Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions...
Uložené v:
| Vydané v: | Nature materials Ročník 20; číslo 10; s. 1378 - 1384 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.10.2021
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m
–1
K
–1
at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.
SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnO
x
impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K. |
|---|---|
| AbstractList | Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnOx impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K. Abstract Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1 K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1 K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1 K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnO x impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K. |
| Author | Im, Jino Luo, Zhong-Zhen Ge, Bangzhi Lee, Ji Yeong Zhou, Chongjian Kanatzidis, Mercouri G. Lee, Yong Kyu Cojocaru-Mirédin, Oana Cho, Sung-Pyo Lee, Hyungseok Chang, Hyunju Chung, In Wuttig, Matthias Byun, Sejin Chen, Xinqi Dravid, Vinayak P. Yu, Yuan Lee, Yea-Lee |
| Author_xml | – sequence: 1 givenname: Chongjian orcidid: 0000-0002-2245-3057 surname: Zhou fullname: Zhou, Chongjian organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University – sequence: 2 givenname: Yong Kyu surname: Lee fullname: Lee, Yong Kyu organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University – sequence: 3 givenname: Yuan orcidid: 0000-0002-3148-6600 surname: Yu fullname: Yu, Yuan organization: Institute of Physics (IA), RWTH Aachen University – sequence: 4 givenname: Sejin surname: Byun fullname: Byun, Sejin organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS) – sequence: 5 givenname: Zhong-Zhen surname: Luo fullname: Luo, Zhong-Zhen organization: Department of Chemistry, Northwestern University – sequence: 6 givenname: Hyungseok orcidid: 0000-0001-6432-5670 surname: Lee fullname: Lee, Hyungseok organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS) – sequence: 7 givenname: Bangzhi surname: Ge fullname: Ge, Bangzhi organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University – sequence: 8 givenname: Yea-Lee surname: Lee fullname: Lee, Yea-Lee organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology – sequence: 9 givenname: Xinqi surname: Chen fullname: Chen, Xinqi organization: Department of Mechanical Engineering, Northwestern University – sequence: 10 givenname: Ji Yeong surname: Lee fullname: Lee, Ji Yeong organization: Advanced Analysis Center, Korea Institute of Science and Technology – sequence: 11 givenname: Oana orcidid: 0000-0001-6543-203X surname: Cojocaru-Mirédin fullname: Cojocaru-Mirédin, Oana organization: Institute of Physics (IA), RWTH Aachen University – sequence: 12 givenname: Hyunju orcidid: 0000-0001-7241-5342 surname: Chang fullname: Chang, Hyunju organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology – sequence: 13 givenname: Jino orcidid: 0000-0001-6594-8773 surname: Im fullname: Im, Jino organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology – sequence: 14 givenname: Sung-Pyo surname: Cho fullname: Cho, Sung-Pyo organization: National Center for Inter-University Research Facilities, Seoul National University – sequence: 15 givenname: Matthias orcidid: 0000-0003-1498-1025 surname: Wuttig fullname: Wuttig, Matthias organization: Institute of Physics (IA), RWTH Aachen University – sequence: 16 givenname: Vinayak P. orcidid: 0000-0002-6007-3063 surname: Dravid fullname: Dravid, Vinayak P. organization: Department of Materials Science and Engineering, Northwestern University – sequence: 17 givenname: Mercouri G. surname: Kanatzidis fullname: Kanatzidis, Mercouri G. email: m-kanatzidis@northwestern.edu organization: Department of Chemistry, Northwestern University, Department of Materials Science and Engineering, Northwestern University – sequence: 18 givenname: In orcidid: 0000-0001-6274-3369 surname: Chung fullname: Chung, In email: inchung@snu.ac.kr organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS) |
| BackLink | https://www.osti.gov/biblio/1811595$$D View this record in Osti.gov |
| BookMark | eNp9kU1rFTEYhYNU7If-AVdBN25G852ZjSDFqlBQaFduQiZ9Z25KJqlJbuX-e3M7F8UuukogzznveXNO0VFMERB6Tcl7Snj_oQgqFe8Iox2hRIlOPUMnVGjVCaXI0eFOKWPH6LSUW9JIKdULdMwFb1omTtDPHynsXN6VakPwEfBVvAL829cNtrhuIC8JAriavcOTn7cZcJrwAtlXPGewFXLDbNyzuPg4B8AHu5fo-WRDgVeH8wxdX3y-Pv_aXX7_8u3802XnhO5rp0ciR5DMQj9p7gannZyIcgNnWk6KKu6EGifO3EhlW8YScuNGNvHBjSMb-Rn6uNrebccFbhzEmm0wd9kvNu9Mst78_xL9xszp3vRCcTaIZvBmNUilelOcr-A2LsXY1ja0p1QOskHvDlNy-rWFUs3ii4MQbIS0LYZJqaUkWtOGvn2E3qZtju0LGqUVpT1jfaPYSrmcSskw_U1MidnXa9Z6TSvNPNRrVBP1j0Qtra0-7Tfz4WkpX6WlzYkz5H-pnlD9AXFeuys |
| CitedBy_id | crossref_primary_10_1039_D5RA00856E crossref_primary_10_1016_j_device_2025_100752 crossref_primary_10_1016_j_mtphys_2023_100967 crossref_primary_10_1021_jacs_4c04453 crossref_primary_10_1038_s41598_021_98562_z crossref_primary_10_1002_anie_202212885 crossref_primary_10_1002_adfm_202214163 crossref_primary_10_1016_j_jallcom_2024_175502 crossref_primary_10_1016_j_ssc_2022_114767 crossref_primary_10_3390_nano13132011 crossref_primary_10_1038_s41524_025_01769_1 crossref_primary_10_1002_ange_202408908 crossref_primary_10_1007_s11665_025_10706_8 crossref_primary_10_1002_aenm_202403194 crossref_primary_10_1002_adfm_202516749 crossref_primary_10_1007_s10853_024_09984_9 crossref_primary_10_1063_5_0242991 crossref_primary_10_1016_j_rser_2025_115946 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123332 crossref_primary_10_1021_acs_chemrev_5c00060 crossref_primary_10_1039_D1MH01601F crossref_primary_10_1051_bioconf_202412925035 crossref_primary_10_1088_1361_6528_ac4665 crossref_primary_10_1016_j_cej_2025_159682 crossref_primary_10_1002_cnma_202200396 crossref_primary_10_1002_smll_202402651 crossref_primary_10_1016_j_jpowsour_2024_234647 crossref_primary_10_1016_j_vacuum_2024_113712 crossref_primary_10_1016_j_matchemphys_2025_130571 crossref_primary_10_1126_science_adi2174 crossref_primary_10_1063_5_0242987 crossref_primary_10_1002_adfm_202505741 crossref_primary_10_1016_j_actamat_2025_121416 crossref_primary_10_1016_j_mtphys_2023_100986 crossref_primary_10_1002_aelm_202300170 crossref_primary_10_1007_s10853_025_10949_9 crossref_primary_10_1016_j_cej_2024_151405 crossref_primary_10_1002_adma_202203725 crossref_primary_10_1002_ejic_202200338 crossref_primary_10_1103_PhysRevX_12_041011 crossref_primary_10_1088_2632_959X_ada6e7 crossref_primary_10_1016_j_jallcom_2025_180394 crossref_primary_10_1063_5_0159455 crossref_primary_10_1002_adfm_202505719 crossref_primary_10_1126_science_abn8997 crossref_primary_10_1063_5_0241645 crossref_primary_10_1039_D3EE01033C crossref_primary_10_1007_s10854_022_09007_w crossref_primary_10_1007_s12598_024_02880_w crossref_primary_10_31613_ceramist_2025_00192 crossref_primary_10_1103_PhysRevB_105_205201 crossref_primary_10_3390_solids3010011 crossref_primary_10_1038_s41467_023_36415_1 crossref_primary_10_1002_aenm_202404251 crossref_primary_10_1016_j_mtphys_2022_100889 crossref_primary_10_1016_j_mseb_2023_117148 crossref_primary_10_1002_adma_202110518 crossref_primary_10_1021_jacs_4c09943 crossref_primary_10_3390_ma16020660 crossref_primary_10_1016_j_matchemphys_2022_126669 crossref_primary_10_1016_j_mseb_2022_115912 crossref_primary_10_1016_j_joule_2024_04_012 crossref_primary_10_1063_5_0187855 crossref_primary_10_1103_PhysRevApplied_21_014002 crossref_primary_10_1016_j_joule_2023_10_008 crossref_primary_10_1103_PhysRevLett_131_036101 crossref_primary_10_1002_bkcs_12821 crossref_primary_10_1039_D5TA03832D crossref_primary_10_1007_s10853_024_09886_w crossref_primary_10_1063_5_0172354 crossref_primary_10_3390_electronicmat3010001 crossref_primary_10_1021_acsaenm_5c00559 crossref_primary_10_1007_s12034_024_03373_3 crossref_primary_10_1038_s41598_022_17750_7 crossref_primary_10_1063_5_0090473 crossref_primary_10_1007_s42247_024_00873_0 crossref_primary_10_1002_anie_202408908 crossref_primary_10_1016_j_tsep_2024_102835 crossref_primary_10_1007_s12209_023_00354_1 crossref_primary_10_1021_jacs_3c12242 crossref_primary_10_1016_j_jallcom_2022_167690 crossref_primary_10_1016_j_matt_2023_10_022 crossref_primary_10_3390_molecules28155894 crossref_primary_10_1016_j_nanoen_2024_109651 crossref_primary_10_3390_nano13192730 crossref_primary_10_1002_sstr_202400136 crossref_primary_10_1016_j_mtphys_2022_100656 crossref_primary_10_1007_s11814_025_00540_y crossref_primary_10_1016_j_jallcom_2022_166251 crossref_primary_10_1016_j_jallcom_2022_166252 crossref_primary_10_1016_j_jeurceramsoc_2024_02_025 crossref_primary_10_1016_j_actamat_2023_118754 crossref_primary_10_1002_anie_202213649 crossref_primary_10_1002_ece2_89 crossref_primary_10_1007_s11664_021_09400_x crossref_primary_10_1360_TB_2024_0796 crossref_primary_10_1016_j_ccr_2022_214692 crossref_primary_10_1080_10408436_2022_2053499 crossref_primary_10_1360_TB_2024_0793 crossref_primary_10_1016_j_mattod_2023_04_021 crossref_primary_10_1126_science_adg7196 crossref_primary_10_1002_slct_202402820 crossref_primary_10_1016_j_jallcom_2025_180535 crossref_primary_10_1007_s10854_025_15549_6 crossref_primary_10_1021_acsaem_5c00321 crossref_primary_10_1088_2515_7655_acb5e6 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063 crossref_primary_10_1002_apxr_202300005 crossref_primary_10_1016_j_jssc_2022_123777 crossref_primary_10_1016_j_scib_2022_04_007 crossref_primary_10_1002_adfm_202411054 crossref_primary_10_54227_mlab_20240008 crossref_primary_10_1021_jacs_5c07547 crossref_primary_10_1002_ange_202213649 crossref_primary_10_3390_ma17081712 crossref_primary_10_1016_j_mtener_2024_101700 crossref_primary_10_1016_j_applthermaleng_2021_117793 crossref_primary_10_1016_j_cej_2025_164510 crossref_primary_10_1016_j_ceramint_2025_02_361 crossref_primary_10_1016_j_mtcomm_2022_104789 crossref_primary_10_3390_ma18184228 crossref_primary_10_1016_j_jpowsour_2023_233583 crossref_primary_10_1021_jacs_4c16394 crossref_primary_10_1016_j_enconman_2023_117954 crossref_primary_10_1088_1361_648X_ad1290 crossref_primary_10_1016_j_actamat_2022_117743 crossref_primary_10_1016_j_rser_2024_114719 crossref_primary_10_3390_nano13243165 crossref_primary_10_54227_mlab_20240012 crossref_primary_10_1021_jacs_3c09643 crossref_primary_10_1016_j_actamat_2024_120363 crossref_primary_10_1016_j_mtelec_2025_100169 crossref_primary_10_1016_j_cej_2025_164845 crossref_primary_10_1021_jacs_1c12507 crossref_primary_10_1088_2516_1075_ac78b3 crossref_primary_10_1038_s41427_022_00393_5 crossref_primary_10_3390_mi12121463 crossref_primary_10_1007_s40843_021_1945_1 crossref_primary_10_1038_s41467_024_50371_4 crossref_primary_10_1016_j_jallcom_2024_175918 crossref_primary_10_1016_j_jcrysgro_2023_127510 crossref_primary_10_1007_s40843_023_2777_2 crossref_primary_10_1021_jacs_4c11738 crossref_primary_10_1080_27660400_2025_2506976 crossref_primary_10_1007_s12598_024_02862_y crossref_primary_10_1002_advs_202307058 crossref_primary_10_1002_adem_202500553 crossref_primary_10_1016_j_jallcom_2025_180686 crossref_primary_10_1016_j_mtsust_2022_100293 crossref_primary_10_1088_1361_6528_ac6c37 crossref_primary_10_1016_j_jallcom_2022_164438 crossref_primary_10_1126_science_adp2444 crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_1007_s40195_025_01860_y crossref_primary_10_1103_PRXEnergy_1_022001 crossref_primary_10_1557_s43578_024_01321_9 crossref_primary_10_1016_j_egyr_2025_01_044 crossref_primary_10_1016_j_jallcom_2023_171136 crossref_primary_10_1002_adfm_202301971 crossref_primary_10_1016_j_jmst_2023_04_037 crossref_primary_10_3103_S0027131424700408 crossref_primary_10_1016_j_matdes_2025_114678 crossref_primary_10_1007_s40242_023_3120_3 crossref_primary_10_1002_ange_202212885 crossref_primary_10_1039_D3QI01132A crossref_primary_10_1002_advs_202309291 crossref_primary_10_1002_anie_202308515 crossref_primary_10_1063_5_0084862 crossref_primary_10_1007_s10854_023_11682_2 crossref_primary_10_1002_cnma_202200363 crossref_primary_10_1039_D5RA01965F crossref_primary_10_1002_adfm_202414881 crossref_primary_10_1002_anie_202200071 crossref_primary_10_1016_j_nanoen_2021_106692 crossref_primary_10_1021_acs_chemmater_5c01587 crossref_primary_10_1016_j_matchemphys_2025_131217 crossref_primary_10_3390_cryst13010049 crossref_primary_10_1021_acsaem_5c00993 crossref_primary_10_1038_s41467_024_50175_6 crossref_primary_10_1002_cmtd_202500009 crossref_primary_10_1016_j_cej_2023_143559 crossref_primary_10_1080_14786435_2023_2203525 crossref_primary_10_1007_s12598_023_02339_4 crossref_primary_10_1021_acsami_5c11274 crossref_primary_10_1016_j_materresbull_2022_111913 crossref_primary_10_1002_ese3_1222 crossref_primary_10_1039_D5TA04952K crossref_primary_10_3390_ma14226929 crossref_primary_10_1002_adma_202104908 crossref_primary_10_1002_adfm_202403990 crossref_primary_10_1016_j_joule_2024_02_013 crossref_primary_10_1002_ente_202400973 crossref_primary_10_1021_jacs_2c12877 crossref_primary_10_1016_j_surfin_2024_105488 crossref_primary_10_1021_acsami_5c14459 crossref_primary_10_1021_jacsau_4c00375 crossref_primary_10_1002_ange_202501667 crossref_primary_10_1021_acsami_5c05620 crossref_primary_10_20517_energymater_2025_32 crossref_primary_10_1016_j_cclet_2025_111229 crossref_primary_10_1016_j_nanoen_2022_107967 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1016_j_cej_2022_135968 crossref_primary_10_1016_j_mssp_2024_108728 crossref_primary_10_1016_j_surfin_2025_106892 crossref_primary_10_1016_j_jallcom_2025_179125 crossref_primary_10_1016_j_jallcom_2025_179124 crossref_primary_10_1016_j_actamat_2025_121566 crossref_primary_10_1016_j_jallcom_2025_181456 crossref_primary_10_1039_D2EE02752F crossref_primary_10_1016_j_mssp_2024_108867 crossref_primary_10_26599_NR_2025_94907072 crossref_primary_10_1002_adfm_202402317 crossref_primary_10_1038_s41563_021_01065_5 crossref_primary_10_1103_PhysRevResearch_5_033125 crossref_primary_10_1039_D1EE03339E crossref_primary_10_1016_j_physb_2025_417603 crossref_primary_10_3390_inorganics12040103 crossref_primary_10_1002_smll_202304718 crossref_primary_10_1002_adfm_202309418 crossref_primary_10_1002_aenm_202200670 crossref_primary_10_3390_e25071091 crossref_primary_10_1155_2023_2900242 crossref_primary_10_1088_2752_5724_ad0ca9 crossref_primary_10_1002_idm2_12134 crossref_primary_10_1016_j_mtphys_2023_101018 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1016_j_mtla_2025_102550 crossref_primary_10_1002_adfm_202419984 crossref_primary_10_3390_ma15020406 crossref_primary_10_1039_D2SE00309K crossref_primary_10_1016_j_matchemphys_2024_129618 crossref_primary_10_1016_j_surfin_2025_105826 crossref_primary_10_1038_s41597_025_05396_9 crossref_primary_10_1016_j_ceramint_2025_08_034 crossref_primary_10_1002_eem2_70066 crossref_primary_10_1016_j_jallcom_2023_172754 crossref_primary_10_1016_j_jics_2024_101351 crossref_primary_10_1088_1361_648X_acd49e crossref_primary_10_1002_qua_26906 crossref_primary_10_1007_s11664_022_09961_5 crossref_primary_10_1002_advs_202506963 crossref_primary_10_3390_ma18020358 crossref_primary_10_1016_j_actamat_2024_119889 crossref_primary_10_1002_smll_202502827 crossref_primary_10_1016_j_mtphys_2023_101020 crossref_primary_10_1039_D3EE02604C crossref_primary_10_1016_j_applthermaleng_2023_120684 crossref_primary_10_1016_j_nanoen_2022_107576 crossref_primary_10_1016_j_actamat_2023_119587 crossref_primary_10_1007_s40195_025_01838_w crossref_primary_10_26599_JAC_2023_9220740 crossref_primary_10_1016_j_jallcom_2023_169115 crossref_primary_10_1016_j_mtener_2024_101564 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1002_aenm_202503115 crossref_primary_10_1002_ange_202308515 crossref_primary_10_1039_D2RA01546C crossref_primary_10_1002_aenm_202301406 crossref_primary_10_1002_advs_202204120 crossref_primary_10_1016_j_commatsci_2023_112526 crossref_primary_10_1088_1402_4896_ac9be4 crossref_primary_10_1016_j_jmat_2023_06_008 crossref_primary_10_1063_5_0124814 crossref_primary_10_1007_s40145_022_0639_6 crossref_primary_10_1039_D2EE00341D crossref_primary_10_1039_D5TA05300E crossref_primary_10_1088_2053_1591_ad6533 crossref_primary_10_1002_advs_202411594 crossref_primary_10_1038_s41467_023_38446_0 crossref_primary_10_1016_j_mtcomm_2024_109736 crossref_primary_10_1016_j_jallcom_2023_170566 crossref_primary_10_1038_s41467_023_38054_y crossref_primary_10_1016_j_jpowsour_2023_232661 crossref_primary_10_1088_1361_648X_acea13 crossref_primary_10_1002_anie_202402628 crossref_primary_10_1039_D5TC01537E crossref_primary_10_1039_D5NR00333D crossref_primary_10_1002_smll_202304511 crossref_primary_10_1039_D5TA05523G crossref_primary_10_1063_5_0220010 crossref_primary_10_1016_j_jallcom_2022_164649 crossref_primary_10_1016_j_rser_2022_112340 crossref_primary_10_1016_j_mtphys_2025_101733 crossref_primary_10_1063_5_0062559 crossref_primary_10_1039_D3EE00128H crossref_primary_10_1039_D5CP01918D crossref_primary_10_1016_j_mtener_2023_101342 crossref_primary_10_1002_zaac_202500015 crossref_primary_10_1002_adma_202210407 crossref_primary_10_1021_acsaem_5c00807 crossref_primary_10_3390_nano12132128 crossref_primary_10_1002_advs_202103720 crossref_primary_10_1007_s00033_025_02500_2 crossref_primary_10_1016_j_jallcom_2022_166833 crossref_primary_10_1016_j_jalmes_2023_100032 crossref_primary_10_1016_j_rser_2023_113723 crossref_primary_10_1016_j_jssc_2023_124376 crossref_primary_10_1007_s12598_024_03070_4 crossref_primary_10_1016_j_mattod_2022_06_001 crossref_primary_10_1002_adfm_202500898 crossref_primary_10_1016_j_joule_2021_10_014 crossref_primary_10_1016_j_apsusc_2022_152774 crossref_primary_10_1016_j_apsusc_2022_153983 crossref_primary_10_35848_1347_4065_ad0579 crossref_primary_10_1021_acs_chemmater_5c01646 crossref_primary_10_3390_ma18071530 crossref_primary_10_1002_smtd_202101235 crossref_primary_10_1016_j_cej_2024_155652 crossref_primary_10_1002_slct_202502401 crossref_primary_10_1088_1361_6528_ac2f26 crossref_primary_10_3390_en15093375 crossref_primary_10_1016_j_actamat_2024_120439 crossref_primary_10_1016_j_nxener_2024_100147 crossref_primary_10_1360_TB_2024_0783 crossref_primary_10_1016_j_jmst_2024_08_009 crossref_primary_10_1016_j_solidstatesciences_2023_107236 crossref_primary_10_1016_j_jallcom_2022_165961 crossref_primary_10_1016_j_mssp_2025_109731 crossref_primary_10_1038_s41467_022_31363_8 crossref_primary_10_1038_s41467_024_48635_0 crossref_primary_10_1002_adma_202503496 crossref_primary_10_1002_cnma_202200403 crossref_primary_10_1016_j_scib_2023_09_037 crossref_primary_10_1039_D3QM00419H crossref_primary_10_1039_D3EE01226C crossref_primary_10_1021_jacs_2c04741 crossref_primary_10_1039_D2EE01038K crossref_primary_10_1063_5_0071039 crossref_primary_10_1016_j_cej_2024_149627 crossref_primary_10_1016_j_mtcomm_2025_111593 crossref_primary_10_1088_1402_4896_ad3eeb crossref_primary_10_1039_D3EE00378G crossref_primary_10_1002_advs_202203782 crossref_primary_10_1088_2515_7655_ad405d crossref_primary_10_1016_j_jssc_2023_124344 crossref_primary_10_1016_j_applthermaleng_2023_121804 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1038_s41467_023_37436_6 crossref_primary_10_1088_2515_7655_ac49dc crossref_primary_10_1063_5_0227080 crossref_primary_10_1002_adfm_202211969 crossref_primary_10_1557_s43578_025_01640_5 crossref_primary_10_1016_j_actamat_2025_120736 crossref_primary_10_1021_jacs_2c02017 crossref_primary_10_1016_j_applthermaleng_2023_121813 crossref_primary_10_1038_s41467_022_33774_z crossref_primary_10_1063_5_0220462 crossref_primary_10_1016_j_ceramint_2024_03_204 crossref_primary_10_1016_j_inoche_2024_113276 crossref_primary_10_1063_5_0244411 crossref_primary_10_1016_j_cocom_2021_e00623 crossref_primary_10_1016_j_jmat_2024_06_006 crossref_primary_10_1016_j_vacuum_2025_114584 crossref_primary_10_1002_smll_202409315 crossref_primary_10_1016_j_applthermaleng_2024_124101 crossref_primary_10_1002_aenm_202203361 crossref_primary_10_1111_jace_19464 crossref_primary_10_1016_j_jpcs_2022_111077 crossref_primary_10_1088_1361_648X_acf636 crossref_primary_10_1016_j_mtphys_2022_100742 crossref_primary_10_1002_ange_202402628 crossref_primary_10_1021_acsami_4c19651 crossref_primary_10_1016_j_mtla_2022_101486 crossref_primary_10_1063_5_0217146 crossref_primary_10_3390_ma18143232 crossref_primary_10_1016_j_jssc_2024_124642 crossref_primary_10_1016_j_mtphys_2024_101594 crossref_primary_10_1016_j_cej_2022_138637 crossref_primary_10_1016_j_mssp_2022_106944 crossref_primary_10_54227_mlab_20220056 crossref_primary_10_1088_1361_6528_acca88 crossref_primary_10_1088_1402_4896_ac6384 crossref_primary_10_59717_j_xinn_mater_2025_100143 crossref_primary_10_1016_j_joule_2024_08_008 crossref_primary_10_1007_s10825_024_02207_z crossref_primary_10_1016_j_jmat_2025_101108 crossref_primary_10_1016_j_solidstatesciences_2025_107910 crossref_primary_10_1007_s43207_024_00468_9 crossref_primary_10_1002_advs_202106052 crossref_primary_10_1088_1361_648X_ad44fa crossref_primary_10_3390_ma15030849 crossref_primary_10_1016_j_vacuum_2025_114249 crossref_primary_10_1002_aelm_202400944 crossref_primary_10_1016_j_physb_2025_417488 crossref_primary_10_1002_adma_202418280 crossref_primary_10_1016_j_mtener_2022_100965 crossref_primary_10_1002_adma_202210894 crossref_primary_10_55959_MSU0579_9384_2_2024_65_6_443_460 crossref_primary_10_1021_acsanm_5c00686 crossref_primary_10_3390_coatings15091041 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123005 crossref_primary_10_1038_s41928_022_00776_0 crossref_primary_10_1016_j_jmst_2025_05_046 crossref_primary_10_1039_D5TA02619A crossref_primary_10_1039_D4EE03090G crossref_primary_10_1002_aelm_202400634 crossref_primary_10_1002_adfm_202419776 crossref_primary_10_1016_j_mtphys_2023_101292 crossref_primary_10_1016_j_joule_2023_12_019 crossref_primary_10_1002_pssa_202300425 crossref_primary_10_1016_j_nanoen_2022_108118 crossref_primary_10_1088_2632_2153_acc4a9 crossref_primary_10_1002_adfm_202411815 crossref_primary_10_1016_j_est_2023_107958 crossref_primary_10_1002_aelm_202200577 crossref_primary_10_1007_s10825_023_02062_4 crossref_primary_10_1039_D2RA04175H crossref_primary_10_1016_j_jmst_2021_12_002 crossref_primary_10_1063_5_0159202 crossref_primary_10_1002_adfm_202306961 crossref_primary_10_1016_j_ceramint_2023_10_068 crossref_primary_10_1039_D4SC04158E crossref_primary_10_1016_j_physb_2023_414994 crossref_primary_10_1021_acs_jpcc_5c02650 crossref_primary_10_1063_5_0074489 crossref_primary_10_1016_j_ceramint_2023_03_031 crossref_primary_10_1002_ece2_17 crossref_primary_10_1002_adfm_202405158 crossref_primary_10_1016_j_mtphys_2023_101071 crossref_primary_10_1016_j_matchemphys_2022_125959 crossref_primary_10_1002_adma_202313146 crossref_primary_10_1038_s41467_024_47578_w crossref_primary_10_1016_j_ceramint_2022_09_018 crossref_primary_10_1016_j_mseb_2022_115737 crossref_primary_10_1002_anie_202501667 crossref_primary_10_1016_j_jssc_2024_124977 crossref_primary_10_1021_jacs_2c13179 crossref_primary_10_1177_09506608231225613 crossref_primary_10_1002_adfm_202303311 crossref_primary_10_1002_adfm_202200516 crossref_primary_10_1002_apxr_202400179 crossref_primary_10_1002_ange_202200071 crossref_primary_10_1002_adfm_202315652 crossref_primary_10_1039_D3RA07751A |
| Cites_doi | 10.1038/nature19832 10.1002/anie.201605015 10.1038/ncomms12167 10.1126/science.aad3749 10.1021/acs.chemrev.6b00255 10.1038/nature11439 10.1016/j.ultramic.2007.02.023 10.1038/s41586-019-1751-9 10.1021/jacs.7b05881 10.1021/jacs.7b11875 10.1016/j.joule.2019.01.001 10.1016/j.mattod.2019.11.010 10.1038/nmat4430 10.1039/D0EE00491J 10.1016/S0040-6031(01)00730-4 10.1039/C7NR07427A 10.1126/science.aaq1479 10.1002/adma.202006853 10.1021/jacs.0c01726 10.1016/j.joule.2018.04.025 10.1021/es5060989 10.1039/C6EE01755J 10.1039/C9EE03921J 10.1103/PhysRevLett.100.136406 10.1126/science.1136494 10.1103/PhysRevLett.120.156403 10.1126/science.aak9997 10.1038/nature13184 10.1007/978-1-4614-3436-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 OTOTI 5PM |
| DOI | 10.1038/s41563-021-01064-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1476-4660 |
| EndPage | 1384 |
| ExternalDocumentID | PMC8463294 1811595 10_1038_s41563_021_01064_6 |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2017M3A7B4049274; NRF-2020R1A2C2011111; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274 funderid: https://doi.org/10.13039/501100003725 – fundername: Institute for Basic Science (IBS) grantid: IBS-R009-G2 funderid: https://doi.org/10.13039/501100010446 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0014520 funderid: https://doi.org/10.13039/100006151 – fundername: ; grantid: NRF-2017M3A7B4049274; NRF-2020R1A2C2011111; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274 – fundername: ; grantid: IBS-R009-G2 – fundername: ; grantid: DE-SC0014520 |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI C6C CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI 5PM |
| ID | FETCH-LOGICAL-c478t-7b05be52ae8f73c9c7c5f06c93275f6163c46bf32cb15112a00dcb2f39cbb2b3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 568 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680338900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Tue Nov 04 01:58:41 EST 2025 Thu May 18 22:30:01 EDT 2023 Thu Sep 04 16:18:26 EDT 2025 Mon Oct 06 16:53:18 EDT 2025 Tue Nov 18 21:36:32 EST 2025 Sat Nov 29 03:30:33 EST 2025 Fri Feb 21 02:40:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-7b05be52ae8f73c9c7c5f06c93275f6163c46bf32cb15112a00dcb2f39cbb2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
| ORCID | 0000-0002-3148-6600 0000-0002-2245-3057 0000-0001-6432-5670 0000-0001-6274-3369 0000-0001-6594-8773 0000-0001-7241-5342 0000-0003-1498-1025 0000-0001-6543-203X 0000-0002-6007-3063 0000000164325670 0000000172415342 0000000314981025 000000016543203X 0000000222453057 0000000162743369 0000000231486600 0000000260073063 0000000165948773 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8463294 |
| PMID | 34341524 |
| PQID | 2576118228 |
| PQPubID | 27576 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463294 osti_scitechconnect_1811595 proquest_miscellaneous_2557550771 proquest_journals_2576118228 crossref_primary_10_1038_s41563_021_01064_6 crossref_citationtrail_10_1038_s41563_021_01064_6 springer_journals_10_1038_s41563_021_01064_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United Kingdom |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nat. Mater |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Tang (CR6) 2015; 14 Rudtsch (CR26) 2002; 382 Ye (CR19) 2021; 33 Chang (CR11) 2018; 360 Lee (CR14) 2017; 139 Tan (CR8) 2016; 7 Pletikosić (CR30) 2018; 120 Slade (CR21) 2020; 13 Zhao, Chang, Tan, Kanatzidis (CR16) 2016; 9 Qin (CR25) 2020; 142 Lin (CR23) 2016; 55 Chiritescu (CR24) 2007; 315 Peng, Yang, Perdew, Sun (CR29) 2016; 6 Zhao (CR9) 2014; 508 Tan, Zhao, Kanatzidis (CR3) 2016; 116 Biswas (CR5) 2012; 489 Wei (CR13) 2018; 140 Gingerich, Mauter (CR1) 2015; 49 Yu (CR18) 2020; 32 CR4 Miller, Russell (CR27) 2007; 107 Perdew (CR28) 2008; 100 Lee, Luo, Cho, Kanatzidis, Chung (CR12) 2019; 3 Kuo, Wood, Slade, Kanatzidis, Snyder (CR22) 2020; 13 CR20 Wei (CR15) 2016; 539 Jood, Ohta, Yamamoto, Kanatzidis (CR2) 2018; 2 Roy, Joshi, Chatterjee, Ghosh (CR17) 2018; 10 Hinterleitner (CR7) 2019; 576 Zhao (CR10) 2016; 351 G Tan (1064_CR8) 2016; 7 I Pletikosić (1064_CR30) 2018; 120 YK Lee (1064_CR14) 2017; 139 MK Miller (1064_CR27) 2007; 107 Y Yu (1064_CR18) 2020; 32 B Qin (1064_CR25) 2020; 142 L-D Zhao (1064_CR10) 2016; 351 JJ Kuo (1064_CR22) 2020; 13 C Chang (1064_CR11) 2018; 360 DB Gingerich (1064_CR1) 2015; 49 L-D Zhao (1064_CR9) 2014; 508 JP Perdew (1064_CR28) 2008; 100 H Peng (1064_CR29) 2016; 6 K Biswas (1064_CR5) 2012; 489 TJ Slade (1064_CR21) 2020; 13 X Ye (1064_CR19) 2021; 33 G Tan (1064_CR3) 2016; 116 S Roy (1064_CR17) 2018; 10 L-D Zhao (1064_CR16) 2016; 9 H Lin (1064_CR23) 2016; 55 Y Tang (1064_CR6) 2015; 14 1064_CR4 P Jood (1064_CR2) 2018; 2 B Hinterleitner (1064_CR7) 2019; 576 S Rudtsch (1064_CR26) 2002; 382 1064_CR20 C Chiritescu (1064_CR24) 2007; 315 YK Lee (1064_CR12) 2019; 3 PC Wei (1064_CR15) 2016; 539 W Wei (1064_CR13) 2018; 140 |
| References_xml | – volume: 539 start-page: E1 year: 2016 end-page: E2 ident: CR15 article-title: The intrinsic thermal conductivity of SnSe publication-title: Nature doi: 10.1038/nature19832 – volume: 55 start-page: 11431 year: 2016 end-page: 11436 ident: CR23 article-title: Concerted rattling in CsAg Te leading to ultralow thermal conductivity and high thermoelectric performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605015 – volume: 7 year: 2016 ident: CR8 article-title: Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe publication-title: Nat. Commun. doi: 10.1038/ncomms12167 – ident: CR4 – volume: 351 start-page: 141 year: 2016 end-page: 144 ident: CR10 article-title: Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe publication-title: Science doi: 10.1126/science.aad3749 – volume: 116 start-page: 12123 year: 2016 end-page: 12149 ident: CR3 article-title: Rationally designing high-performance bulk thermoelectric materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00255 – volume: 489 start-page: 414 year: 2012 end-page: 418 ident: CR5 article-title: High-performance bulk thermoelectrics with all-scale hierarchical architectures publication-title: Nature doi: 10.1038/nature11439 – volume: 107 start-page: 761 year: 2007 end-page: 766 ident: CR27 article-title: Atom probe specimen preparation with a dual beam SEM/FIB miller publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2007.02.023 – volume: 576 start-page: 85 year: 2019 end-page: 90 ident: CR7 article-title: Thermoelectric performance of a metastable thin-film Heusler alloy publication-title: Nature doi: 10.1038/s41586-019-1751-9 – volume: 139 start-page: 10887 year: 2017 end-page: 10896 ident: CR14 article-title: Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05881 – volume: 140 start-page: 499 year: 2018 end-page: 505 ident: CR13 article-title: Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11875 – volume: 3 start-page: 719 year: 2019 end-page: 731 ident: CR12 article-title: Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance publication-title: Joule doi: 10.1016/j.joule.2019.01.001 – volume: 32 start-page: 260 year: 2020 end-page: 274 ident: CR18 article-title: Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography publication-title: Mater. Today doi: 10.1016/j.mattod.2019.11.010 – volume: 14 start-page: 1223 year: 2015 end-page: 1228 ident: CR6 article-title: Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb skutterudites publication-title: Nat. Mater. doi: 10.1038/nmat4430 – volume: 13 start-page: 1509 year: 2020 end-page: 1518 ident: CR21 article-title: Understanding the thermally activated charge transport in NaPb SbQ (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00491J – volume: 382 start-page: 17 year: 2002 end-page: 25 ident: CR26 article-title: Uncertainty of heat capacity measurements with differential scanning calorimeters publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(01)00730-4 – volume: 10 start-page: 10664 year: 2018 end-page: 10682 ident: CR17 article-title: Local symmetry breaking in SnO nanocrystals with cobalt doping and its effect on optical properties publication-title: Nanoscale doi: 10.1039/C7NR07427A – volume: 360 start-page: 778 year: 2018 end-page: 783 ident: CR11 article-title: 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals publication-title: Science doi: 10.1126/science.aaq1479 – volume: 33 start-page: 2006853 year: 2021 ident: CR19 article-title: Magnetoelectric tuning of pinning-type permanent magnets through atomic-scale engineering of grain boundaries publication-title: Adv. Mater. doi: 10.1002/adma.202006853 – volume: 142 start-page: 5901 year: 2020 end-page: 5909 ident: CR25 article-title: Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01726 – volume: 2 start-page: 1339 year: 2018 end-page: 1355 ident: CR2 article-title: Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules publication-title: Joule doi: 10.1016/j.joule.2018.04.025 – volume: 49 start-page: 8297 year: 2015 end-page: 8306 ident: CR1 article-title: Quantity, quality, and availability of waste heat from United States thermal power generation publication-title: Environ. Sci. Technol. doi: 10.1021/es5060989 – volume: 9 start-page: 3044 year: 2016 end-page: 3060 ident: CR16 article-title: SnSe: a remarkable new thermoelectric material publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01755J – volume: 13 start-page: 1250 year: 2020 end-page: 1258 ident: CR22 article-title: Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03921J – volume: 508 start-page: 373 year: 2014 end-page: 377 ident: CR9 article-title: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals publication-title: Nature – volume: 100 start-page: 136406 year: 2008 ident: CR28 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 315 start-page: 351 year: 2007 end-page: 353 ident: CR24 article-title: Ultralow thermal conductivity in disordered, layered WSe crystals publication-title: Science doi: 10.1126/science.1136494 – volume: 120 start-page: 156403 year: 2018 ident: CR30 article-title: Band structure of the IV-VI black phosphorus analog and thermoelectric SnSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.156403 – ident: CR20 – volume: 6 start-page: 041005 year: 2016 ident: CR29 article-title: Versatile van der Waals density functional based on a meta-generalized gradient approximation publication-title: Phys. Rev. X – volume: 382 start-page: 17 year: 2002 ident: 1064_CR26 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(01)00730-4 – volume: 142 start-page: 5901 year: 2020 ident: 1064_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01726 – volume: 120 start-page: 156403 year: 2018 ident: 1064_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.156403 – ident: 1064_CR4 doi: 10.1126/science.aak9997 – volume: 100 start-page: 136406 year: 2008 ident: 1064_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 6 start-page: 041005 year: 2016 ident: 1064_CR29 publication-title: Phys. Rev. X – volume: 10 start-page: 10664 year: 2018 ident: 1064_CR17 publication-title: Nanoscale doi: 10.1039/C7NR07427A – volume: 107 start-page: 761 year: 2007 ident: 1064_CR27 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2007.02.023 – volume: 360 start-page: 778 year: 2018 ident: 1064_CR11 publication-title: Science doi: 10.1126/science.aaq1479 – volume: 140 start-page: 499 year: 2018 ident: 1064_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11875 – volume: 508 start-page: 373 year: 2014 ident: 1064_CR9 publication-title: Nature doi: 10.1038/nature13184 – volume: 33 start-page: 2006853 year: 2021 ident: 1064_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.202006853 – ident: 1064_CR20 doi: 10.1007/978-1-4614-3436-8 – volume: 49 start-page: 8297 year: 2015 ident: 1064_CR1 publication-title: Environ. Sci. Technol. doi: 10.1021/es5060989 – volume: 116 start-page: 12123 year: 2016 ident: 1064_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00255 – volume: 489 start-page: 414 year: 2012 ident: 1064_CR5 publication-title: Nature doi: 10.1038/nature11439 – volume: 32 start-page: 260 year: 2020 ident: 1064_CR18 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.11.010 – volume: 14 start-page: 1223 year: 2015 ident: 1064_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat4430 – volume: 55 start-page: 11431 year: 2016 ident: 1064_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605015 – volume: 7 year: 2016 ident: 1064_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms12167 – volume: 2 start-page: 1339 year: 2018 ident: 1064_CR2 publication-title: Joule doi: 10.1016/j.joule.2018.04.025 – volume: 9 start-page: 3044 year: 2016 ident: 1064_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01755J – volume: 576 start-page: 85 year: 2019 ident: 1064_CR7 publication-title: Nature doi: 10.1038/s41586-019-1751-9 – volume: 351 start-page: 141 year: 2016 ident: 1064_CR10 publication-title: Science doi: 10.1126/science.aad3749 – volume: 3 start-page: 719 year: 2019 ident: 1064_CR12 publication-title: Joule doi: 10.1016/j.joule.2019.01.001 – volume: 315 start-page: 351 year: 2007 ident: 1064_CR24 publication-title: Science doi: 10.1126/science.1136494 – volume: 139 start-page: 10887 year: 2017 ident: 1064_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05881 – volume: 539 start-page: E1 year: 2016 ident: 1064_CR15 publication-title: Nature doi: 10.1038/nature19832 – volume: 13 start-page: 1509 year: 2020 ident: 1064_CR21 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00491J – volume: 13 start-page: 1250 year: 2020 ident: 1064_CR22 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03921J |
| SSID | ssj0021556 |
| Score | 2.73856 |
| Snippet | Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal... Abstract Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT.... |
| SourceID | pubmedcentral osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1378 |
| SubjectTerms | 639/301/299/2736 639/638/263/915 Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystal lattices Crystals Electrical resistivity Figure of merit Heat conductivity Heat transfer Lead free Materials Science Nanotechnology Optical and Electronic Materials Oxides Polycrystals Reagents Single crystals Thermal conductivity Thermoelectric materials Tin Tin oxides Tin selenide Waste to energy |
| Title | Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal |
| URI | https://link.springer.com/article/10.1038/s41563-021-01064-6 https://www.proquest.com/docview/2576118228 https://www.proquest.com/docview/2557550771 https://www.osti.gov/biblio/1811595 https://pubmed.ncbi.nlm.nih.gov/PMC8463294 |
| Volume | 20 |
| WOSCitedRecordID | wos000680338900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3da9swEMCPNd3D-rDvUbdd0GBvm1Zbji35aayjZTAWwtKHsBchyXIXSO3WcQr973dnO-lSWF_2YghSEpvT6X66O98BvJeZy6yRno88ahNqouAmU4ajpcKhPMyT3LbNJuR4rGazbNI73JZ9WuV6T2w36rxy5CM_JjAmGBbq89U1p65RFF3tW2jswC6STUQpXT_EZHPgQlvZvV0kU45cIfqXZsJYHS_p4EIRTDpMo1nm6ZZhGlSoYFvQeT9l8l7ctDVHZ8_-90Gew9MeRNmXbuW8gEe-fAl7f5UnfAW_JtXi1tW3CJBUuduzaTn1jDy3zDACx8uq66Izd6yYX6xqz6qCUQioYRcEo75m5JmnuYx8EgvP-p97Dednp-dfv_G-FwN3I6kaLm2YWJ8I41UhY5c56ZIiTB3in0yKFKnOjVJbxMLZiBjOhGHurCjizFkrbPwGBmVV-n1gtGUYlRY2olL8oTXIYDbNjTRxlCfeBhCt5aBdX6ec2mUsdBsvj5XuZKdRdrqVnU4D-LD5zlVXpePB2YckXo2MQYVyHWUUuUYj6yDbJQEcreWme31e6juhBfBuM4yaSOEVU_pqRXMQfRGvZRSA3Fotm3uiWt7bI-X8d1vTGzEwFtkogI_rdXX35_9-koOH7_UQngha4W3u4REMmnrl38Jjd9PMl_UQduRMtlc1hN2T0_HkJ376fvJp2GoRXeX0D5w8IHA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQk48EaEFjASnMBq4jycHBBCQNWqZbVS91BxsWzHKSstSclmQfuj-I_M5LFlK9FbD5ztOE78zfgbz3gG4JXMbGa0dDxyKE0oiYLrLNUcdypsyv08zk1bbEKOx-nJSTbZgt_DXRgKqxx0Yquo88rSGfkuEWMiwyJ9f_aDU9Uo8q4OJTQ6WBy61S802RbvDj7h-r4WYu_z9OM-76sKcBvJtOHS-LFxsdAuLWRoMyttXPiJRSIj4yJBfmKjxBShsCYgNqJ9P7dGFGFmjREmxGGvwfWIEotRpKCYrO073Jq7y0wy4fig6O_o-GG6uyA7iRymZLsjC-DJxj44qlCeNzjuxQjNC27advfbu_uf_bd7cKen2exDJxf3YcuVD-D2X8kXH8LXSTVf2XqF9Jjykjt2XB47RufSTDOixd-rrkbQzLJidrqsHasKRg6uhp0S1XY1I78D9WV04jJ3rB_uEUyv4tsew6isSvcEGClEnSaFCajQgG80MkyT5FrqMMhjZzwIhmVXts_CTsVA5qqNBghT1UFFIVRUCxWVePBm_cxZl4Pk0t7bhCaFDIrSAFuKl7KNQiaHzDX2YGeAieq11UKdY8SDl-tm1DPkPNKlq5bUB4k9Gg8y8EBugHM9J8pUvtlSzr61GcuR5IYiizx4O8D4_OX__pKnl8_1Bdzcn345UkcH48NtuCVIuNooyx0YNfXSPYMb9mczW9TPWzFloK4Y3n8AOiB4Gw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwKG8RWsBIcIJoE-fh5IBQS7uiKlqtaA8VF8t2nLLSkpRsFrQ_jX_XmTy2bCV664GzHcdOvhl_4xnPALwRqUm1EtYNLUoTSiJ3VZooF3cqbMq8LMp0U2xCjMfJ6Wk62YA__V0YCqvsdWKjqLPS0Bn5kIgxkWGeDPMuLGKyP_p4_tOlClLkae3LabQQObLL32i-zT8c7uO_fsv56ODk02e3qzDgmlAktSu0F2kbcWWTXAQmNcJEuRcbJDUiymPkKiaMdR5wo31iJsrzMqN5HqRGa64DHPYWbArkGOEANvcOxpOvK2sPN-r2apOIXXyUdzd2vCAZzslqIvcpWfLICdx4bVcclCjda4z3arzmFadtsxeO7v_HX_EBbHUEnO22EvMQNmzxCO79lZbxMXyblLOlqZZInCljuWXHxbFldGLNFCPC_KNsqwdNDcunZ4vKsjJn5Pqq2RmRcFsx8khQX0ZnMTPLuuGewMlNrO0pDIqysM-AkapUSZxrn0oQeFoh99RxpoQK_Cyy2gG_h4A0XX52KhMyk02cQJDIFjYSYSMb2MjYgXerZ87b7CTX9t4mZEnkVpQg2FAklaklcjzktJEDOz1kZKfH5vISLw68XjWjBiK3kipsuaA-SPnRrBC-A2INqKs5UQ7z9ZZi-r3JZY70N-Bp6MD7HtKXL__3Sp5fP9dXcAdRLb8cjo-24S4nOWvCL3dgUFcL-wJum1_1dF697GSWgbxhfF8AiYWCNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycrystalline+SnSe+with+a+thermoelectric+figure+of+merit+greater+than+the+single+crystal&rft.jtitle=Nature+materials&rft.au=Zhou+Chongjian&rft.au=Lee%2C+Yong+Kyu&rft.au=Yu%2C+Yuan&rft.au=Byun+Sejin&rft.date=2021-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=10&rft.spage=1378&rft.epage=1384&rft_id=info:doi/10.1038%2Fs41563-021-01064-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |