Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder
An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gen...
Uloženo v:
| Vydáno v: | Biomolecules (Basel, Switzerland) Ročník 10; číslo 9; s. 1207 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
20.08.2020
MDPI |
| Témata: | |
| ISSN: | 2218-273X, 2218-273X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE). |
|---|---|
| AbstractList | An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE). An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE).An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal samples. Twelve gene modules were obtained by weighted gene co-expression network analysis (WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the characteristic genes of each module and colorectal cancer, we obtained a key module that was highly correlated with CRC. We screened hub genes from the key module by considering module membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly different expressions and mapped the data into a 10-dimensional representation, as another type of feature for the cancer classifier. The two types of features were applied to the support vector machines (SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA and a 10-dimensional representation by variational autoencoder (VAE). |
| Author | Ai, Dongmei Pan, Hongfei Li, Xiaoxin Wang, Yuduo |
| AuthorAffiliation | 1 Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; S20190829@xs.ustb.edu.cn (Y.W.); S20180729@xs.ustb.edu.cn (X.L.); S20170825@xs.ustb.edu.cn (H.P.) |
| AuthorAffiliation_xml | – name: 1 Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China – name: 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; S20190829@xs.ustb.edu.cn (Y.W.); S20180729@xs.ustb.edu.cn (X.L.); S20170825@xs.ustb.edu.cn (H.P.) |
| Author_xml | – sequence: 1 givenname: Dongmei orcidid: 0000-0002-6935-6895 surname: Ai fullname: Ai, Dongmei – sequence: 2 givenname: Yuduo surname: Wang fullname: Wang, Yuduo – sequence: 3 givenname: Xiaoxin surname: Li fullname: Li, Xiaoxin – sequence: 4 givenname: Hongfei surname: Pan fullname: Pan, Hongfei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32825264$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks9vFCEUxyemxtbam2cziRcPjgKPhZmLyTqptUmjHvx1Iyy82bLOwgqM2v9etlubbSMh4QU-78sX3ntcHfjgsaqeUvIKoCOvFy6sKSEdZUQ-qI4Yo23DJHw_2IsPq5OUVqSMtkwGj6pDYC2bMcGPqtCHMUQ0WY91r73BWH-KaJ3JLvj6rU5o6xJ8Q7e8zCU-Q491H5rTP5uIKW2hD5h_h_ijnns9XiWXau1t_VVHp7caRXc-5ZLgTbAYn1QPBz0mPLlZj6sv704_9--bi49n5_38ojFctrmRgmsQTA5AJSFS4CCNgIFAcY4zbiwTFIAC0ciYxcGAtt1gCVLTcgYzOK7Od7o26JXaRLfW8UoF7dT1RohLpWN2ZkQF5Uoju8WALedGywU1YAShtOhrirpovdlpbabFGq1Bn6Me74jePfHuUi3DLyVnAiTbmnlxIxDDzwlTVmuXDI6j9himpBgHAZ0AIgr6_B66ClMsv7ijOsY4p4V6tu_o1sq_uhbg5Q4wMaQUcbhFKFHbzlH7nVNwdg83Ll-Xr7zHjf9P-gvw5cZw |
| CitedBy_id | crossref_primary_10_3390_biom11010090 crossref_primary_10_1038_s41598_023_43956_4 crossref_primary_10_1007_s10815_023_02903_y crossref_primary_10_3390_math13061020 crossref_primary_10_1186_s12864_023_09458_3 crossref_primary_10_3389_fgene_2021_629946 crossref_primary_10_3389_fgene_2025_1470584 crossref_primary_10_1186_s13036_022_00319_3 crossref_primary_10_1186_s12920_023_01488_w crossref_primary_10_3390_f14040835 crossref_primary_10_1109_TIM_2021_3130675 crossref_primary_10_4251_wjgo_v17_i5_103667 crossref_primary_10_1038_s41598_024_72406_y crossref_primary_10_3389_ebm_2025_10489 crossref_primary_10_3389_fgene_2022_1022640 crossref_primary_10_3390_biology10100957 crossref_primary_10_1155_2022_8598046 crossref_primary_10_3389_fgene_2021_701331 crossref_primary_10_1038_s41597_021_00998_5 crossref_primary_10_1371_journal_pone_0297947 crossref_primary_10_1016_j_cryobiol_2025_105258 crossref_primary_10_3389_fcell_2022_1089915 crossref_primary_10_1080_0886022X_2023_2202264 crossref_primary_10_1016_j_fm_2021_103905 crossref_primary_10_1038_s41598_023_48953_1 crossref_primary_10_1016_j_compbiomed_2022_105996 crossref_primary_10_1097_YPG_0000000000000322 crossref_primary_10_3389_fmicb_2024_1510139 |
| Cites_doi | 10.1186/1471-2407-13-280 10.1186/1471-2105-9-559 10.3892/ol.2016.5332 10.1093/bioinformatics/btp616 10.1186/s12859-019-3130-9 10.1152/physiolgenomics.2001.5.4.161 10.1136/gutjnl-2011-301179 10.2202/1544-6115.1128 10.1016/j.scr.2015.02.002 10.1109/ISBI.2019.8759199 10.1186/s12916-016-0668-5 10.1016/j.neucom.2015.08.104 10.3322/caac.21492 10.21037/jtd.2017.01.04 10.1155/2019/6469420 10.18632/oncoscience.370 10.18632/oncotarget.9153 10.1016/j.ajpath.2010.10.020 10.1016/j.rse.2004.06.017 10.1109/TPAMI.2012.277 10.1093/biostatistics/kxj037 10.1093/bioinformatics/btm563 10.1073/pnas.97.18.10101 10.1093/bioinformatics/bts034 10.1593/neo.09808 10.1186/s13059-014-0550-8 10.1093/nar/gkv007 10.18632/oncotarget.14488 10.1093/bioinformatics/17.6.509 10.1186/s12859-015-0478-3 10.1186/1471-2164-7-40 10.1158/1541-7786.MCR-07-0267 10.1186/1752-0509-5-35 10.1186/1477-7819-10-119 10.1038/srep25696 10.1186/1471-2105-13-S7-S9 10.1371/journal.pone.0106143 10.1016/j.artmed.2020.101924 10.1007/s10585-010-9305-4 10.1093/bioinformatics/btg385 10.1126/science.30.757.23 10.1016/j.neucom.2010.03.024 10.1038/s41598-017-05044-2 10.1186/gb-2003-4-4-210 10.1007/s11517-018-1930-0 10.3389/fnagi.2018.00259 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 3V. 7T5 7TM 7TO 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/biom10091207 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2218-273X |
| ExternalDocumentID | oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea PMC7563725 32825264 10_3390_biom10091207 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61370131 – fundername: National Natural Science Foundation of China grantid: 61873027 |
| GroupedDBID | 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBD ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RPM UKHRP ALIPV NPM 3V. 7T5 7TM 7TO 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c478t-764a3627f3170076ef7c63f03328e54cd26133130ae22defc3ad9fd0e1c842353 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-273X |
| IngestDate | Fri Oct 03 12:45:01 EDT 2025 Tue Nov 04 01:48:42 EST 2025 Sun Nov 09 12:10:07 EST 2025 Sat Nov 29 14:31:53 EST 2025 Thu Apr 03 07:08:27 EDT 2025 Tue Nov 18 22:21:53 EST 2025 Sat Nov 29 07:09:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | classifier weighted gene co-expression network analysis colorectal cancer hub genes variational autoencoder |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-764a3627f3170076ef7c63f03328e54cd26133130ae22defc3ad9fd0e1c842353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6935-6895 |
| OpenAccessLink | https://doaj.org/article/3c47c79bfe844ca7b1c3c6011313a1ea |
| PMID | 32825264 |
| PQID | 2436922441 |
| PQPubID | 2032425 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea pubmedcentral_primary_oai_pubmedcentral_nih_gov_7563725 proquest_miscellaneous_2436396306 proquest_journals_2436922441 pubmed_primary_32825264 crossref_primary_10_3390_biom10091207 crossref_citationtrail_10_3390_biom10091207 |
| PublicationCentury | 2000 |
| PublicationDate | 20200820 |
| PublicationDateYYYYMMDD | 2020-08-20 |
| PublicationDate_xml | – month: 8 year: 2020 text: 20200820 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomolecules (Basel, Switzerland) |
| PublicationTitleAlternate | Biomolecules |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Qin (ref_13) 2020; 21 Gerhold (ref_35) 2001; 5 Wang (ref_16) 2016; 184 ref_11 Meeh (ref_46) 2009; 11 Wang (ref_51) 2012; 10 Lenz (ref_14) 2016; 6 Pearson (ref_47) 1909; 30 ref_19 Ng (ref_18) 2011; 72 Benito (ref_32) 2004; 20 Alter (ref_31) 2000; 97 Hong (ref_24) 2010; 27 Lou (ref_43) 2017; 7 Huerta (ref_15) 2010; 73 Martin (ref_3) 2020; 107 Baldi (ref_36) 2001; 17 Langfelder (ref_40) 2007; 24 Alimperti (ref_52) 2015; 14 ref_22 Kumara (ref_53) 2017; 4 ref_21 Uddin (ref_25) 2011; 178 ref_20 Johnson (ref_30) 2007; 8 Cui (ref_27) 2003; 4 Valcz (ref_26) 2014; 9 Bray (ref_1) 2018; 68 Ai (ref_2) 2017; 8 ref_28 Hu (ref_44) 2018; 10 Karabulut (ref_8) 2017; 28 Cattaneo (ref_23) 2007; 5 Luo (ref_29) 2010; 10 Lee (ref_49) 2016; 26 Robinson (ref_38) 2010; 26 ref_33 Zhao (ref_4) 2019; 577 Gabere (ref_6) 2016; 9 Tian (ref_12) 2017; 9 Monni (ref_10) 2000; 60 Shin (ref_17) 2012; 35 Zhang (ref_41) 2005; 4 Zhang (ref_54) 2019; 2019 Ritchie (ref_39) 2015; 43 Foody (ref_45) 2004; 1 ref_42 Cubiella (ref_7) 2016; 14 Kurita (ref_50) 2016; 12 ref_48 ref_9 Agesen (ref_5) 2012; 61 Leek (ref_34) 2012; 28 Love (ref_37) 2014; 15 |
| References_xml | – ident: ref_9 doi: 10.1186/1471-2407-13-280 – ident: ref_42 doi: 10.1186/1471-2105-9-559 – volume: 12 start-page: 5240 year: 2016 ident: ref_50 article-title: TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion publication-title: Oncol. Lett. doi: 10.3892/ol.2016.5332 – volume: 26 start-page: 139 year: 2010 ident: ref_38 article-title: EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – ident: ref_22 doi: 10.1186/s12859-019-3130-9 – volume: 5 start-page: 161 year: 2001 ident: ref_35 article-title: Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays publication-title: Physiol. Genom. doi: 10.1152/physiolgenomics.2001.5.4.161 – volume: 60 start-page: 5340 year: 2000 ident: ref_10 article-title: Multiple genes at 17q23 undergo amplification and overexpression in breast cancer publication-title: Cancer Res. – volume: 61 start-page: 1560 year: 2012 ident: ref_5 article-title: ColoGuideEx: A robust gene classifier specific for stage II colorectal cancer prognosis publication-title: Gut doi: 10.1136/gutjnl-2011-301179 – volume: 4 start-page: 1 year: 2005 ident: ref_41 article-title: A general framework for weighted gene co-expression network analysis publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128 – volume: 14 start-page: 270 year: 2015 ident: ref_52 article-title: CDH2 and CDH11 act as regulators of stem cell fate decisions publication-title: Stem Cell Res. doi: 10.1016/j.scr.2015.02.002 – ident: ref_21 doi: 10.1109/ISBI.2019.8759199 – volume: 14 start-page: 1 year: 2016 ident: ref_7 article-title: Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients publication-title: BMC Med. doi: 10.1186/s12916-016-0668-5 – volume: 184 start-page: 232 year: 2016 ident: ref_16 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 68 start-page: 394 year: 2018 ident: ref_1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 9 start-page: 42 year: 2017 ident: ref_12 article-title: Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2017.01.04 – volume: 2019 start-page: 1 year: 2019 ident: ref_54 article-title: Integrated Analysis of Oncogenic Networks in Colorectal Cancer Identifies GUCA2A as a Molecular Marker publication-title: Biochem. Res. Int. doi: 10.1155/2019/6469420 – volume: 4 start-page: 139 year: 2017 ident: ref_53 article-title: P-Cadherin (CDH3) is overexpressed in colorectal tumors and has potential as a serum marker for colorectal cancer monitoring publication-title: Oncoscience doi: 10.18632/oncoscience.370 – volume: 26 start-page: 39595 year: 2016 ident: ref_49 article-title: Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models publication-title: Oncotarget doi: 10.18632/oncotarget.9153 – volume: 178 start-page: 537 year: 2011 ident: ref_25 article-title: Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2010.10.020 – volume: 1 start-page: 107 year: 2004 ident: ref_45 article-title: Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.06.017 – volume: 35 start-page: 1930 year: 2012 ident: ref_17 article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.277 – volume: 8 start-page: 118 year: 2007 ident: ref_30 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 24 start-page: 719 year: 2007 ident: ref_40 article-title: Defining clusters from a hierarchical cluster tree: The Dynamic Tree Cut package for R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm563 – volume: 28 start-page: 1016 year: 2017 ident: ref_8 article-title: Discriminative deep belief networks for microarray based cancer classification publication-title: Biomed. Res. – ident: ref_20 – volume: 97 start-page: 10101 year: 2000 ident: ref_31 article-title: Singular value decomposition for genome-wide expression data processing and modeling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.18.10101 – volume: 28 start-page: 882 year: 2012 ident: ref_34 article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts034 – volume: 11 start-page: 1074 year: 2009 ident: ref_46 article-title: A Gene Expression Classifier of Node-Positive Colorectal Cancer publication-title: Neoplasia doi: 10.1593/neo.09808 – volume: 15 start-page: 550 year: 2014 ident: ref_37 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 43 start-page: E47 year: 2015 ident: ref_39 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 8 start-page: 9546 year: 2017 ident: ref_2 article-title: Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer publication-title: Oncotarget doi: 10.18632/oncotarget.14488 – volume: 17 start-page: 509 year: 2001 ident: ref_36 article-title: A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.509 – ident: ref_33 doi: 10.1186/s12859-015-0478-3 – volume: 9 start-page: 3313 year: 2016 ident: ref_6 article-title: Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer publication-title: Oncotargets Ther. – volume: 72 start-page: 1 year: 2011 ident: ref_18 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes – ident: ref_11 doi: 10.1186/1471-2164-7-40 – volume: 5 start-page: 1263 year: 2007 ident: ref_23 article-title: Transcriptome profile of human colorectal adenomas publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-07-0267 – ident: ref_48 doi: 10.1186/1752-0509-5-35 – volume: 10 start-page: 119 year: 2012 ident: ref_51 article-title: RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells publication-title: World J. Surg. Oncol. doi: 10.1186/1477-7819-10-119 – volume: 6 start-page: 25696 year: 2016 ident: ref_14 article-title: Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data publication-title: Sci. Rep. doi: 10.1038/srep25696 – volume: 21 start-page: 2533 year: 2020 ident: ref_13 article-title: Application of Weighted Gene co-expression Network Analysis to Explore the Potential Diagnostic Biomarkers for Colorectal Cancer publication-title: Mol. Med. Rep. – ident: ref_28 doi: 10.1186/1471-2105-13-S7-S9 – volume: 9 start-page: E106143 year: 2014 ident: ref_26 article-title: Myofibroblast-derived SFRP1 as potential inhibitor of colorectal carcinoma field effect publication-title: PloS ONE doi: 10.1371/journal.pone.0106143 – volume: 107 start-page: 101924 year: 2020 ident: ref_3 article-title: Detection of early stages of Alzheimer’s disease based on MEG activity with a randomized convolutional neural network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101924 – volume: 27 start-page: 83 year: 2010 ident: ref_24 article-title: A ‘metastasis-prone’signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-010-9305-4 – volume: 10 start-page: 278 year: 2010 ident: ref_29 article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data publication-title: Pharm. J. – volume: 20 start-page: 105 year: 2004 ident: ref_32 article-title: Adjustment of systematic microarray data biases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg385 – volume: 30 start-page: 23 year: 1909 ident: ref_47 article-title: Determination of the coefficient of correlation publication-title: Science doi: 10.1126/science.30.757.23 – ident: ref_19 – volume: 73 start-page: 2375 year: 2010 ident: ref_15 article-title: A hybrid LDA and genetic algorithm for gene selection and classification of microarray data publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.03.024 – volume: 7 start-page: 4748 year: 2017 ident: ref_43 article-title: Characterization of transcriptional modules related to fibrosing-NAFLD progression publication-title: Sci. Rep. doi: 10.1038/s41598-017-05044-2 – volume: 4 start-page: 210 year: 2003 ident: ref_27 article-title: Statistical tests for differential expression in cDNA microarray experiments publication-title: Genome Biol. doi: 10.1186/gb-2003-4-4-210 – volume: 577 start-page: 901 year: 2019 ident: ref_4 article-title: A reliable method for colorectal cancer prediction based on feature selection and support vector machine publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1930-0 – volume: 10 start-page: 259 year: 2018 ident: ref_44 article-title: Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00259 |
| SSID | ssj0000800823 |
| Score | 2.3548176 |
| Snippet | An effective feature extraction method is key to improving the accuracy of a prediction model. From the Gene Expression Omnibus (GEO) database, which includes... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1207 |
| SubjectTerms | Accuracy Cancer Classification classifier Colorectal cancer Colorectal carcinoma Datasets Discriminant analysis DNA microarrays Gene expression hub genes Methods Neural networks Prediction models Principal components analysis Researchers Sample size Statistical analysis Support vector machines variational autoencoder weighted gene co-expression network analysis |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cClPAo0UJCRgAuKGsdO7JzQdtWKA1rtgUdvkWM7pRIkJbuL4N8z43iXXQRcuFnJWLI1nqfH3wA8d5VDq9g0qeWtSmVT-lQ7VaSOt1RPlanGBBDXt2o20-fn1Twm3BaxrHKtE4Oidr2lHPlxLkVZob2R_PXV15S6RtHtamyhcR1uEEqCCKV7802OhbwhnYux3l1gdH9Mb9o5uhU8p_6xW5YoAPb_ycv8vVhyy_qc3f7fdd-B_eh3ssl4UO7CNd_dg4NJhzH3lx_sJQuVoCHFfgD9FAekCXHClE7FwOYDXegQE9kJ2j3HcPAxZFVxTNDVbNqnp99jVW3HZmN1OVtjnjDTOfYB4_KYe2ST1RIndPSifrgP789O303fpLExQ2ql0stUldKg4VOtIHQ_VfpW2VK0mRC59oW0DsMyIdA6Gp_nzrdWGFe1LvPcanTfCvEA9rq-84fAWm1kydHN9DqXrsH4rckadIJkhRziOkvg1ZpJtY2o5dQ843ON0QuxtN5maQIvNtRXI1rHX-hOiN8bGsLYDh_64aKOIlsL3KxVVdN6LaU1quFWWIxfOe7McG8SOFpzvI6Cv6h_sTuBZ5vfKLJ0D2M6369GGoGKLysTeDgers1KBL0lRilJQO0cu52l7v7pLj8FWHBVlELlxaN_L-sx3MopZZCRgjyCveWw8k_gpv22vFwMT4P8_AS_OiWY priority: 102 providerName: ProQuest |
| Title | Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32825264 https://www.proquest.com/docview/2436922441 https://www.proquest.com/docview/2436396306 https://pubmed.ncbi.nlm.nih.gov/PMC7563725 https://doaj.org/article/3c47c79bfe844ca7b1c3c6011313a1ea |
| Volume | 10 |
| WOSCitedRecordID | wos000580707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2218-273X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800823 issn: 2218-273X databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwoELApZHYKmMBFxQtHHsxM6xrboCCaoI8SinKPFDuwhSlG0R_HtmnLRKEYgLl8hybMmZGXu-ccafAZ7awqJXbJrYcK9i2eQu1lZlseWe8qkS1dSBxPW1Wi71alWUo6u-KCespwfuBXcqjFRGFY13WkpTq4YbYTCK4IKLmrsAjRD1jIKpzwMO0qnoM90FxvWndJqdI6DgKd0cO_JBgar_T_jy9zTJkd85uwU3B8DIpv1Ab8MV196B42mLwfLXn-w5CymcYW_8GNZzLNAShh3mpM6OlR39iSHpsxk6LMuw8DFsh2KZOKfZfB0vfgzpsC1b9mnhbEdWwurWsg8YUA-bhmy63WCHlo7Cd3fh_dni3fxlPNyoEKMU9SZWuazRYykviJZP5c4rkwufCJFql0ljMZ4SKNikdmlqnTeitoW3ieNGI-7KxD04atetewDM61rmHPGh06m0DQZeTdIgepEFCpjrJIIXOxlXZqAbp1svvlQYdpBGqrFGIni2b_2tp9n4S7sZqWvfhsixQwWaTDWYTPUvk4ngZKfsapixl1UqRV4gnpE8gif71zjX6AdK3br1tm8jcMVK8gju97axH4mgQ8Bo3hGoA6s5GOrhm_biPPB5qywXKs0e_o9vewQ3UtoRSGj9O4GjTbd1j-G6-b65uOwmcFWtVHjqCVybLZbl20mYOBPKeS2xrnz1pvz0C2PBHfA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXXuURKGAkygVFjR8bOweEtkurVl1WeyjQW3BsB1aCpGR3gf4pfiMzebGLgFsP3KzEluzk8zcPj2cIeeoSB1Ixy0LLchXKLPahdmoQOpZjPFWkMlMncR2ryUSfnibTDfKjuwuDYZUdJ9ZE7UqLPvJdLkWcgLyR7OXZlxCrRuHpaldCo4HFsT__Bibb_MXRK_i_O5wf7J-MDsO2qkBopdKLUMXSAGurXGBqOhX7XNlY5JEQXPuBtA5sCiGA2o3n3PncCuOS3EWeWQ26B1aJAMq_BBPhug4VnPY-HdS-NBdNfL0QSbSLd-gZqDGMY73aFclXFwj4k1b7e3DmirQ7uP6_facb5FqrV9NhsxFukg1f3CJbw8Isys_n9BmtI13rI4QtUo6ggUwPA0aI-opOKzywQpDSPZDrjkLjXe01hjam5qajMtz_3kYNF3TSRM_TLqcLNYWjb001a32rdLhcwIACMwZUt8mbC1n6HbJZlIW_R2iujYwZqNFec-kysE-zKAMlTyaACKajgDzvQJHaNis7Fgf5lIJ1hhBKVyEUkJ2-91mTjeQv_fYQX30fzCFePyirD2lLSamAxVqVZLnXUlqjMmaFBfucwcoM8yYg2x3C0pbY5ukveAXkSf8aKAnPmUzhy2XTRwCxR3FA7jZg7mci8K40sEBA1BrM16a6_qaYfazTnqtBLBQf3P_3tB6TK4cnr8fp-Ghy_IBc5egeiVAYbJPNRbX0D8ll-3Uxm1eP6r1LyfuL3gQ_AV6ogGo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tFoS48FoegQWMxHJBUWM7jZMDQt3uVqx2VfXAY2_BsR2oBMmStsD-NX4dM3nRIuC2B25W40h2-vmb8Xj8DcBTm1i0ilnmG54rP8wi58dWDX3Lc8qnClSmaxHXEzWdxqenyWwLfnR3YSitsuPEmqhtaShGPhChjBK0NyEf5G1axOxg8vLsi08VpOiktSun0UDk2J1_w-3b4sXRAf7Xe0JMDl-PX_lthQHfhCpe-ioKNTK4yiXJ1KnI5cpEMg-kFLEbhsbi_kJKpHnthLAuN1LbJLeB4yZGP4QqRiD9X1IkWl6nDc76-A55YrGQTa69lEkwoPv0HF0aLqh27ZoVrIsF_MnD_T1Rc83yTa7_z9_sBlxr_W02ahbITdhyxS3YGRV6WX4-Z89YnQFbHy3sQDnGBlkAfGFMq6Fis4oOsgi8bB_tvWXYeFdHk7FNkt1sXPqH39ts4oJNm6x61mm9MF1Y9lZX8zbmykarJb5QkJJAdRveXMjU78B2URbuHrA81ggadK9dLEKb4b41CzJ0_sIE0cHjwIPnHUBS06q1U9GQTynu2ghO6TqcPNjre581KiV_6bdPWOv7kLZ4_UNZfUhbqkolTtaoJMtdHIZGq4wbaXDfznFmmjvtwW6HtrQlvEX6C2oePOkfI1XR-ZMuXLlq-kgk_CDy4G4D7H4kku5QIzt4oDYgvzHUzSfF_GMth66GkVRieP_fw3oMVxD76cnR9PgBXBUUNQnIRuzC9rJauYdw2XxdzhfVo3oZM3h_0WvgJxcbiSc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorectal+Cancer+Prediction+Based+on+Weighted+Gene+Co-Expression+Network+Analysis+and+Variational+Auto-Encoder&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Dongmei+Ai&rft.au=Yuduo+Wang&rft.au=Xiaoxin+Li&rft.au=Hongfei+Pan&rft.date=2020-08-20&rft.pub=MDPI+AG&rft.eissn=2218-273X&rft.volume=10&rft.issue=9&rft.spage=1207&rft_id=info:doi/10.3390%2Fbiom10091207&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c47c79bfe844ca7b1c3c6011313a1ea |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |