Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder

An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomolecules (Basel, Switzerland) Ročník 10; číslo 9; s. 1207
Hlavní autoři: Ai, Dongmei, Wang, Yuduo, Li, Xiaoxin, Pan, Hongfei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 20.08.2020
MDPI
Témata:
ISSN:2218-273X, 2218-273X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).
AbstractList An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).
An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).
Author Ai, Dongmei
Pan, Hongfei
Li, Xiaoxin
Wang, Yuduo
AuthorAffiliation 1 Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China
2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; S20190829@xs.ustb.edu.cn (Y.W.); S20180729@xs.ustb.edu.cn (X.L.); S20170825@xs.ustb.edu.cn (H.P.)
AuthorAffiliation_xml – name: 1 Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China
– name: 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; S20190829@xs.ustb.edu.cn (Y.W.); S20180729@xs.ustb.edu.cn (X.L.); S20170825@xs.ustb.edu.cn (H.P.)
Author_xml – sequence: 1
  givenname: Dongmei
  orcidid: 0000-0002-6935-6895
  surname: Ai
  fullname: Ai, Dongmei
– sequence: 2
  givenname: Yuduo
  surname: Wang
  fullname: Wang, Yuduo
– sequence: 3
  givenname: Xiaoxin
  surname: Li
  fullname: Li, Xiaoxin
– sequence: 4
  givenname: Hongfei
  surname: Pan
  fullname: Pan, Hongfei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32825264$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFCEUxyemxtbam2cziRcPjgKPhZmLyTqptUmjHvx1Iyy82bLOwgqM2v9etlubbSMh4QU-78sX3ntcHfjgsaqeUvIKoCOvFy6sKSEdZUQ-qI4Yo23DJHw_2IsPq5OUVqSMtkwGj6pDYC2bMcGPqtCHMUQ0WY91r73BWH-KaJ3JLvj6rU5o6xJ8Q7e8zCU-Q491H5rTP5uIKW2hD5h_h_ijnns9XiWXau1t_VVHp7caRXc-5ZLgTbAYn1QPBz0mPLlZj6sv704_9--bi49n5_38ojFctrmRgmsQTA5AJSFS4CCNgIFAcY4zbiwTFIAC0ciYxcGAtt1gCVLTcgYzOK7Od7o26JXaRLfW8UoF7dT1RohLpWN2ZkQF5Uoju8WALedGywU1YAShtOhrirpovdlpbabFGq1Bn6Me74jePfHuUi3DLyVnAiTbmnlxIxDDzwlTVmuXDI6j9himpBgHAZ0AIgr6_B66ClMsv7ijOsY4p4V6tu_o1sq_uhbg5Q4wMaQUcbhFKFHbzlH7nVNwdg83Ll-Xr7zHjf9P-gvw5cZw
CitedBy_id crossref_primary_10_3390_biom11010090
crossref_primary_10_1038_s41598_023_43956_4
crossref_primary_10_1007_s10815_023_02903_y
crossref_primary_10_3390_math13061020
crossref_primary_10_1186_s12864_023_09458_3
crossref_primary_10_3389_fgene_2021_629946
crossref_primary_10_3389_fgene_2025_1470584
crossref_primary_10_1186_s13036_022_00319_3
crossref_primary_10_1186_s12920_023_01488_w
crossref_primary_10_3390_f14040835
crossref_primary_10_1109_TIM_2021_3130675
crossref_primary_10_4251_wjgo_v17_i5_103667
crossref_primary_10_1038_s41598_024_72406_y
crossref_primary_10_3389_ebm_2025_10489
crossref_primary_10_3389_fgene_2022_1022640
crossref_primary_10_3390_biology10100957
crossref_primary_10_1155_2022_8598046
crossref_primary_10_3389_fgene_2021_701331
crossref_primary_10_1038_s41597_021_00998_5
crossref_primary_10_1371_journal_pone_0297947
crossref_primary_10_1016_j_cryobiol_2025_105258
crossref_primary_10_3389_fcell_2022_1089915
crossref_primary_10_1080_0886022X_2023_2202264
crossref_primary_10_1016_j_fm_2021_103905
crossref_primary_10_1038_s41598_023_48953_1
crossref_primary_10_1016_j_compbiomed_2022_105996
crossref_primary_10_1097_YPG_0000000000000322
crossref_primary_10_3389_fmicb_2024_1510139
Cites_doi 10.1186/1471-2407-13-280
10.1186/1471-2105-9-559
10.3892/ol.2016.5332
10.1093/bioinformatics/btp616
10.1186/s12859-019-3130-9
10.1152/physiolgenomics.2001.5.4.161
10.1136/gutjnl-2011-301179
10.2202/1544-6115.1128
10.1016/j.scr.2015.02.002
10.1109/ISBI.2019.8759199
10.1186/s12916-016-0668-5
10.1016/j.neucom.2015.08.104
10.3322/caac.21492
10.21037/jtd.2017.01.04
10.1155/2019/6469420
10.18632/oncoscience.370
10.18632/oncotarget.9153
10.1016/j.ajpath.2010.10.020
10.1016/j.rse.2004.06.017
10.1109/TPAMI.2012.277
10.1093/biostatistics/kxj037
10.1093/bioinformatics/btm563
10.1073/pnas.97.18.10101
10.1093/bioinformatics/bts034
10.1593/neo.09808
10.1186/s13059-014-0550-8
10.1093/nar/gkv007
10.18632/oncotarget.14488
10.1093/bioinformatics/17.6.509
10.1186/s12859-015-0478-3
10.1186/1471-2164-7-40
10.1158/1541-7786.MCR-07-0267
10.1186/1752-0509-5-35
10.1186/1477-7819-10-119
10.1038/srep25696
10.1186/1471-2105-13-S7-S9
10.1371/journal.pone.0106143
10.1016/j.artmed.2020.101924
10.1007/s10585-010-9305-4
10.1093/bioinformatics/btg385
10.1126/science.30.757.23
10.1016/j.neucom.2010.03.024
10.1038/s41598-017-05044-2
10.1186/gb-2003-4-4-210
10.1007/s11517-018-1930-0
10.3389/fnagi.2018.00259
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7T5
7TM
7TO
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biom10091207
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-273X
ExternalDocumentID oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea
PMC7563725
32825264
10_3390_biom10091207
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61370131
– fundername: National Natural Science Foundation of China
  grantid: 61873027
GroupedDBID 53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBD
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RPM
UKHRP
ALIPV
NPM
3V.
7T5
7TM
7TO
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c478t-764a3627f3170076ef7c63f03328e54cd26133130ae22defc3ad9fd0e1c842353
IEDL.DBID DOA
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-273X
IngestDate Fri Oct 03 12:45:01 EDT 2025
Tue Nov 04 01:48:42 EST 2025
Sun Nov 09 12:10:07 EST 2025
Sat Nov 29 14:31:53 EST 2025
Thu Apr 03 07:08:27 EDT 2025
Tue Nov 18 22:21:53 EST 2025
Sat Nov 29 07:09:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords classifier
weighted gene co-expression network analysis
colorectal cancer
hub genes
variational autoencoder
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-764a3627f3170076ef7c63f03328e54cd26133130ae22defc3ad9fd0e1c842353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6935-6895
OpenAccessLink https://doaj.org/article/3c47c79bfe844ca7b1c3c6011313a1ea
PMID 32825264
PQID 2436922441
PQPubID 2032425
ParticipantIDs doaj_primary_oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7563725
proquest_miscellaneous_2436396306
proquest_journals_2436922441
pubmed_primary_32825264
crossref_primary_10_3390_biom10091207
crossref_citationtrail_10_3390_biom10091207
PublicationCentury 2000
PublicationDate 20200820
PublicationDateYYYYMMDD 2020-08-20
PublicationDate_xml – month: 8
  year: 2020
  text: 20200820
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomolecules (Basel, Switzerland)
PublicationTitleAlternate Biomolecules
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Qin (ref_13) 2020; 21
Gerhold (ref_35) 2001; 5
Wang (ref_16) 2016; 184
ref_11
Meeh (ref_46) 2009; 11
Wang (ref_51) 2012; 10
Lenz (ref_14) 2016; 6
Pearson (ref_47) 1909; 30
ref_19
Ng (ref_18) 2011; 72
Benito (ref_32) 2004; 20
Alter (ref_31) 2000; 97
Hong (ref_24) 2010; 27
Lou (ref_43) 2017; 7
Huerta (ref_15) 2010; 73
Martin (ref_3) 2020; 107
Baldi (ref_36) 2001; 17
Langfelder (ref_40) 2007; 24
Alimperti (ref_52) 2015; 14
ref_22
Kumara (ref_53) 2017; 4
ref_21
Uddin (ref_25) 2011; 178
ref_20
Johnson (ref_30) 2007; 8
Cui (ref_27) 2003; 4
Valcz (ref_26) 2014; 9
Bray (ref_1) 2018; 68
Ai (ref_2) 2017; 8
ref_28
Hu (ref_44) 2018; 10
Karabulut (ref_8) 2017; 28
Cattaneo (ref_23) 2007; 5
Luo (ref_29) 2010; 10
Lee (ref_49) 2016; 26
Robinson (ref_38) 2010; 26
ref_33
Zhao (ref_4) 2019; 577
Gabere (ref_6) 2016; 9
Tian (ref_12) 2017; 9
Monni (ref_10) 2000; 60
Shin (ref_17) 2012; 35
Zhang (ref_41) 2005; 4
Zhang (ref_54) 2019; 2019
Ritchie (ref_39) 2015; 43
Foody (ref_45) 2004; 1
ref_42
Cubiella (ref_7) 2016; 14
Kurita (ref_50) 2016; 12
ref_48
ref_9
Agesen (ref_5) 2012; 61
Leek (ref_34) 2012; 28
Love (ref_37) 2014; 15
References_xml – ident: ref_9
  doi: 10.1186/1471-2407-13-280
– ident: ref_42
  doi: 10.1186/1471-2105-9-559
– volume: 12
  start-page: 5240
  year: 2016
  ident: ref_50
  article-title: TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.5332
– volume: 26
  start-page: 139
  year: 2010
  ident: ref_38
  article-title: EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– ident: ref_22
  doi: 10.1186/s12859-019-3130-9
– volume: 5
  start-page: 161
  year: 2001
  ident: ref_35
  article-title: Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays
  publication-title: Physiol. Genom.
  doi: 10.1152/physiolgenomics.2001.5.4.161
– volume: 60
  start-page: 5340
  year: 2000
  ident: ref_10
  article-title: Multiple genes at 17q23 undergo amplification and overexpression in breast cancer
  publication-title: Cancer Res.
– volume: 61
  start-page: 1560
  year: 2012
  ident: ref_5
  article-title: ColoGuideEx: A robust gene classifier specific for stage II colorectal cancer prognosis
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-301179
– volume: 4
  start-page: 1
  year: 2005
  ident: ref_41
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1128
– volume: 14
  start-page: 270
  year: 2015
  ident: ref_52
  article-title: CDH2 and CDH11 act as regulators of stem cell fate decisions
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2015.02.002
– ident: ref_21
  doi: 10.1109/ISBI.2019.8759199
– volume: 14
  start-page: 1
  year: 2016
  ident: ref_7
  article-title: Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
  publication-title: BMC Med.
  doi: 10.1186/s12916-016-0668-5
– volume: 184
  start-page: 232
  year: 2016
  ident: ref_16
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 68
  start-page: 394
  year: 2018
  ident: ref_1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 9
  start-page: 42
  year: 2017
  ident: ref_12
  article-title: Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2017.01.04
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_54
  article-title: Integrated Analysis of Oncogenic Networks in Colorectal Cancer Identifies GUCA2A as a Molecular Marker
  publication-title: Biochem. Res. Int.
  doi: 10.1155/2019/6469420
– volume: 4
  start-page: 139
  year: 2017
  ident: ref_53
  article-title: P-Cadherin (CDH3) is overexpressed in colorectal tumors and has potential as a serum marker for colorectal cancer monitoring
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.370
– volume: 26
  start-page: 39595
  year: 2016
  ident: ref_49
  article-title: Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9153
– volume: 178
  start-page: 537
  year: 2011
  ident: ref_25
  article-title: Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2010.10.020
– volume: 1
  start-page: 107
  year: 2004
  ident: ref_45
  article-title: Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.017
– volume: 35
  start-page: 1930
  year: 2012
  ident: ref_17
  article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.277
– volume: 8
  start-page: 118
  year: 2007
  ident: ref_30
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 24
  start-page: 719
  year: 2007
  ident: ref_40
  article-title: Defining clusters from a hierarchical cluster tree: The Dynamic Tree Cut package for R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm563
– volume: 28
  start-page: 1016
  year: 2017
  ident: ref_8
  article-title: Discriminative deep belief networks for microarray based cancer classification
  publication-title: Biomed. Res.
– ident: ref_20
– volume: 97
  start-page: 10101
  year: 2000
  ident: ref_31
  article-title: Singular value decomposition for genome-wide expression data processing and modeling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.18.10101
– volume: 28
  start-page: 882
  year: 2012
  ident: ref_34
  article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts034
– volume: 11
  start-page: 1074
  year: 2009
  ident: ref_46
  article-title: A Gene Expression Classifier of Node-Positive Colorectal Cancer
  publication-title: Neoplasia
  doi: 10.1593/neo.09808
– volume: 15
  start-page: 550
  year: 2014
  ident: ref_37
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 43
  start-page: E47
  year: 2015
  ident: ref_39
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 8
  start-page: 9546
  year: 2017
  ident: ref_2
  article-title: Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14488
– volume: 17
  start-page: 509
  year: 2001
  ident: ref_36
  article-title: A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.509
– ident: ref_33
  doi: 10.1186/s12859-015-0478-3
– volume: 9
  start-page: 3313
  year: 2016
  ident: ref_6
  article-title: Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer
  publication-title: Oncotargets Ther.
– volume: 72
  start-page: 1
  year: 2011
  ident: ref_18
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Notes
– ident: ref_11
  doi: 10.1186/1471-2164-7-40
– volume: 5
  start-page: 1263
  year: 2007
  ident: ref_23
  article-title: Transcriptome profile of human colorectal adenomas
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-07-0267
– ident: ref_48
  doi: 10.1186/1752-0509-5-35
– volume: 10
  start-page: 119
  year: 2012
  ident: ref_51
  article-title: RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells
  publication-title: World J. Surg. Oncol.
  doi: 10.1186/1477-7819-10-119
– volume: 6
  start-page: 25696
  year: 2016
  ident: ref_14
  article-title: Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
  publication-title: Sci. Rep.
  doi: 10.1038/srep25696
– volume: 21
  start-page: 2533
  year: 2020
  ident: ref_13
  article-title: Application of Weighted Gene co-expression Network Analysis to Explore the Potential Diagnostic Biomarkers for Colorectal Cancer
  publication-title: Mol. Med. Rep.
– ident: ref_28
  doi: 10.1186/1471-2105-13-S7-S9
– volume: 9
  start-page: E106143
  year: 2014
  ident: ref_26
  article-title: Myofibroblast-derived SFRP1 as potential inhibitor of colorectal carcinoma field effect
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0106143
– volume: 107
  start-page: 101924
  year: 2020
  ident: ref_3
  article-title: Detection of early stages of Alzheimer’s disease based on MEG activity with a randomized convolutional neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101924
– volume: 27
  start-page: 83
  year: 2010
  ident: ref_24
  article-title: A ‘metastasis-prone’signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-010-9305-4
– volume: 10
  start-page: 278
  year: 2010
  ident: ref_29
  article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
  publication-title: Pharm. J.
– volume: 20
  start-page: 105
  year: 2004
  ident: ref_32
  article-title: Adjustment of systematic microarray data biases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg385
– volume: 30
  start-page: 23
  year: 1909
  ident: ref_47
  article-title: Determination of the coefficient of correlation
  publication-title: Science
  doi: 10.1126/science.30.757.23
– ident: ref_19
– volume: 73
  start-page: 2375
  year: 2010
  ident: ref_15
  article-title: A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.03.024
– volume: 7
  start-page: 4748
  year: 2017
  ident: ref_43
  article-title: Characterization of transcriptional modules related to fibrosing-NAFLD progression
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05044-2
– volume: 4
  start-page: 210
  year: 2003
  ident: ref_27
  article-title: Statistical tests for differential expression in cDNA microarray experiments
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-4-210
– volume: 577
  start-page: 901
  year: 2019
  ident: ref_4
  article-title: A reliable method for colorectal cancer prediction based on feature selection and support vector machine
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1930-0
– volume: 10
  start-page: 259
  year: 2018
  ident: ref_44
  article-title: Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00259
SSID ssj0000800823
Score 2.3548176
Snippet An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1207
SubjectTerms Accuracy
Cancer
Classification
classifier
Colorectal cancer
Colorectal carcinoma
Datasets
Discriminant analysis
DNA microarrays
Gene expression
hub genes
Methods
Neural networks
Prediction models
Principal components analysis
Researchers
Sample size
Statistical analysis
Support vector machines
variational autoencoder
weighted gene co-expression network analysis
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cClPAo0UJCRgAuKGsdO7JzQdtWKA1rtgUdvkWM7pRIkJbuL4N8z43iXXQRcuFnJWLI1nqfH3wA8d5VDq9g0qeWtSmVT-lQ7VaSOt1RPlanGBBDXt2o20-fn1Twm3BaxrHKtE4Oidr2lHPlxLkVZob2R_PXV15S6RtHtamyhcR1uEEqCCKV7802OhbwhnYux3l1gdH9Mb9o5uhU8p_6xW5YoAPb_ycv8vVhyy_qc3f7fdd-B_eh3ssl4UO7CNd_dg4NJhzH3lx_sJQuVoCHFfgD9FAekCXHClE7FwOYDXegQE9kJ2j3HcPAxZFVxTNDVbNqnp99jVW3HZmN1OVtjnjDTOfYB4_KYe2ST1RIndPSifrgP789O303fpLExQ2ql0stUldKg4VOtIHQ_VfpW2VK0mRC59oW0DsMyIdA6Gp_nzrdWGFe1LvPcanTfCvEA9rq-84fAWm1kydHN9DqXrsH4rckadIJkhRziOkvg1ZpJtY2o5dQ843ON0QuxtN5maQIvNtRXI1rHX-hOiN8bGsLYDh_64aKOIlsL3KxVVdN6LaU1quFWWIxfOe7McG8SOFpzvI6Cv6h_sTuBZ5vfKLJ0D2M6369GGoGKLysTeDgers1KBL0lRilJQO0cu52l7v7pLj8FWHBVlELlxaN_L-sx3MopZZCRgjyCveWw8k_gpv22vFwMT4P8_AS_OiWY
  priority: 102
  providerName: ProQuest
Title Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder
URI https://www.ncbi.nlm.nih.gov/pubmed/32825264
https://www.proquest.com/docview/2436922441
https://www.proquest.com/docview/2436396306
https://pubmed.ncbi.nlm.nih.gov/PMC7563725
https://doaj.org/article/3c47c79bfe844ca7b1c3c6011313a1ea
Volume 10
WOSCitedRecordID wos000580707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2218-273X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800823
  issn: 2218-273X
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwoELApZHYKmMBFxQtHHsxM6xrboCCaoI8SinKPFDuwhSlG0R_HtmnLRKEYgLl8hybMmZGXu-ccafAZ7awqJXbJrYcK9i2eQu1lZlseWe8qkS1dSBxPW1Wi71alWUo6u-KCespwfuBXcqjFRGFY13WkpTq4YbYTCK4IKLmrsAjRD1jIKpzwMO0qnoM90FxvWndJqdI6DgKd0cO_JBgar_T_jy9zTJkd85uwU3B8DIpv1Ab8MV196B42mLwfLXn-w5CymcYW_8GNZzLNAShh3mpM6OlR39iSHpsxk6LMuw8DFsh2KZOKfZfB0vfgzpsC1b9mnhbEdWwurWsg8YUA-bhmy63WCHlo7Cd3fh_dni3fxlPNyoEKMU9SZWuazRYykviJZP5c4rkwufCJFql0ljMZ4SKNikdmlqnTeitoW3ieNGI-7KxD04atetewDM61rmHPGh06m0DQZeTdIgepEFCpjrJIIXOxlXZqAbp1svvlQYdpBGqrFGIni2b_2tp9n4S7sZqWvfhsixQwWaTDWYTPUvk4ngZKfsapixl1UqRV4gnpE8gif71zjX6AdK3br1tm8jcMVK8gju97axH4mgQ8Bo3hGoA6s5GOrhm_biPPB5qywXKs0e_o9vewQ3UtoRSGj9O4GjTbd1j-G6-b65uOwmcFWtVHjqCVybLZbl20mYOBPKeS2xrnz1pvz0C2PBHfA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXXuURKGAkygVFjR8bOweEtkurVl1WeyjQW3BsB1aCpGR3gf4pfiMzebGLgFsP3KzEluzk8zcPj2cIeeoSB1Ixy0LLchXKLPahdmoQOpZjPFWkMlMncR2ryUSfnibTDfKjuwuDYZUdJ9ZE7UqLPvJdLkWcgLyR7OXZlxCrRuHpaldCo4HFsT__Bibb_MXRK_i_O5wf7J-MDsO2qkBopdKLUMXSAGurXGBqOhX7XNlY5JEQXPuBtA5sCiGA2o3n3PncCuOS3EWeWQ26B1aJAMq_BBPhug4VnPY-HdS-NBdNfL0QSbSLd-gZqDGMY73aFclXFwj4k1b7e3DmirQ7uP6_facb5FqrV9NhsxFukg1f3CJbw8Isys_n9BmtI13rI4QtUo6ggUwPA0aI-opOKzywQpDSPZDrjkLjXe01hjam5qajMtz_3kYNF3TSRM_TLqcLNYWjb001a32rdLhcwIACMwZUt8mbC1n6HbJZlIW_R2iujYwZqNFec-kysE-zKAMlTyaACKajgDzvQJHaNis7Fgf5lIJ1hhBKVyEUkJ2-91mTjeQv_fYQX30fzCFePyirD2lLSamAxVqVZLnXUlqjMmaFBfucwcoM8yYg2x3C0pbY5ukveAXkSf8aKAnPmUzhy2XTRwCxR3FA7jZg7mci8K40sEBA1BrM16a6_qaYfazTnqtBLBQf3P_3tB6TK4cnr8fp-Ghy_IBc5egeiVAYbJPNRbX0D8ll-3Uxm1eP6r1LyfuL3gQ_AV6ogGo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tFoS48FoegQWMxHJBUWM7jZMDQt3uVqx2VfXAY2_BsR2oBMmStsD-NX4dM3nRIuC2B25W40h2-vmb8Xj8DcBTm1i0ilnmG54rP8wi58dWDX3Lc8qnClSmaxHXEzWdxqenyWwLfnR3YSitsuPEmqhtaShGPhChjBK0NyEf5G1axOxg8vLsi08VpOiktSun0UDk2J1_w-3b4sXRAf7Xe0JMDl-PX_lthQHfhCpe-ioKNTK4yiXJ1KnI5cpEMg-kFLEbhsbi_kJKpHnthLAuN1LbJLeB4yZGP4QqRiD9X1IkWl6nDc76-A55YrGQTa69lEkwoPv0HF0aLqh27ZoVrIsF_MnD_T1Rc83yTa7_z9_sBlxr_W02ahbITdhyxS3YGRV6WX4-Z89YnQFbHy3sQDnGBlkAfGFMq6Fis4oOsgi8bB_tvWXYeFdHk7FNkt1sXPqH39ts4oJNm6x61mm9MF1Y9lZX8zbmykarJb5QkJJAdRveXMjU78B2URbuHrA81ggadK9dLEKb4b41CzJ0_sIE0cHjwIPnHUBS06q1U9GQTynu2ghO6TqcPNjre581KiV_6bdPWOv7kLZ4_UNZfUhbqkolTtaoJMtdHIZGq4wbaXDfznFmmjvtwW6HtrQlvEX6C2oePOkfI1XR-ZMuXLlq-kgk_CDy4G4D7H4kku5QIzt4oDYgvzHUzSfF_GMth66GkVRieP_fw3oMVxD76cnR9PgBXBUUNQnIRuzC9rJauYdw2XxdzhfVo3oZM3h_0WvgJxcbiSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorectal+Cancer+Prediction+Based+on+Weighted+Gene+Co-Expression+Network+Analysis+and+Variational+Auto-Encoder&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Dongmei+Ai&rft.au=Yuduo+Wang&rft.au=Xiaoxin+Li&rft.au=Hongfei+Pan&rft.date=2020-08-20&rft.pub=MDPI+AG&rft.eissn=2218-273X&rft.volume=10&rft.issue=9&rft.spage=1207&rft_id=info:doi/10.3390%2Fbiom10091207&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon