Performance Analysis of Resampling Algorithms of Parallel/Distributed Particle Filters

Particle filters have been widely used in various fields due to their advantages in dealing with non-linear and/or non-Gaussian systems. A large number of particles are needed to guarantee the convergence of particle filters for the state estimation, especially for large-scale complex systems. There...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 9; S. 4711 - 4725
Hauptverfasser: Zhang, Xudong, Zhao, Liang, Zhong, Wei, Gu, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Particle filters have been widely used in various fields due to their advantages in dealing with non-linear and/or non-Gaussian systems. A large number of particles are needed to guarantee the convergence of particle filters for the state estimation, especially for large-scale complex systems. Therefore, parallel/distributed particle filters were adopted to improve the performance, in which different paradigms of resampling were proposed, including the centralized resampling, the decentralized resampling, and the hybrid resampling. To ease their adoptions, we analyze time consumptions and speedup factors of parallel/distributed particle filters with various resampling algorithms, state sizes, system complexities, numbers of processing units, and model dimensions in this study. The experimental results indicate that the decentralized resampling achieves the highest speedup factors due to the local transfer of particles, the centralized resampling always has the lowest speedup factors because of the global transfer of particles, and the hybrid resampling attains the speedup factors between. Moreover, we define the complexity-state ratio, as the ratio between the system complexity and the system state size to study how it impacts the speedup factor. The experiments show that the higher complexity-state ratio results in the increase of the speedup factors. This is one of the earliest attempts to analyze and compare the performance of parallel/distributed particle filters with different resampling algorithms. The analysis can provide potential solutions for further performance improvements and guide the appropriate selection of the resampling algorithm for parallel/distributed particle filters.
AbstractList Particle filters have been widely used in various fields due to their advantages in dealing with non-linear and/or non-Gaussian systems. A large number of particles are needed to guarantee the convergence of particle filters for the state estimation, especially for large-scale complex systems. Therefore, parallel/distributed particle filters were adopted to improve the performance, in which different paradigms of resampling were proposed, including the centralized resampling, the decentralized resampling, and the hybrid resampling. To ease their adoptions, we analyze time consumptions and speedup factors of parallel/distributed particle filters with various resampling algorithms, state sizes, system complexities, numbers of processing units, and model dimensions in this study. The experimental results indicate that the decentralized resampling achieves the highest speedup factors due to the local transfer of particles, the centralized resampling always has the lowest speedup factors because of the global transfer of particles, and the hybrid resampling attains the speedup factors between. Moreover, we define the complexity-state ratio, as the ratio between the system complexity and the system state size to study how it impacts the speedup factor. The experiments show that the higher complexity-state ratio results in the increase of the speedup factors. This is one of the earliest attempts to analyze and compare the performance of parallel/distributed particle filters with different resampling algorithms. The analysis can provide potential solutions for further performance improvements and guide the appropriate selection of the resampling algorithm for parallel/distributed particle filters.
Author Zhong, Wei
Gu, Feng
Zhang, Xudong
Zhao, Liang
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-0078-8067
  surname: Zhang
  fullname: Zhang, Xudong
  organization: Department of Computer Science, Graduate Center of The City University of New York, New York, NY, USA
– sequence: 2
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: Department of Computer Science, Lehman College, Bronx, NY, USA
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-6199-1376
  surname: Zhong
  fullname: Zhong, Wei
  organization: Division of Math and Computer Science, University of South Carolina Upstate, Spartanburg, SC, USA
– sequence: 4
  givenname: Feng
  surname: Gu
  fullname: Gu, Feng
  email: feng.gu@csi.cuny.edu
  organization: Department of Computer Science, College of Staten Island, Staten Island, NY, USA
BookMark eNqFUU1rGzEQFSWFpml-QS4LPdvR50o6GjdpA4GGpO1VaLUjV0ZeuZJ8yL-vnDWh9BJdRryZ994w7yM6m9IECF0RvCQE6-vVen3z9LSkmOIlw1xRTt6hc0p6vWCC9Wf__D-gy1K2uD3VICHP0a8HyD7lnZ0cdKvJxucSSpd89wjF7vYxTJtuFTcph_p799J4sNnGCPH6Syg1h-FQYTyCNbgI3W2IFXL5hN57GwtcnuoF-nl782P9bXH__evdenW_cFyqurBagZZDL6SWVInBCjuCBs8JoYQp70ZJJKYwgsPKwzgILzjmVsMAGrueXaC7WXdMdmv2OexsfjbJBvMCpLwxp83MaCnRIAlzmHIqhW6GjAPxgighPDStz7PWPqc_ByjVbNMht5MUQ7mUtDlL1abYPOVyKiWDf3Ul2BzzMHMe5piHOeXRWPo_lgvV1pCmmm2Ib3CvZm4AgFc3zdqNRM_-AiEnmkE
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_measurement_2022_110836
crossref_primary_10_1177_01423312241267042
crossref_primary_10_1093_biomet_asac015
crossref_primary_10_1109_ACCESS_2022_3209205
Cites_doi 10.23919/SpringSim.2019.8732902
10.1109/78.978374
10.1093/biomet/89.3.539
10.1109/SPAWC.2005.1506277
10.1016/j.sigpro.2015.11.015
10.1111/1467-9868.00246
10.1109/TSP.2005.849185
10.1002/wcm.660
10.1109/ACC.2001.946220
10.1049/ip-f-2.1993.0015
10.1023/A:1008935410038
10.1109/CDC.2010.5717025
10.1109/78.978396
10.1007/BF00317988
10.1115/1.3662552
10.1109/MAES.2010.5546308
10.1109/LGRS.2015.2438229
10.1109/ICCV.2009.5459278
10.1109/5326.971661
10.1109/TAC.2009.2019800
10.1016/0167-2789(87)90058-3
10.1109/CVPRW.2008.4563148
10.1103/PhysRevLett.74.5028
10.1016/j.apacoust.2019.04.018
10.1109/TPDS.2015.2405912
10.1145/3213187.3213192
10.1109/CDC.2005.1583486
10.1109/ECTICon.2018.8620047
10.1007/978-3-540-24673-2_23
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3048241
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 4725
ExternalDocumentID oai_doaj_org_article_da219e713c024275928534e1f51855fe
10_1109_ACCESS_2020_3048241
9311256
Genre orig-research
GrantInformation_xml – fundername: The Professional Staff Congress and The City University of New York
  funderid: 10.13039/100006462
– fundername: a PSC-CUNY Award, jointly
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-a98e97b65797285ba5ade9ef4112138fcd71702edec08fedb5f5404a9ebe90c63
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608244400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:37:54 EDT 2025
Mon Jun 30 06:33:48 EDT 2025
Sat Nov 29 06:11:50 EST 2025
Tue Nov 18 21:22:39 EST 2025
Wed Aug 27 06:01:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-a98e97b65797285ba5ade9ef4112138fcd71702edec08fedb5f5404a9ebe90c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6199-1376
0000-0002-0078-8067
OpenAccessLink https://ieeexplore.ieee.org/document/9311256
PQID 2477254078
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_9311256
crossref_citationtrail_10_1109_ACCESS_2020_3048241
doaj_primary_oai_doaj_org_article_da219e713c024275928534e1f51855fe
crossref_primary_10_1109_ACCESS_2020_3048241
proquest_journals_2477254078
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref14
ref31
ref30
bokareva (ref17) 2006
ref33
helmke (ref10) 2012
ref11
ref32
ref2
ref1
ref16
ref19
ref18
crisan (ref25) 2000; 1
ref24
del moral (ref12) 1996; 2
ref26
ref20
ref22
zhang (ref23) 2017
sheng (ref21) 2005
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.23919/SpringSim.2019.8732902
– ident: ref4
  doi: 10.1109/78.978374
– ident: ref27
  doi: 10.1093/biomet/89.3.539
– ident: ref16
  doi: 10.1109/SPAWC.2005.1506277
– volume: 1
  year: 2000
  ident: ref25
  article-title: Convergence of sequential monte carlo methods
– ident: ref26
  doi: 10.1016/j.sigpro.2015.11.015
– volume: 2
  start-page: 555
  year: 1996
  ident: ref12
  article-title: Non-linear filtering: Interacting particle resolution
  publication-title: Markov Processes and Related Fields
– start-page: 10
  year: 2017
  ident: ref23
  article-title: Adaptive particle routing in parallel/distributed particle filters
  publication-title: Proc 25th High Perform Comput Symp
– ident: ref5
  doi: 10.1111/1467-9868.00246
– ident: ref20
  doi: 10.1109/TSP.2005.849185
– ident: ref34
  doi: 10.1002/wcm.660
– ident: ref28
  doi: 10.1109/ACC.2001.946220
– ident: ref11
  doi: 10.1049/ip-f-2.1993.0015
– ident: ref7
  doi: 10.1023/A:1008935410038
– ident: ref35
  doi: 10.1109/CDC.2010.5717025
– ident: ref9
  doi: 10.1109/78.978396
– year: 2012
  ident: ref10
  publication-title: Optimization and Dynamical Systems
– ident: ref13
  doi: 10.1007/BF00317988
– ident: ref1
  doi: 10.1115/1.3662552
– ident: ref8
  doi: 10.1109/MAES.2010.5546308
– ident: ref31
  doi: 10.1109/LGRS.2015.2438229
– ident: ref18
  doi: 10.1109/ICCV.2009.5459278
– start-page: 24
  year: 2005
  ident: ref21
  article-title: Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network
  publication-title: Proc 4th Int Symp Inf Process Sensor Netw
– ident: ref6
  doi: 10.1109/5326.971661
– ident: ref2
  doi: 10.1109/TAC.2009.2019800
– ident: ref14
  doi: 10.1016/0167-2789(87)90058-3
– ident: ref33
  doi: 10.1109/CVPRW.2008.4563148
– ident: ref15
  doi: 10.1103/PhysRevLett.74.5028
– ident: ref32
  doi: 10.1016/j.apacoust.2019.04.018
– ident: ref19
  doi: 10.1109/TPDS.2015.2405912
– ident: ref22
  doi: 10.1145/3213187.3213192
– start-page: 1
  year: 2006
  ident: ref17
  article-title: Wireless sensor networks for battlefield surveillance
  publication-title: Proc Process Land Warfare Conf
– ident: ref3
  doi: 10.1109/CDC.2005.1583486
– ident: ref30
  doi: 10.1109/ECTICon.2018.8620047
– ident: ref29
  doi: 10.1007/978-3-540-24673-2_23
SSID ssj0000816957
Score 2.2456732
Snippet Particle filters have been widely used in various fields due to their advantages in dealing with non-linear and/or non-Gaussian systems. A large number of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4711
SubjectTerms Algorithms
Complex systems
Complexity
Complexity theory
Computer science
Kalman filters
Monte Carlo methods
Parallel processing
Parallel/distributed particle filters
performance analysis
Performance enhancement
Resampling
Signal processing algorithms
State estimation
state size
system complexity
Target tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwELUQ4sAe0PKxoiygHDgSNXHtOHPsdqk4oQoB4mb5E5BKi9rC72fGSUvRSsuFq-PEyZuxx88ZvWHsrIygou1B7iQ3ubDG5VA4kUO0ykVuvXBNsQl1dVXf38NordQX5YQ18sANcF1vcE4FpFKOoomSwDHAiFBGiZFGxkCrb6FgjUylNbguK5CqlRkqC-j2BwP8IiSEHHkqui0X5adQlBT72xIr_6zLKdgMf7KddpeY9Zu322UbYbLHfqxpB-6zu9FHyn-2lBbJpjG7DnNDaeKTh6w_fpgi-X98ThdGZkaFU8bdvySWS3WugqfGNEY2fKL_5vMDdju8uBlc5m2RhNwJVS9yA3UAZSupQCE01kjjA4QoShJrq6PzSNgKHnxwRR2DtzLiJk0YQOuhVareL7Y5mU7CIct6UHlbWi9VwH2Kq6znVioebIzgYiw7jC_x0q5VEKdCFmOdmEQBugFZE8i6BbnDzlc3vTQCGv_v_ocMsepK6tepAX1Ct4jor3yiw_bJjKuHQA_BkFWHHS_NqtuZOtdcIL8gFcL66DuG_s22OWW9pEOaY7a5mL2GE7bl3hZP89lpctJ3-M3oKQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance Analysis of Resampling Algorithms of Parallel/Distributed Particle Filters
URI https://ieeexplore.ieee.org/document/9311256
https://www.proquest.com/docview/2477254078
https://doaj.org/article/da219e713c024275928534e1f51855fe
Volume 9
WOSCitedRecordID wos000608244400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH_aJg5wYLCBKIwpB44LTRw7jo-lrOLCVCFAu1n-eB6Vuha1HUf-dvwcN4BASFyiyLGT2D9_vOeP3w_gVR2UDLZRpRPMlNwaV6rK8VIFK11g1nPXi03Iq6vu-lrND-BiOAuDiGnzGb6m27SW79fujqbKxqqJ1oFoD-FQyrY_qzXMp5CAhBIyEwvVlRpPptOYh-gCsuiZxorKeP3b4JM4-rOoyh89cRpeZsf_92OP4GE2I4tJj_tjOMDVCRzvJRqK3GJP4MEvfIOn8Hn-85hAsacjKdah-IBbQ1vLVzfFZHmz3ix2X27Tg7nZkNjKcvyWCHZJGws9BabPFrMFrbVvn8Cn2eXH6bsyCyuUjstuVxrVoZK2FVJJ1glrhPGoMPCaCN664Hx08iqGHl3VBfRWhGjYcaMi4hHJtnkKR6v1Cp9B0ajW29p6ITHaNq61nlkhGdoQlAuhHgHbl7h2mXWcxC-WOnkfldI9TJpg0hmmEVwMib72pBv_jv6GoByiEmN2CogY6Vwi2pvYN2N0yR1ZJVKomPGGYx1EtFhEwBGcEq7DSzKkIzjbVwydW_dWMx59EmIu7J7_PdULuM9o70uaqjmDo93mDl_CPfdtt9huzpPfH6_vv1-ep0r8Ayzq7wA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0aA4ntgcHGRGFAHnhcaOLYcfxYCtUQo6rQQHuzYvt6VOraqe34_fN13QACIfEWOXZi-_jjXn-cA_Cm9Ep6U6ncCtbm3LQ2V4XlufJGWs-M43YjNiHH4-byUk124LS7C4OI8fAZvqXHuJfvFvaWlsr6qgrWgajvwX1Szkq3tboVFZKQUEImaqGyUP3BcBhKEZxAFnzT0FQZL3-bfiJLf5JV-WMsjhPM6OD_svYYHiVDMhtskH8COzg_hIOtSEOW-uwh7P_COHgE3yY_LwpkW0KSbOGzL7hq6XD5_CobzK4Wy-n6-3V8MWmXJLcy678nil1Sx0JHgfG32WhKu-2rp_B19OFieJYnaYXcctms81Y1qKSphVSSNcK0onWo0POSKN4ab11w8wqGDm3ReHRG-GDa8VYFzAOWdXUMu_PFHJ9BVqnamdI4ITFYN7Y2jhkhGRrvlfW-7AHb1ri2iXec5C9mOvofhdIbmDTBpBNMPTjtEt1saDf-Hf0dQdlFJc7sGBAw0qlGtGvD6IzBKbdkl0ihQsErjqUXwWYRHntwRLh2H0mQ9uBk2zB06t8rzXjwSoi7sHn-91Sv4eHZxedzff5x_OkF7DE6CRMXbk5gd728xZfwwP5YT1fLV7ER3wF_2vAj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+Resampling+Algorithms+of+Parallel%2FDistributed+Particle+Filters&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Xudong&rft.au=Zhao%2C+Liang&rft.au=Zhong%2C+Wei&rft.au=Gu%2C+Feng&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=4711&rft.epage=4725&rft_id=info:doi/10.1109%2FACCESS.2020.3048241&rft.externalDocID=9311256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon