doi: 10.1109/TGRS.2006.879540 – year: 2005 ident: ref29 publication-title: Quantitative Remote Sensing of Land Surfaces – ident: ref44 doi: 10.1111/j.2153-3490.1964.tb00144.x – ident: ref14 doi: 10.5194/amt-3-1255-2010 – year: 2006 ident: ref41 publication-title: Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV) 6S User Guide Version 3 – ident: ref18 doi: 10.1002/2013JD020360 – ident: ref47 doi: 10.1029/2007JD008479 – ident: ref17 doi: 10.1002/2013JD020449 – ident: ref24 doi: 10.1002/jgrd.50712 – ident: ref32 doi: 10.5194/amt-6-1829-2013 – ident: ref11 doi: 10.1029/96JD03988 – ident: ref13 doi: 10.1029/2007JD008809 – ident: ref25 doi: 10.1029/JD093iD12p15955 – ident: ref10 doi: 10.1029/97JD01496 – ident: ref7 doi: 10.1016/j.atmosenv.2005.11.031 – ident: ref22 doi: 10.1109/TGRS.2004.824067 – ident: ref35 doi: 10.1109/JSTARS.2015.2481460 – ident: ref3 doi: 10.1038/nature01091 – ident: ref9 doi: 10.1016/j.envsci.2011.09.007 – ident: ref28 doi: 10.1007/BF02678280 – ident: ref5 doi: 10.1016/S1352-2310(00)00551-3 – ident: ref8 doi: 10.1289/ehp.0800335 – ident: ref2 doi: 10.1029/2001JD900133 – ident: ref42 doi: 10.1016/j.atmosenv.2011.08.017 |
| SSID | ssj0062793 |
| Score | 2.3927433 |
| Snippet | Many aerosol retrieval algorithms based on the remote sensing technology have been developed and applied to produce aerosol optical depth (AOD) products for... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 835 |
| SubjectTerms | Accuracy Adaptability Aerosol optical depth (AOD) Aerosol Robotic Network Aerosols Air pollution Algorithms Beijing-Tianjin-Hebei Collections Correlation dark target (DT) deep blue (DB) Evaluation Falling high-resolution aerosol retrieval algorithm with a prior LSR database support (HARLS) Land surface Landsat satellites Meteorological satellites moderate resolution imaging spectroradiometer (MODIS) MODIS Offsets Optical analysis Optical surface waves Products Reflectance Remote sensing Retrieval Satellites Sea surface Temperature Uncertainty |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kVPBFrFVcrWUefHTs3CfzuO22VtBuaav0bcjc6ErJLt0o6K93ZjIbLIK--BbCJBPO-XIuyeH7AHiDQ5TUB4LaqAXibVSo5coh56iIMWKJyx_TLx_V2Vlzfa3Pf5P6yjNhAz3wYLgDRjyOLkrlo-Y-NlYwy0SQkjrdWh5z9MVKb5qpIQZLmmBXOYYI1gcJ5NOLyzzIJd-lej_lfH4vDxW6_qqv8kdQLpnm5Al4XEtEOB0ebQc8CN1T8PB9keD9sQt-Ho3SgbDtPDwe-brhMsJZFTzp4af57MMlnIa0_fIWzlflozWchVV_A88Hntc1nCckw1QDwsOw-JqyGLpKcEkH6DSZfQEvQh5XhosOFp3tZ-DzyfHV0SmqCgrIcdX0yCkcUxJsrReh8ZbFVlDlMWPe24jboElKR0yQIEWIzKbmglDvSeNT4-poIOw52OqWXXgBoNaceItjI0kusWwjmU_Fk49KOOKYnwC6sadxlV48q1zcmtJmYG0GJ5jsBFOdMAFvx4tWA7vG35cfZkeNSzM1djmRAGMqYMy_ADMBu9nN401UoeDTE7C3cbupr_Ha5H6N8xynXv6PrV-BRzRXBWWEbQ9s9Xffwmuw7b73i_XdfkHwL51Z9RM priority: 102 providerName: Directory of Open Access Journals |
| Title | Comparison and Evaluation of Different MODIS Aerosol Optical Depth Products Over the Beijing-Tianjin-Hebei Region in China |
| URI | https://ieeexplore.ieee.org/document/7559779 https://www.proquest.com/docview/2174440531 https://doaj.org/article/31d0fcf67df94df8b53b35e662c9ab4f |
| Volume | 10 |
| WOSCitedRecordID | wos000395876100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dTxwhFCVq2qQv9sM2XWsND30UhWEGhsfV9aNJ6xq1jW9kgEu6xsxu3NGk_fUFhp2kaWPSNzKBCTPnwj3A5VyEPlHwonDASONVRcrGS9KU0hJri8p7TwVNJ6bfv8jz8_rmRl2sob3hLgwApOAz2I_FdJbv5vYhbpUdyKSWptbRupSiv6u1mnVFIZPAbuAjikTJmKwwxKg6CCY-vryKYVxiP7D94PHLP7xQEuvP2VX-mpKTnzl5-X89fIU2M5_E494AXqM1aN-g56cpX-_PLfTraMgziJvW4eNB3BvPPZ7k7Cgd_jqdfL7CYwi9nd_h6SLtcOMJLLof-KIXhV3iaTB7HAgjPoTZbXB55DrYViiQs4DRDF9CjG3GsxanpNxv0beT4-ujM5LTLRBbyrojVlIfPGZjXAW1M9w3VSEd5dw542kDigXfxSsGogLPTfhQVjjHahdWubYAxt-hjXbewnuElSqZM9TXgkU-ZmrBXWBazsvKMsvdCBWr369t1iKPKTHudFqTUKV7zHTETGfMRmhvaLTopTiern4YcR2qRh3t9CAApvOw1Jw56q0X0nlVOl-bihtegRCFVY0p_QhtRZCHl2R8R2hnZSU6j_mljou7soyT2va_W31AL4pIClIE2w7a6O4f4CN6Zh-72fJ-N-0G7Caj_g3RNvPc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGAMELtw1RGOAHHufNd8eP3brRia6dtoL2FiW-iKIprdYMCX49tuNGQiAk3qzIjpx8xz7H9vH3AfABOy-pdQRVXgvEK69QxZVBxlDhvccSpxPTLxM1nRbX1_piC-z3d2Gccyn5zB3EYjrLt0tzF7fKDlViS9P3wH3BOcXdba3NvCupShS7ISLRKJLGZI4hgvVhMPLh5VVM5JIHId4PPp__5ocSXX_WV_ljUk6e5vTp__XxGXiSI0o47EzgOdhyzQvw8GNS7P2xA34e90qDsGosPOnpveHSw1HWR2nh-Wx0dgWHLvR2eQNnq7THDUdu1X6FFx0t7BrOguHDEDLCI7f4FpwemgfrCgU0Digt4KWL2c1w0cAky70LPp-ezI_HKAsuIMNV0SKjsA8-s6qtcIWtma8EVRYzZm3tceU0Cd6LCeKkcJ7V4UMJtZYUNqxzDXWEvQTbzbJxrwDUmhNbY19IEiOyupDMhljLeiUMMcwOAN38_tJkNvIoinFTplUJ1mWHWRkxKzNmA7DfN1p1ZBz_rn4Uce2rRibt9CAAVuaBWTJisTdeKus1t76oBauZcFJSo6ua-wHYiSD3L8n4DsDexkrKPOrXZVzecR6ntdd_b_UePBrPzyfl5Gz66Q14TGOIkPLZ9sB2e3vn3oIH5nu7WN--S6b9C-Gb9i4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+and+Evaluation+of+Different+MODIS+Aerosol+Optical+Depth+Products+Over+the+Beijing-Tianjin-Hebei+Region+in+China&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wei%2C+Jing&rft.au=Sun%2C+Lin&rft.date=2017-03-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=10&rft.issue=3&rft.spage=835&rft.epage=844&rft_id=info:doi/10.1109%2FJSTARS.2016.2595624&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2016_2595624 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |