Analysis of stochastic dual dynamic programming method

In this paper we discuss statistical properties and convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 209; H. 1; S. 63 - 72
1. Verfasser: Shapiro, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.02.2011
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we discuss statistical properties and convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random sample from the original (true) distribution is generated and consequently the SDDP algorithm is applied to the constructed Sample Average Approximation (SAA) problem. Then we proceed to analysis of the SDDP solutions of the SAA problem and their relations to solutions of the “true” problem. Finally we discuss an extension of the SDDP method to a risk averse formulation of multistage stochastic programs. We argue that the computational complexity of the corresponding SDDP algorithm is almost the same as in the risk neutral case.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.08.007