Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal

Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature materials Ročník 20; číslo 10; s. 1378 - 1384
Hlavní autori: Zhou, Chongjian, Lee, Yong Kyu, Yu, Yuan, Byun, Sejin, Luo, Zhong-Zhen, Lee, Hyungseok, Ge, Bangzhi, Lee, Yea-Lee, Chen, Xinqi, Lee, Ji Yeong, Cojocaru-Mirédin, Oana, Chang, Hyunju, Im, Jino, Cho, Sung-Pyo, Wuttig, Matthias, Dravid, Vinayak P., Kanatzidis, Mercouri G., Chung, In
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.10.2021
Nature Publishing Group
Predmet:
ISSN:1476-1122, 1476-4660, 1476-4660
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1  K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnO x impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K.
AbstractList Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnOx impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K.
Abstract Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1  K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.
Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1  K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.
Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.
Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m –1  K –1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material. SnSe has a very high thermoelectric figure of merit ZT, but uncommonly polycrystalline samples have higher lattice thermal conductivity than single crystals. Here, by controlling Sn reagent purity and removing SnO x impurities, a lower thermal conductivity is achieved, enabling ZT of 3.1 at 783 K.
Author Im, Jino
Luo, Zhong-Zhen
Ge, Bangzhi
Lee, Ji Yeong
Zhou, Chongjian
Kanatzidis, Mercouri G.
Lee, Yong Kyu
Cojocaru-Mirédin, Oana
Cho, Sung-Pyo
Lee, Hyungseok
Chang, Hyunju
Chung, In
Wuttig, Matthias
Byun, Sejin
Chen, Xinqi
Dravid, Vinayak P.
Yu, Yuan
Lee, Yea-Lee
Author_xml – sequence: 1
  givenname: Chongjian
  orcidid: 0000-0002-2245-3057
  surname: Zhou
  fullname: Zhou, Chongjian
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University
– sequence: 2
  givenname: Yong Kyu
  surname: Lee
  fullname: Lee, Yong Kyu
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0002-3148-6600
  surname: Yu
  fullname: Yu, Yuan
  organization: Institute of Physics (IA), RWTH Aachen University
– sequence: 4
  givenname: Sejin
  surname: Byun
  fullname: Byun, Sejin
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS)
– sequence: 5
  givenname: Zhong-Zhen
  surname: Luo
  fullname: Luo, Zhong-Zhen
  organization: Department of Chemistry, Northwestern University
– sequence: 6
  givenname: Hyungseok
  orcidid: 0000-0001-6432-5670
  surname: Lee
  fullname: Lee, Hyungseok
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS)
– sequence: 7
  givenname: Bangzhi
  surname: Ge
  fullname: Ge, Bangzhi
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University
– sequence: 8
  givenname: Yea-Lee
  surname: Lee
  fullname: Lee, Yea-Lee
  organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology
– sequence: 9
  givenname: Xinqi
  surname: Chen
  fullname: Chen, Xinqi
  organization: Department of Mechanical Engineering, Northwestern University
– sequence: 10
  givenname: Ji Yeong
  surname: Lee
  fullname: Lee, Ji Yeong
  organization: Advanced Analysis Center, Korea Institute of Science and Technology
– sequence: 11
  givenname: Oana
  orcidid: 0000-0001-6543-203X
  surname: Cojocaru-Mirédin
  fullname: Cojocaru-Mirédin, Oana
  organization: Institute of Physics (IA), RWTH Aachen University
– sequence: 12
  givenname: Hyunju
  orcidid: 0000-0001-7241-5342
  surname: Chang
  fullname: Chang, Hyunju
  organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology
– sequence: 13
  givenname: Jino
  orcidid: 0000-0001-6594-8773
  surname: Im
  fullname: Im, Jino
  organization: Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology
– sequence: 14
  givenname: Sung-Pyo
  surname: Cho
  fullname: Cho, Sung-Pyo
  organization: National Center for Inter-University Research Facilities, Seoul National University
– sequence: 15
  givenname: Matthias
  orcidid: 0000-0003-1498-1025
  surname: Wuttig
  fullname: Wuttig, Matthias
  organization: Institute of Physics (IA), RWTH Aachen University
– sequence: 16
  givenname: Vinayak P.
  orcidid: 0000-0002-6007-3063
  surname: Dravid
  fullname: Dravid, Vinayak P.
  organization: Department of Materials Science and Engineering, Northwestern University
– sequence: 17
  givenname: Mercouri G.
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G.
  email: m-kanatzidis@northwestern.edu
  organization: Department of Chemistry, Northwestern University, Department of Materials Science and Engineering, Northwestern University
– sequence: 18
  givenname: In
  orcidid: 0000-0001-6274-3369
  surname: Chung
  fullname: Chung, In
  email: inchung@snu.ac.kr
  organization: School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Center for Correlated Electron Systems, Institute for Basic Science (IBS)
BackLink https://www.osti.gov/biblio/1811595$$D View this record in Osti.gov
BookMark eNp9kU1rFTEYhYNU7If-AVdBN25G852ZjSDFqlBQaFduQiZ9Z25KJqlJbuX-e3M7F8UuukogzznveXNO0VFMERB6Tcl7Snj_oQgqFe8Iox2hRIlOPUMnVGjVCaXI0eFOKWPH6LSUW9JIKdULdMwFb1omTtDPHynsXN6VakPwEfBVvAL829cNtrhuIC8JAriavcOTn7cZcJrwAtlXPGewFXLDbNyzuPg4B8AHu5fo-WRDgVeH8wxdX3y-Pv_aXX7_8u3802XnhO5rp0ciR5DMQj9p7gannZyIcgNnWk6KKu6EGifO3EhlW8YScuNGNvHBjSMb-Rn6uNrebccFbhzEmm0wd9kvNu9Mst78_xL9xszp3vRCcTaIZvBmNUilelOcr-A2LsXY1ja0p1QOskHvDlNy-rWFUs3ii4MQbIS0LYZJqaUkWtOGvn2E3qZtju0LGqUVpT1jfaPYSrmcSskw_U1MidnXa9Z6TSvNPNRrVBP1j0Qtra0-7Tfz4WkpX6WlzYkz5H-pnlD9AXFeuys
CitedBy_id crossref_primary_10_1039_D5RA00856E
crossref_primary_10_1016_j_device_2025_100752
crossref_primary_10_1016_j_mtphys_2023_100967
crossref_primary_10_1021_jacs_4c04453
crossref_primary_10_1038_s41598_021_98562_z
crossref_primary_10_1002_anie_202212885
crossref_primary_10_1002_adfm_202214163
crossref_primary_10_1016_j_jallcom_2024_175502
crossref_primary_10_1016_j_ssc_2022_114767
crossref_primary_10_3390_nano13132011
crossref_primary_10_1038_s41524_025_01769_1
crossref_primary_10_1002_ange_202408908
crossref_primary_10_1007_s11665_025_10706_8
crossref_primary_10_1002_aenm_202403194
crossref_primary_10_1002_adfm_202516749
crossref_primary_10_1007_s10853_024_09984_9
crossref_primary_10_1063_5_0242991
crossref_primary_10_1016_j_rser_2025_115946
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123332
crossref_primary_10_1021_acs_chemrev_5c00060
crossref_primary_10_1039_D1MH01601F
crossref_primary_10_1051_bioconf_202412925035
crossref_primary_10_1088_1361_6528_ac4665
crossref_primary_10_1016_j_cej_2025_159682
crossref_primary_10_1002_cnma_202200396
crossref_primary_10_1002_smll_202402651
crossref_primary_10_1016_j_jpowsour_2024_234647
crossref_primary_10_1016_j_vacuum_2024_113712
crossref_primary_10_1016_j_matchemphys_2025_130571
crossref_primary_10_1126_science_adi2174
crossref_primary_10_1063_5_0242987
crossref_primary_10_1002_adfm_202505741
crossref_primary_10_1016_j_actamat_2025_121416
crossref_primary_10_1016_j_mtphys_2023_100986
crossref_primary_10_1002_aelm_202300170
crossref_primary_10_1007_s10853_025_10949_9
crossref_primary_10_1016_j_cej_2024_151405
crossref_primary_10_1002_adma_202203725
crossref_primary_10_1002_ejic_202200338
crossref_primary_10_1103_PhysRevX_12_041011
crossref_primary_10_1088_2632_959X_ada6e7
crossref_primary_10_1016_j_jallcom_2025_180394
crossref_primary_10_1063_5_0159455
crossref_primary_10_1002_adfm_202505719
crossref_primary_10_1126_science_abn8997
crossref_primary_10_1063_5_0241645
crossref_primary_10_1039_D3EE01033C
crossref_primary_10_1007_s10854_022_09007_w
crossref_primary_10_1007_s12598_024_02880_w
crossref_primary_10_31613_ceramist_2025_00192
crossref_primary_10_1103_PhysRevB_105_205201
crossref_primary_10_3390_solids3010011
crossref_primary_10_1038_s41467_023_36415_1
crossref_primary_10_1002_aenm_202404251
crossref_primary_10_1016_j_mtphys_2022_100889
crossref_primary_10_1016_j_mseb_2023_117148
crossref_primary_10_1002_adma_202110518
crossref_primary_10_1021_jacs_4c09943
crossref_primary_10_3390_ma16020660
crossref_primary_10_1016_j_matchemphys_2022_126669
crossref_primary_10_1016_j_mseb_2022_115912
crossref_primary_10_1016_j_joule_2024_04_012
crossref_primary_10_1063_5_0187855
crossref_primary_10_1103_PhysRevApplied_21_014002
crossref_primary_10_1016_j_joule_2023_10_008
crossref_primary_10_1103_PhysRevLett_131_036101
crossref_primary_10_1002_bkcs_12821
crossref_primary_10_1039_D5TA03832D
crossref_primary_10_1007_s10853_024_09886_w
crossref_primary_10_1063_5_0172354
crossref_primary_10_3390_electronicmat3010001
crossref_primary_10_1021_acsaenm_5c00559
crossref_primary_10_1007_s12034_024_03373_3
crossref_primary_10_1038_s41598_022_17750_7
crossref_primary_10_1063_5_0090473
crossref_primary_10_1007_s42247_024_00873_0
crossref_primary_10_1002_anie_202408908
crossref_primary_10_1016_j_tsep_2024_102835
crossref_primary_10_1007_s12209_023_00354_1
crossref_primary_10_1021_jacs_3c12242
crossref_primary_10_1016_j_jallcom_2022_167690
crossref_primary_10_1016_j_matt_2023_10_022
crossref_primary_10_3390_molecules28155894
crossref_primary_10_1016_j_nanoen_2024_109651
crossref_primary_10_3390_nano13192730
crossref_primary_10_1002_sstr_202400136
crossref_primary_10_1016_j_mtphys_2022_100656
crossref_primary_10_1007_s11814_025_00540_y
crossref_primary_10_1016_j_jallcom_2022_166251
crossref_primary_10_1016_j_jallcom_2022_166252
crossref_primary_10_1016_j_jeurceramsoc_2024_02_025
crossref_primary_10_1016_j_actamat_2023_118754
crossref_primary_10_1002_anie_202213649
crossref_primary_10_1002_ece2_89
crossref_primary_10_1007_s11664_021_09400_x
crossref_primary_10_1360_TB_2024_0796
crossref_primary_10_1016_j_ccr_2022_214692
crossref_primary_10_1080_10408436_2022_2053499
crossref_primary_10_1360_TB_2024_0793
crossref_primary_10_1016_j_mattod_2023_04_021
crossref_primary_10_1126_science_adg7196
crossref_primary_10_1002_slct_202402820
crossref_primary_10_1016_j_jallcom_2025_180535
crossref_primary_10_1007_s10854_025_15549_6
crossref_primary_10_1021_acsaem_5c00321
crossref_primary_10_1088_2515_7655_acb5e6
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063
crossref_primary_10_1002_apxr_202300005
crossref_primary_10_1016_j_jssc_2022_123777
crossref_primary_10_1016_j_scib_2022_04_007
crossref_primary_10_1002_adfm_202411054
crossref_primary_10_54227_mlab_20240008
crossref_primary_10_1021_jacs_5c07547
crossref_primary_10_1002_ange_202213649
crossref_primary_10_3390_ma17081712
crossref_primary_10_1016_j_mtener_2024_101700
crossref_primary_10_1016_j_applthermaleng_2021_117793
crossref_primary_10_1016_j_cej_2025_164510
crossref_primary_10_1016_j_ceramint_2025_02_361
crossref_primary_10_1016_j_mtcomm_2022_104789
crossref_primary_10_3390_ma18184228
crossref_primary_10_1016_j_jpowsour_2023_233583
crossref_primary_10_1021_jacs_4c16394
crossref_primary_10_1016_j_enconman_2023_117954
crossref_primary_10_1088_1361_648X_ad1290
crossref_primary_10_1016_j_actamat_2022_117743
crossref_primary_10_1016_j_rser_2024_114719
crossref_primary_10_3390_nano13243165
crossref_primary_10_54227_mlab_20240012
crossref_primary_10_1021_jacs_3c09643
crossref_primary_10_1016_j_actamat_2024_120363
crossref_primary_10_1016_j_mtelec_2025_100169
crossref_primary_10_1016_j_cej_2025_164845
crossref_primary_10_1021_jacs_1c12507
crossref_primary_10_1088_2516_1075_ac78b3
crossref_primary_10_1038_s41427_022_00393_5
crossref_primary_10_3390_mi12121463
crossref_primary_10_1007_s40843_021_1945_1
crossref_primary_10_1038_s41467_024_50371_4
crossref_primary_10_1016_j_jallcom_2024_175918
crossref_primary_10_1016_j_jcrysgro_2023_127510
crossref_primary_10_1007_s40843_023_2777_2
crossref_primary_10_1021_jacs_4c11738
crossref_primary_10_1080_27660400_2025_2506976
crossref_primary_10_1007_s12598_024_02862_y
crossref_primary_10_1002_advs_202307058
crossref_primary_10_1002_adem_202500553
crossref_primary_10_1016_j_jallcom_2025_180686
crossref_primary_10_1016_j_mtsust_2022_100293
crossref_primary_10_1088_1361_6528_ac6c37
crossref_primary_10_1016_j_jallcom_2022_164438
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1088_1361_6463_acc9d0
crossref_primary_10_1007_s40195_025_01860_y
crossref_primary_10_1103_PRXEnergy_1_022001
crossref_primary_10_1557_s43578_024_01321_9
crossref_primary_10_1016_j_egyr_2025_01_044
crossref_primary_10_1016_j_jallcom_2023_171136
crossref_primary_10_1002_adfm_202301971
crossref_primary_10_1016_j_jmst_2023_04_037
crossref_primary_10_3103_S0027131424700408
crossref_primary_10_1016_j_matdes_2025_114678
crossref_primary_10_1007_s40242_023_3120_3
crossref_primary_10_1002_ange_202212885
crossref_primary_10_1039_D3QI01132A
crossref_primary_10_1002_advs_202309291
crossref_primary_10_1002_anie_202308515
crossref_primary_10_1063_5_0084862
crossref_primary_10_1007_s10854_023_11682_2
crossref_primary_10_1002_cnma_202200363
crossref_primary_10_1039_D5RA01965F
crossref_primary_10_1002_adfm_202414881
crossref_primary_10_1002_anie_202200071
crossref_primary_10_1016_j_nanoen_2021_106692
crossref_primary_10_1021_acs_chemmater_5c01587
crossref_primary_10_1016_j_matchemphys_2025_131217
crossref_primary_10_3390_cryst13010049
crossref_primary_10_1021_acsaem_5c00993
crossref_primary_10_1038_s41467_024_50175_6
crossref_primary_10_1002_cmtd_202500009
crossref_primary_10_1016_j_cej_2023_143559
crossref_primary_10_1080_14786435_2023_2203525
crossref_primary_10_1007_s12598_023_02339_4
crossref_primary_10_1021_acsami_5c11274
crossref_primary_10_1016_j_materresbull_2022_111913
crossref_primary_10_1002_ese3_1222
crossref_primary_10_1039_D5TA04952K
crossref_primary_10_3390_ma14226929
crossref_primary_10_1002_adma_202104908
crossref_primary_10_1002_adfm_202403990
crossref_primary_10_1016_j_joule_2024_02_013
crossref_primary_10_1002_ente_202400973
crossref_primary_10_1021_jacs_2c12877
crossref_primary_10_1016_j_surfin_2024_105488
crossref_primary_10_1021_acsami_5c14459
crossref_primary_10_1021_jacsau_4c00375
crossref_primary_10_1002_ange_202501667
crossref_primary_10_1021_acsami_5c05620
crossref_primary_10_20517_energymater_2025_32
crossref_primary_10_1016_j_cclet_2025_111229
crossref_primary_10_1016_j_nanoen_2022_107967
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_1016_j_cej_2022_135968
crossref_primary_10_1016_j_mssp_2024_108728
crossref_primary_10_1016_j_surfin_2025_106892
crossref_primary_10_1016_j_jallcom_2025_179125
crossref_primary_10_1016_j_jallcom_2025_179124
crossref_primary_10_1016_j_actamat_2025_121566
crossref_primary_10_1016_j_jallcom_2025_181456
crossref_primary_10_1039_D2EE02752F
crossref_primary_10_1016_j_mssp_2024_108867
crossref_primary_10_26599_NR_2025_94907072
crossref_primary_10_1002_adfm_202402317
crossref_primary_10_1038_s41563_021_01065_5
crossref_primary_10_1103_PhysRevResearch_5_033125
crossref_primary_10_1039_D1EE03339E
crossref_primary_10_1016_j_physb_2025_417603
crossref_primary_10_3390_inorganics12040103
crossref_primary_10_1002_smll_202304718
crossref_primary_10_1002_adfm_202309418
crossref_primary_10_1002_aenm_202200670
crossref_primary_10_3390_e25071091
crossref_primary_10_1155_2023_2900242
crossref_primary_10_1088_2752_5724_ad0ca9
crossref_primary_10_1002_idm2_12134
crossref_primary_10_1016_j_mtphys_2023_101018
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1016_j_mtla_2025_102550
crossref_primary_10_1002_adfm_202419984
crossref_primary_10_3390_ma15020406
crossref_primary_10_1039_D2SE00309K
crossref_primary_10_1016_j_matchemphys_2024_129618
crossref_primary_10_1016_j_surfin_2025_105826
crossref_primary_10_1038_s41597_025_05396_9
crossref_primary_10_1016_j_ceramint_2025_08_034
crossref_primary_10_1002_eem2_70066
crossref_primary_10_1016_j_jallcom_2023_172754
crossref_primary_10_1016_j_jics_2024_101351
crossref_primary_10_1088_1361_648X_acd49e
crossref_primary_10_1002_qua_26906
crossref_primary_10_1007_s11664_022_09961_5
crossref_primary_10_1002_advs_202506963
crossref_primary_10_3390_ma18020358
crossref_primary_10_1016_j_actamat_2024_119889
crossref_primary_10_1002_smll_202502827
crossref_primary_10_1016_j_mtphys_2023_101020
crossref_primary_10_1039_D3EE02604C
crossref_primary_10_1016_j_applthermaleng_2023_120684
crossref_primary_10_1016_j_nanoen_2022_107576
crossref_primary_10_1016_j_actamat_2023_119587
crossref_primary_10_1007_s40195_025_01838_w
crossref_primary_10_26599_JAC_2023_9220740
crossref_primary_10_1016_j_jallcom_2023_169115
crossref_primary_10_1016_j_mtener_2024_101564
crossref_primary_10_1016_j_pmatsci_2022_101003
crossref_primary_10_1002_aenm_202503115
crossref_primary_10_1002_ange_202308515
crossref_primary_10_1039_D2RA01546C
crossref_primary_10_1002_aenm_202301406
crossref_primary_10_1002_advs_202204120
crossref_primary_10_1016_j_commatsci_2023_112526
crossref_primary_10_1088_1402_4896_ac9be4
crossref_primary_10_1016_j_jmat_2023_06_008
crossref_primary_10_1063_5_0124814
crossref_primary_10_1007_s40145_022_0639_6
crossref_primary_10_1039_D2EE00341D
crossref_primary_10_1039_D5TA05300E
crossref_primary_10_1088_2053_1591_ad6533
crossref_primary_10_1002_advs_202411594
crossref_primary_10_1038_s41467_023_38446_0
crossref_primary_10_1016_j_mtcomm_2024_109736
crossref_primary_10_1016_j_jallcom_2023_170566
crossref_primary_10_1038_s41467_023_38054_y
crossref_primary_10_1016_j_jpowsour_2023_232661
crossref_primary_10_1088_1361_648X_acea13
crossref_primary_10_1002_anie_202402628
crossref_primary_10_1039_D5TC01537E
crossref_primary_10_1039_D5NR00333D
crossref_primary_10_1002_smll_202304511
crossref_primary_10_1039_D5TA05523G
crossref_primary_10_1063_5_0220010
crossref_primary_10_1016_j_jallcom_2022_164649
crossref_primary_10_1016_j_rser_2022_112340
crossref_primary_10_1016_j_mtphys_2025_101733
crossref_primary_10_1063_5_0062559
crossref_primary_10_1039_D3EE00128H
crossref_primary_10_1039_D5CP01918D
crossref_primary_10_1016_j_mtener_2023_101342
crossref_primary_10_1002_zaac_202500015
crossref_primary_10_1002_adma_202210407
crossref_primary_10_1021_acsaem_5c00807
crossref_primary_10_3390_nano12132128
crossref_primary_10_1002_advs_202103720
crossref_primary_10_1007_s00033_025_02500_2
crossref_primary_10_1016_j_jallcom_2022_166833
crossref_primary_10_1016_j_jalmes_2023_100032
crossref_primary_10_1016_j_rser_2023_113723
crossref_primary_10_1016_j_jssc_2023_124376
crossref_primary_10_1007_s12598_024_03070_4
crossref_primary_10_1016_j_mattod_2022_06_001
crossref_primary_10_1002_adfm_202500898
crossref_primary_10_1016_j_joule_2021_10_014
crossref_primary_10_1016_j_apsusc_2022_152774
crossref_primary_10_1016_j_apsusc_2022_153983
crossref_primary_10_35848_1347_4065_ad0579
crossref_primary_10_1021_acs_chemmater_5c01646
crossref_primary_10_3390_ma18071530
crossref_primary_10_1002_smtd_202101235
crossref_primary_10_1016_j_cej_2024_155652
crossref_primary_10_1002_slct_202502401
crossref_primary_10_1088_1361_6528_ac2f26
crossref_primary_10_3390_en15093375
crossref_primary_10_1016_j_actamat_2024_120439
crossref_primary_10_1016_j_nxener_2024_100147
crossref_primary_10_1360_TB_2024_0783
crossref_primary_10_1016_j_jmst_2024_08_009
crossref_primary_10_1016_j_solidstatesciences_2023_107236
crossref_primary_10_1016_j_jallcom_2022_165961
crossref_primary_10_1016_j_mssp_2025_109731
crossref_primary_10_1038_s41467_022_31363_8
crossref_primary_10_1038_s41467_024_48635_0
crossref_primary_10_1002_adma_202503496
crossref_primary_10_1002_cnma_202200403
crossref_primary_10_1016_j_scib_2023_09_037
crossref_primary_10_1039_D3QM00419H
crossref_primary_10_1039_D3EE01226C
crossref_primary_10_1021_jacs_2c04741
crossref_primary_10_1039_D2EE01038K
crossref_primary_10_1063_5_0071039
crossref_primary_10_1016_j_cej_2024_149627
crossref_primary_10_1016_j_mtcomm_2025_111593
crossref_primary_10_1088_1402_4896_ad3eeb
crossref_primary_10_1039_D3EE00378G
crossref_primary_10_1002_advs_202203782
crossref_primary_10_1088_2515_7655_ad405d
crossref_primary_10_1016_j_jssc_2023_124344
crossref_primary_10_1016_j_applthermaleng_2023_121804
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1038_s41467_023_37436_6
crossref_primary_10_1088_2515_7655_ac49dc
crossref_primary_10_1063_5_0227080
crossref_primary_10_1002_adfm_202211969
crossref_primary_10_1557_s43578_025_01640_5
crossref_primary_10_1016_j_actamat_2025_120736
crossref_primary_10_1021_jacs_2c02017
crossref_primary_10_1016_j_applthermaleng_2023_121813
crossref_primary_10_1038_s41467_022_33774_z
crossref_primary_10_1063_5_0220462
crossref_primary_10_1016_j_ceramint_2024_03_204
crossref_primary_10_1016_j_inoche_2024_113276
crossref_primary_10_1063_5_0244411
crossref_primary_10_1016_j_cocom_2021_e00623
crossref_primary_10_1016_j_jmat_2024_06_006
crossref_primary_10_1016_j_vacuum_2025_114584
crossref_primary_10_1002_smll_202409315
crossref_primary_10_1016_j_applthermaleng_2024_124101
crossref_primary_10_1002_aenm_202203361
crossref_primary_10_1111_jace_19464
crossref_primary_10_1016_j_jpcs_2022_111077
crossref_primary_10_1088_1361_648X_acf636
crossref_primary_10_1016_j_mtphys_2022_100742
crossref_primary_10_1002_ange_202402628
crossref_primary_10_1021_acsami_4c19651
crossref_primary_10_1016_j_mtla_2022_101486
crossref_primary_10_1063_5_0217146
crossref_primary_10_3390_ma18143232
crossref_primary_10_1016_j_jssc_2024_124642
crossref_primary_10_1016_j_mtphys_2024_101594
crossref_primary_10_1016_j_cej_2022_138637
crossref_primary_10_1016_j_mssp_2022_106944
crossref_primary_10_54227_mlab_20220056
crossref_primary_10_1088_1361_6528_acca88
crossref_primary_10_1088_1402_4896_ac6384
crossref_primary_10_59717_j_xinn_mater_2025_100143
crossref_primary_10_1016_j_joule_2024_08_008
crossref_primary_10_1007_s10825_024_02207_z
crossref_primary_10_1016_j_jmat_2025_101108
crossref_primary_10_1016_j_solidstatesciences_2025_107910
crossref_primary_10_1007_s43207_024_00468_9
crossref_primary_10_1002_advs_202106052
crossref_primary_10_1088_1361_648X_ad44fa
crossref_primary_10_3390_ma15030849
crossref_primary_10_1016_j_vacuum_2025_114249
crossref_primary_10_1002_aelm_202400944
crossref_primary_10_1016_j_physb_2025_417488
crossref_primary_10_1002_adma_202418280
crossref_primary_10_1016_j_mtener_2022_100965
crossref_primary_10_1002_adma_202210894
crossref_primary_10_55959_MSU0579_9384_2_2024_65_6_443_460
crossref_primary_10_1021_acsanm_5c00686
crossref_primary_10_3390_coatings15091041
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123005
crossref_primary_10_1038_s41928_022_00776_0
crossref_primary_10_1016_j_jmst_2025_05_046
crossref_primary_10_1039_D5TA02619A
crossref_primary_10_1039_D4EE03090G
crossref_primary_10_1002_aelm_202400634
crossref_primary_10_1002_adfm_202419776
crossref_primary_10_1016_j_mtphys_2023_101292
crossref_primary_10_1016_j_joule_2023_12_019
crossref_primary_10_1002_pssa_202300425
crossref_primary_10_1016_j_nanoen_2022_108118
crossref_primary_10_1088_2632_2153_acc4a9
crossref_primary_10_1002_adfm_202411815
crossref_primary_10_1016_j_est_2023_107958
crossref_primary_10_1002_aelm_202200577
crossref_primary_10_1007_s10825_023_02062_4
crossref_primary_10_1039_D2RA04175H
crossref_primary_10_1016_j_jmst_2021_12_002
crossref_primary_10_1063_5_0159202
crossref_primary_10_1002_adfm_202306961
crossref_primary_10_1016_j_ceramint_2023_10_068
crossref_primary_10_1039_D4SC04158E
crossref_primary_10_1016_j_physb_2023_414994
crossref_primary_10_1021_acs_jpcc_5c02650
crossref_primary_10_1063_5_0074489
crossref_primary_10_1016_j_ceramint_2023_03_031
crossref_primary_10_1002_ece2_17
crossref_primary_10_1002_adfm_202405158
crossref_primary_10_1016_j_mtphys_2023_101071
crossref_primary_10_1016_j_matchemphys_2022_125959
crossref_primary_10_1002_adma_202313146
crossref_primary_10_1038_s41467_024_47578_w
crossref_primary_10_1016_j_ceramint_2022_09_018
crossref_primary_10_1016_j_mseb_2022_115737
crossref_primary_10_1002_anie_202501667
crossref_primary_10_1016_j_jssc_2024_124977
crossref_primary_10_1021_jacs_2c13179
crossref_primary_10_1177_09506608231225613
crossref_primary_10_1002_adfm_202303311
crossref_primary_10_1002_adfm_202200516
crossref_primary_10_1002_apxr_202400179
crossref_primary_10_1002_ange_202200071
crossref_primary_10_1002_adfm_202315652
crossref_primary_10_1039_D3RA07751A
Cites_doi 10.1038/nature19832
10.1002/anie.201605015
10.1038/ncomms12167
10.1126/science.aad3749
10.1021/acs.chemrev.6b00255
10.1038/nature11439
10.1016/j.ultramic.2007.02.023
10.1038/s41586-019-1751-9
10.1021/jacs.7b05881
10.1021/jacs.7b11875
10.1016/j.joule.2019.01.001
10.1016/j.mattod.2019.11.010
10.1038/nmat4430
10.1039/D0EE00491J
10.1016/S0040-6031(01)00730-4
10.1039/C7NR07427A
10.1126/science.aaq1479
10.1002/adma.202006853
10.1021/jacs.0c01726
10.1016/j.joule.2018.04.025
10.1021/es5060989
10.1039/C6EE01755J
10.1039/C9EE03921J
10.1103/PhysRevLett.100.136406
10.1126/science.1136494
10.1103/PhysRevLett.120.156403
10.1126/science.aak9997
10.1038/nature13184
10.1007/978-1-4614-3436-8
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
OTOTI
5PM
DOI 10.1038/s41563-021-01064-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1384
ExternalDocumentID PMC8463294
1811595
10_1038_s41563_021_01064_6
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2017M3A7B4049274; NRF-2020R1A2C2011111; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274
  funderid: https://doi.org/10.13039/501100003725
– fundername: Institute for Basic Science (IBS)
  grantid: IBS-R009-G2
  funderid: https://doi.org/10.13039/501100010446
– fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0014520
  funderid: https://doi.org/10.13039/100006151
– fundername: ;
  grantid: NRF-2017M3A7B4049274; NRF-2020R1A2C2011111; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274; NRF-2017M3A7B4049274
– fundername: ;
  grantid: IBS-R009-G2
– fundername: ;
  grantid: DE-SC0014520
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
5PM
ID FETCH-LOGICAL-c478t-7b05be52ae8f73c9c7c5f06c93275f6163c46bf32cb15112a00dcb2f39cbb2b3
IEDL.DBID M2P
ISICitedReferencesCount 568
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680338900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Tue Nov 04 01:58:41 EST 2025
Thu May 18 22:30:01 EDT 2023
Thu Sep 04 16:18:26 EDT 2025
Mon Oct 06 16:53:18 EDT 2025
Tue Nov 18 21:36:32 EST 2025
Sat Nov 29 03:30:33 EST 2025
Fri Feb 21 02:40:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-7b05be52ae8f73c9c7c5f06c93275f6163c46bf32cb15112a00dcb2f39cbb2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-3148-6600
0000-0002-2245-3057
0000-0001-6432-5670
0000-0001-6274-3369
0000-0001-6594-8773
0000-0001-7241-5342
0000-0003-1498-1025
0000-0001-6543-203X
0000-0002-6007-3063
0000000164325670
0000000172415342
0000000314981025
000000016543203X
0000000222453057
0000000162743369
0000000231486600
0000000260073063
0000000165948773
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8463294
PMID 34341524
PQID 2576118228
PQPubID 27576
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463294
osti_scitechconnect_1811595
proquest_miscellaneous_2557550771
proquest_journals_2576118228
crossref_primary_10_1038_s41563_021_01064_6
crossref_citationtrail_10_1038_s41563_021_01064_6
springer_journals_10_1038_s41563_021_01064_6
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United Kingdom
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tang (CR6) 2015; 14
Rudtsch (CR26) 2002; 382
Ye (CR19) 2021; 33
Chang (CR11) 2018; 360
Lee (CR14) 2017; 139
Tan (CR8) 2016; 7
Pletikosić (CR30) 2018; 120
Slade (CR21) 2020; 13
Zhao, Chang, Tan, Kanatzidis (CR16) 2016; 9
Qin (CR25) 2020; 142
Lin (CR23) 2016; 55
Chiritescu (CR24) 2007; 315
Peng, Yang, Perdew, Sun (CR29) 2016; 6
Zhao (CR9) 2014; 508
Tan, Zhao, Kanatzidis (CR3) 2016; 116
Biswas (CR5) 2012; 489
Wei (CR13) 2018; 140
Gingerich, Mauter (CR1) 2015; 49
Yu (CR18) 2020; 32
CR4
Miller, Russell (CR27) 2007; 107
Perdew (CR28) 2008; 100
Lee, Luo, Cho, Kanatzidis, Chung (CR12) 2019; 3
Kuo, Wood, Slade, Kanatzidis, Snyder (CR22) 2020; 13
CR20
Wei (CR15) 2016; 539
Jood, Ohta, Yamamoto, Kanatzidis (CR2) 2018; 2
Roy, Joshi, Chatterjee, Ghosh (CR17) 2018; 10
Hinterleitner (CR7) 2019; 576
Zhao (CR10) 2016; 351
G Tan (1064_CR8) 2016; 7
I Pletikosić (1064_CR30) 2018; 120
YK Lee (1064_CR14) 2017; 139
MK Miller (1064_CR27) 2007; 107
Y Yu (1064_CR18) 2020; 32
B Qin (1064_CR25) 2020; 142
L-D Zhao (1064_CR10) 2016; 351
JJ Kuo (1064_CR22) 2020; 13
C Chang (1064_CR11) 2018; 360
DB Gingerich (1064_CR1) 2015; 49
L-D Zhao (1064_CR9) 2014; 508
JP Perdew (1064_CR28) 2008; 100
H Peng (1064_CR29) 2016; 6
K Biswas (1064_CR5) 2012; 489
TJ Slade (1064_CR21) 2020; 13
X Ye (1064_CR19) 2021; 33
G Tan (1064_CR3) 2016; 116
S Roy (1064_CR17) 2018; 10
L-D Zhao (1064_CR16) 2016; 9
H Lin (1064_CR23) 2016; 55
Y Tang (1064_CR6) 2015; 14
1064_CR4
P Jood (1064_CR2) 2018; 2
B Hinterleitner (1064_CR7) 2019; 576
S Rudtsch (1064_CR26) 2002; 382
1064_CR20
C Chiritescu (1064_CR24) 2007; 315
YK Lee (1064_CR12) 2019; 3
PC Wei (1064_CR15) 2016; 539
W Wei (1064_CR13) 2018; 140
References_xml – volume: 539
  start-page: E1
  year: 2016
  end-page: E2
  ident: CR15
  article-title: The intrinsic thermal conductivity of SnSe
  publication-title: Nature
  doi: 10.1038/nature19832
– volume: 55
  start-page: 11431
  year: 2016
  end-page: 11436
  ident: CR23
  article-title: Concerted rattling in CsAg Te leading to ultralow thermal conductivity and high thermoelectric performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605015
– volume: 7
  year: 2016
  ident: CR8
  article-title: Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12167
– ident: CR4
– volume: 351
  start-page: 141
  year: 2016
  end-page: 144
  ident: CR10
  article-title: Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
  publication-title: Science
  doi: 10.1126/science.aad3749
– volume: 116
  start-page: 12123
  year: 2016
  end-page: 12149
  ident: CR3
  article-title: Rationally designing high-performance bulk thermoelectric materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00255
– volume: 489
  start-page: 414
  year: 2012
  end-page: 418
  ident: CR5
  article-title: High-performance bulk thermoelectrics with all-scale hierarchical architectures
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 107
  start-page: 761
  year: 2007
  end-page: 766
  ident: CR27
  article-title: Atom probe specimen preparation with a dual beam SEM/FIB miller
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2007.02.023
– volume: 576
  start-page: 85
  year: 2019
  end-page: 90
  ident: CR7
  article-title: Thermoelectric performance of a metastable thin-film Heusler alloy
  publication-title: Nature
  doi: 10.1038/s41586-019-1751-9
– volume: 139
  start-page: 10887
  year: 2017
  end-page: 10896
  ident: CR14
  article-title: Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05881
– volume: 140
  start-page: 499
  year: 2018
  end-page: 505
  ident: CR13
  article-title: Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11875
– volume: 3
  start-page: 719
  year: 2019
  end-page: 731
  ident: CR12
  article-title: Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.001
– volume: 32
  start-page: 260
  year: 2020
  end-page: 274
  ident: CR18
  article-title: Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.11.010
– volume: 14
  start-page: 1223
  year: 2015
  end-page: 1228
  ident: CR6
  article-title: Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb skutterudites
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4430
– volume: 13
  start-page: 1509
  year: 2020
  end-page: 1518
  ident: CR21
  article-title: Understanding the thermally activated charge transport in NaPb SbQ (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00491J
– volume: 382
  start-page: 17
  year: 2002
  end-page: 25
  ident: CR26
  article-title: Uncertainty of heat capacity measurements with differential scanning calorimeters
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(01)00730-4
– volume: 10
  start-page: 10664
  year: 2018
  end-page: 10682
  ident: CR17
  article-title: Local symmetry breaking in SnO nanocrystals with cobalt doping and its effect on optical properties
  publication-title: Nanoscale
  doi: 10.1039/C7NR07427A
– volume: 360
  start-page: 778
  year: 2018
  end-page: 783
  ident: CR11
  article-title: 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals
  publication-title: Science
  doi: 10.1126/science.aaq1479
– volume: 33
  start-page: 2006853
  year: 2021
  ident: CR19
  article-title: Magnetoelectric tuning of pinning-type permanent magnets through atomic-scale engineering of grain boundaries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006853
– volume: 142
  start-page: 5901
  year: 2020
  end-page: 5909
  ident: CR25
  article-title: Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01726
– volume: 2
  start-page: 1339
  year: 2018
  end-page: 1355
  ident: CR2
  article-title: Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.025
– volume: 49
  start-page: 8297
  year: 2015
  end-page: 8306
  ident: CR1
  article-title: Quantity, quality, and availability of waste heat from United States thermal power generation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5060989
– volume: 9
  start-page: 3044
  year: 2016
  end-page: 3060
  ident: CR16
  article-title: SnSe: a remarkable new thermoelectric material
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01755J
– volume: 13
  start-page: 1250
  year: 2020
  end-page: 1258
  ident: CR22
  article-title: Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03921J
– volume: 508
  start-page: 373
  year: 2014
  end-page: 377
  ident: CR9
  article-title: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
  publication-title: Nature
– volume: 100
  start-page: 136406
  year: 2008
  ident: CR28
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 315
  start-page: 351
  year: 2007
  end-page: 353
  ident: CR24
  article-title: Ultralow thermal conductivity in disordered, layered WSe crystals
  publication-title: Science
  doi: 10.1126/science.1136494
– volume: 120
  start-page: 156403
  year: 2018
  ident: CR30
  article-title: Band structure of the IV-VI black phosphorus analog and thermoelectric SnSe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.156403
– ident: CR20
– volume: 6
  start-page: 041005
  year: 2016
  ident: CR29
  article-title: Versatile van der Waals density functional based on a meta-generalized gradient approximation
  publication-title: Phys. Rev. X
– volume: 382
  start-page: 17
  year: 2002
  ident: 1064_CR26
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(01)00730-4
– volume: 142
  start-page: 5901
  year: 2020
  ident: 1064_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01726
– volume: 120
  start-page: 156403
  year: 2018
  ident: 1064_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.156403
– ident: 1064_CR4
  doi: 10.1126/science.aak9997
– volume: 100
  start-page: 136406
  year: 2008
  ident: 1064_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 6
  start-page: 041005
  year: 2016
  ident: 1064_CR29
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 10664
  year: 2018
  ident: 1064_CR17
  publication-title: Nanoscale
  doi: 10.1039/C7NR07427A
– volume: 107
  start-page: 761
  year: 2007
  ident: 1064_CR27
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2007.02.023
– volume: 360
  start-page: 778
  year: 2018
  ident: 1064_CR11
  publication-title: Science
  doi: 10.1126/science.aaq1479
– volume: 140
  start-page: 499
  year: 2018
  ident: 1064_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11875
– volume: 508
  start-page: 373
  year: 2014
  ident: 1064_CR9
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 33
  start-page: 2006853
  year: 2021
  ident: 1064_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006853
– ident: 1064_CR20
  doi: 10.1007/978-1-4614-3436-8
– volume: 49
  start-page: 8297
  year: 2015
  ident: 1064_CR1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5060989
– volume: 116
  start-page: 12123
  year: 2016
  ident: 1064_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00255
– volume: 489
  start-page: 414
  year: 2012
  ident: 1064_CR5
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 32
  start-page: 260
  year: 2020
  ident: 1064_CR18
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.11.010
– volume: 14
  start-page: 1223
  year: 2015
  ident: 1064_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4430
– volume: 55
  start-page: 11431
  year: 2016
  ident: 1064_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605015
– volume: 7
  year: 2016
  ident: 1064_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12167
– volume: 2
  start-page: 1339
  year: 2018
  ident: 1064_CR2
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.025
– volume: 9
  start-page: 3044
  year: 2016
  ident: 1064_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01755J
– volume: 576
  start-page: 85
  year: 2019
  ident: 1064_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-1751-9
– volume: 351
  start-page: 141
  year: 2016
  ident: 1064_CR10
  publication-title: Science
  doi: 10.1126/science.aad3749
– volume: 3
  start-page: 719
  year: 2019
  ident: 1064_CR12
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.001
– volume: 315
  start-page: 351
  year: 2007
  ident: 1064_CR24
  publication-title: Science
  doi: 10.1126/science.1136494
– volume: 139
  start-page: 10887
  year: 2017
  ident: 1064_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05881
– volume: 539
  start-page: E1
  year: 2016
  ident: 1064_CR15
  publication-title: Nature
  doi: 10.1038/nature19832
– volume: 13
  start-page: 1509
  year: 2020
  ident: 1064_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00491J
– volume: 13
  start-page: 1250
  year: 2020
  ident: 1064_CR22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03921J
SSID ssj0021556
Score 2.73856
Snippet Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal...
Abstract Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT....
SourceID pubmedcentral
osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1378
SubjectTerms 639/301/299/2736
639/638/263/915
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystal lattices
Crystals
Electrical resistivity
Figure of merit
Heat conductivity
Heat transfer
Lead free
Materials Science
Nanotechnology
Optical and Electronic Materials
Oxides
Polycrystals
Reagents
Single crystals
Thermal conductivity
Thermoelectric materials
Tin
Tin oxides
Tin selenide
Waste to energy
Title Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
URI https://link.springer.com/article/10.1038/s41563-021-01064-6
https://www.proquest.com/docview/2576118228
https://www.proquest.com/docview/2557550771
https://www.osti.gov/biblio/1811595
https://pubmed.ncbi.nlm.nih.gov/PMC8463294
Volume 20
WOSCitedRecordID wos000680338900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3da9swEMCPNd3D-rDvUbdd0GBvm1Zbji35aayjZTAWwtKHsBchyXIXSO3WcQr973dnO-lSWF_2YghSEpvT6X66O98BvJeZy6yRno88ahNqouAmU4ajpcKhPMyT3LbNJuR4rGazbNI73JZ9WuV6T2w36rxy5CM_JjAmGBbq89U1p65RFF3tW2jswC6STUQpXT_EZHPgQlvZvV0kU45cIfqXZsJYHS_p4EIRTDpMo1nm6ZZhGlSoYFvQeT9l8l7ctDVHZ8_-90Gew9MeRNmXbuW8gEe-fAl7f5UnfAW_JtXi1tW3CJBUuduzaTn1jDy3zDACx8uq66Izd6yYX6xqz6qCUQioYRcEo75m5JmnuYx8EgvP-p97Dednp-dfv_G-FwN3I6kaLm2YWJ8I41UhY5c56ZIiTB3in0yKFKnOjVJbxMLZiBjOhGHurCjizFkrbPwGBmVV-n1gtGUYlRY2olL8oTXIYDbNjTRxlCfeBhCt5aBdX6ec2mUsdBsvj5XuZKdRdrqVnU4D-LD5zlVXpePB2YckXo2MQYVyHWUUuUYj6yDbJQEcreWme31e6juhBfBuM4yaSOEVU_pqRXMQfRGvZRSA3Fotm3uiWt7bI-X8d1vTGzEwFtkogI_rdXX35_9-koOH7_UQngha4W3u4REMmnrl38Jjd9PMl_UQduRMtlc1hN2T0_HkJ376fvJp2GoRXeX0D5w8IHA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQk48EaEFjASnMBq4jycHBBCQNWqZbVS91BxsWzHKSstSclmQfuj-I_M5LFlK9FbD5ztOE78zfgbz3gG4JXMbGa0dDxyKE0oiYLrLNUcdypsyv08zk1bbEKOx-nJSTbZgt_DXRgKqxx0Yquo88rSGfkuEWMiwyJ9f_aDU9Uo8q4OJTQ6WBy61S802RbvDj7h-r4WYu_z9OM-76sKcBvJtOHS-LFxsdAuLWRoMyttXPiJRSIj4yJBfmKjxBShsCYgNqJ9P7dGFGFmjREmxGGvwfWIEotRpKCYrO073Jq7y0wy4fig6O_o-GG6uyA7iRymZLsjC-DJxj44qlCeNzjuxQjNC27advfbu_uf_bd7cKen2exDJxf3YcuVD-D2X8kXH8LXSTVf2XqF9Jjykjt2XB47RufSTDOixd-rrkbQzLJidrqsHasKRg6uhp0S1XY1I78D9WV04jJ3rB_uEUyv4tsew6isSvcEGClEnSaFCajQgG80MkyT5FrqMMhjZzwIhmVXts_CTsVA5qqNBghT1UFFIVRUCxWVePBm_cxZl4Pk0t7bhCaFDIrSAFuKl7KNQiaHzDX2YGeAieq11UKdY8SDl-tm1DPkPNKlq5bUB4k9Gg8y8EBugHM9J8pUvtlSzr61GcuR5IYiizx4O8D4_OX__pKnl8_1Bdzcn345UkcH48NtuCVIuNooyx0YNfXSPYMb9mczW9TPWzFloK4Y3n8AOiB4Gw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwKG8RWsBIcIJoE-fh5IBQS7uiKlqtaA8VF8t2nLLSkpRsFrQ_jX_XmTy2bCV664GzHcdOvhl_4xnPALwRqUm1EtYNLUoTSiJ3VZooF3cqbMq8LMp0U2xCjMfJ6Wk62YA__V0YCqvsdWKjqLPS0Bn5kIgxkWGeDPMuLGKyP_p4_tOlClLkae3LabQQObLL32i-zT8c7uO_fsv56ODk02e3qzDgmlAktSu0F2kbcWWTXAQmNcJEuRcbJDUiymPkKiaMdR5wo31iJsrzMqN5HqRGa64DHPYWbArkGOEANvcOxpOvK2sPN-r2apOIXXyUdzd2vCAZzslqIvcpWfLICdx4bVcclCjda4z3arzmFadtsxeO7v_HX_EBbHUEnO22EvMQNmzxCO79lZbxMXyblLOlqZZInCljuWXHxbFldGLNFCPC_KNsqwdNDcunZ4vKsjJn5Pqq2RmRcFsx8khQX0ZnMTPLuuGewMlNrO0pDIqysM-AkapUSZxrn0oQeFoh99RxpoQK_Cyy2gG_h4A0XX52KhMyk02cQJDIFjYSYSMb2MjYgXerZ87b7CTX9t4mZEnkVpQg2FAklaklcjzktJEDOz1kZKfH5vISLw68XjWjBiK3kipsuaA-SPnRrBC-A2INqKs5UQ7z9ZZi-r3JZY70N-Bp6MD7HtKXL__3Sp5fP9dXcAdRLb8cjo-24S4nOWvCL3dgUFcL-wJum1_1dF697GSWgbxhfF8AiYWCNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycrystalline+SnSe+with+a+thermoelectric+figure+of+merit+greater+than+the+single+crystal&rft.jtitle=Nature+materials&rft.au=Zhou+Chongjian&rft.au=Lee%2C+Yong+Kyu&rft.au=Yu%2C+Yuan&rft.au=Byun+Sejin&rft.date=2021-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=10&rft.spage=1378&rft.epage=1384&rft_id=info:doi/10.1038%2Fs41563-021-01064-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon