Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer

Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the over...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of molecular sciences Ročník 23; číslo 4; s. 1969
Hlavní autori: Srirattana, Kanokwan, Kaneda, Masahiro, Parnpai, Rangsun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 10.02.2022
MDPI
Predmet:
ISSN:1422-0067, 1661-6596, 1422-0067
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
AbstractList Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Author Parnpai, Rangsun
Srirattana, Kanokwan
Kaneda, Masahiro
AuthorAffiliation 2 Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; kanedam@cc.tuat.ac.jp
1 Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; kanokwan.sri@sut.ac.th
AuthorAffiliation_xml – name: 1 Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; kanokwan.sri@sut.ac.th
– name: 2 Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; kanedam@cc.tuat.ac.jp
Author_xml – sequence: 1
  givenname: Kanokwan
  surname: Srirattana
  fullname: Srirattana, Kanokwan
– sequence: 2
  givenname: Masahiro
  orcidid: 0000-0003-0660-7156
  surname: Kaneda
  fullname: Kaneda, Masahiro
– sequence: 3
  givenname: Rangsun
  orcidid: 0000-0002-4764-9101
  surname: Parnpai
  fullname: Parnpai, Rangsun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35216087$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rGzEQxUVJaWK3t56DIJce6lZflnYvgWDcJGDag9OzUGZHiczuypF2A_nvK-M0OCGnGZjfPN6bmZCjPvZIyFfOfkhZs59h02UhmeK1rj-QE66EmDGmzdFBf0wmOW8YE1LM60_kWM4F16wyJ2S5HpIb8C5gpkOk1902xUekwz3SpfcBAvbwRKOn69i5IQBdYNvS3yO06BK9Sa7PHtNn8tG7NuOX5zolf38tbxZXs9Wfy-vFxWoGylTDTDPVyMZAg7xmgIpr9Epxr8VcaQMOoYZGa8VBgmMVMw0IKeWtKGxTeSWn5Hyvux1vO2wA--K-tdsUOpeebHTBvp704d7exUdbVaYuukXg27NAig8j5sF2IUOJ5HqMY7ZCS1lpo0uZkrM36CaOqS_xdpQwRY7NC3V66OjFyv8LF-D7HoAUc07oXxDO7O6B9vCBBRdvcAhDOXzc5Qnt-0v_AHE6nn4
CitedBy_id crossref_primary_10_1016_j_jia_2025_03_005
crossref_primary_10_3390_ijms232415975
crossref_primary_10_1016_j_bcab_2025_103553
crossref_primary_10_1371_journal_pone_0300754
crossref_primary_10_3390_app13084798
crossref_primary_10_3390_ijms252413675
crossref_primary_10_3390_ijms232213786
crossref_primary_10_1016_j_theriogenology_2024_01_003
crossref_primary_10_1016_j_theriogenology_2025_01_029
crossref_primary_10_3389_fcell_2025_1532962
crossref_primary_10_3390_ijms26073310
crossref_primary_10_1016_j_anireprosci_2025_107945
crossref_primary_10_17816_gc638127
crossref_primary_10_1016_j_therwi_2025_100125
crossref_primary_10_1080_10495398_2024_2394692
crossref_primary_10_1016_j_repbio_2024_100965
crossref_primary_10_1016_j_gene_2025_149715
crossref_primary_10_1177_09636897231164712
crossref_primary_10_3390_ijms23094572
crossref_primary_10_3390_ijms25031459
crossref_primary_10_3390_ani14040589
crossref_primary_10_5713_ab_22_0389
crossref_primary_10_1111_rda_70112
crossref_primary_10_3390_ani15071022
crossref_primary_10_3390_ijms231810296
crossref_primary_10_1016_j_repbio_2023_100853
crossref_primary_10_1186_s12864_022_09015_4
crossref_primary_10_1098_rsob_230358
crossref_primary_10_1016_j_theriogenology_2024_11_016
crossref_primary_10_1093_biolre_ioaf133
Cites_doi 10.1002/mrd.20357
10.1038/nrg3354
10.1038/s41467-020-15607-z
10.1016/j.theriogenology.2021.03.006
10.3390/ani11092483
10.1387/ijdb.103196ms
10.1016/S1046-2023(03)00083-5
10.1080/14767058.2017.1297405
10.1089/cell.2020.0022
10.1016/j.molcel.2020.06.001
10.1002/(SICI)1098-2795(199806)50:2<185::AID-MRD9>3.0.CO;2-G
10.1038/nrg1688
10.1016/j.stem.2015.10.001
10.1530/REP-20-0021
10.1089/cell.2013.0032
10.1089/153623003321512111
10.1262/jrd.11-109H
10.1016/j.theriogenology.2020.04.013
10.1093/molehr/gaz023
10.1186/1477-7827-1-98
10.1093/biolre/ioaa053
10.3390/ijms21144836
10.1089/cell.2014.0077
10.1073/pnas.89.16.7370
10.1038/ng.3844
10.1016/j.repbio.2015.01.002
10.1038/28615
10.3390/ijms21072314
10.1038/celldisc.2016.10
10.1016/j.stem.2018.07.017
10.1530/rep.1.01206
10.1371/journal.pone.0180535
10.1089/cell.2009.0068
10.1016/j.sjbs.2020.04.039
10.1002/(SICI)1098-2795(199811)51:3<281::AID-MRD7>3.0.CO;2-L
10.1073/pnas.1814514115
10.1530/ror.0.0030155
10.1534/g3.117.042655
10.1016/j.theriogenology.2016.04.021
10.1089/cell.2017.0058
10.1016/j.bbrc.2012.07.031
10.1016/j.rvsc.2017.12.011
10.1089/cell.2015.0060
10.1017/S0967199420000891
10.1016/j.stemcr.2017.12.015
10.5187/jast.2021.e41
10.1096/fj.201900578RR
10.1073/pnas.1112664108
10.1111/j.1439-0531.2009.01408.x
10.1111/asj.13260
10.1089/clo.2007.0091
10.1530/rep.1.00551
10.1530/REP-08-0299
10.1017/S0967199420000805
10.1089/cell.2017.0051
10.1038/ncb3485
10.1002/mrd.22935
10.1038/s41467-020-16044-8
10.1071/RD03052
10.1089/cell.2020.0041
10.1530/REP-20-0351
10.1262/jrd.2013-116
10.1016/j.bbrc.2005.11.164
10.1016/j.cell.2017.04.013
10.1262/jrd.2012-195
10.1007/s12033-020-00262-y
10.1093/biolre/ioab141
10.2527/jas.2007-0718
10.1530/REP-15-0338
10.1016/j.tibtech.2007.04.004
10.1016/j.theriogenology.2019.09.027
10.1016/j.bbrc.2007.04.165
10.1089/cell.2021.0028
10.1126/science.1194174
10.1016/j.stem.2020.09.006
10.1089/ten.tea.2009.0343
10.1095/biolreprod.106.051581
10.1095/biolreprod.109.077016
10.1089/cell.2014.0012
10.1262/jrd.2019-070
10.1111/rda.13606
10.1038/nature01079
10.1002/mrd.22787
10.1242/dev.086116
10.1016/j.stem.2018.06.008
10.1002/mrd.20311
10.1098/rstb.2011.0329
10.1016/0093-691X(93)90069-H
10.1089/153623002753632020
10.1073/pnas.0704360104
10.1007/s10815-014-0409-7
10.1016/j.theriogenology.2016.09.011
10.1089/clo.2006.0090
10.1089/clo.2009.0022
10.3390/ijms22063099
10.1530/REP-08-0435
10.1007/s10529-016-2141-0
10.1017/S0967199411000463
10.1016/S0959-437X(98)80090-7
10.1016/j.theriogenology.2019.06.016
10.1095/biolreprod.103.017954
10.1002/mrd.10279
10.1089/clo.2008.0072
10.1002/ana.410430212
10.1016/j.bbrc.2011.06.160
10.1089/cell.2018.0050
10.3390/ani11020473
10.1016/j.cell.2018.01.020
10.1071/RD15463
10.1016/j.fertnstert.2010.03.010
10.1095/biolreprod.104.033225
10.1002/mrd.1079
10.1007/s43032-021-00533-2
10.1371/journal.pone.0169092
10.1530/jrf.0.1080307
10.1159/000464389
10.1074/jbc.M511340200
10.1016/j.theriogenology.2018.12.021
10.1089/cell.2016.0030
10.1530/rep.0.1220731
10.1017/S0967199417000387
10.1095/biolreprod.105.047456
10.1002/mrd.22531
10.1038/s41580-019-0151-1
10.1262/jrd.2016-095
10.1021/ja037390k
10.1002/mrd.22271
10.1007/s10616-018-0224-6
10.1095/biolreprod.102.008771
10.1095/biolreprod.102.012112
10.1038/ng.3858
10.1262/jrd.18098
10.1007/s11626-013-9630-4
10.1371/journal.pone.0213737
10.1016/j.theriogenology.2020.07.022
10.1634/stemcells.2007-0747
10.1038/12696
10.1016/S0960-9822(01)00480-8
10.1038/srep23229
10.1292/jvms.11-0510
10.1038/nrm3140
10.1126/science.6857250
10.1016/S0960-9822(03)00419-6
10.1016/j.theriogenology.2019.01.001
10.1095/biolreprod63.3.715
10.1038/72692
10.1038/ng1973
10.1371/journal.pone.0036181
10.1016/j.cell.2017.09.026
10.1109/TBME.2020.3036494
10.1155/2012/161372
10.1155/2021/6681337
10.1017/S0967199419000200
10.1038/s41598-020-61797-3
10.1186/1471-213X-7-141
10.1371/journal.pone.0120033
10.1111/rda.12929
10.1177/1933719112440049
10.3390/ani10091496
10.1016/j.anireprosci.2019.106125
10.1038/385810a0
10.15252/embr.201846240
10.1126/science.1181369
10.1530/REP-11-0421
10.1089/cell.2017.0024
10.3390/ijms22010236
10.1262/jrd.10-058A
10.1016/j.theriogenology.2007.07.021
10.1371/journal.pone.0230247
10.15252/embr.202050054
10.1016/j.tibtech.2016.03.008
10.1095/biolreprod67.2.637
10.1016/j.anireprosci.2015.04.002
10.1038/cr.2007.66
10.1089/cell.2009.0032
10.1016/j.theriogenology.2013.09.032
10.1007/s10815-013-9987-z
10.1089/cell.2010.0015
10.1095/biolreprod60.5.1188
10.1089/cell.2011.0099
10.1186/1471-2164-12-204
10.1530/REP-07-0442
10.1016/S0093-691X(02)00645-3
10.1089/cell.2011.0079
10.1016/j.theriogenology.2008.04.042
10.3389/fgene.2020.00205
10.1242/dev.158261
10.1017/S0967199419000856
10.1089/cell.2014.0103
10.1262/jrd.2019-001
10.1038/s41598-018-25516-3
10.1074/jbc.C113.464800
10.1089/cell.2012.0033
10.1007/s00441-006-0201-9
10.1038/nature02873
10.1093/biolre/ioab096
10.1074/jbc.M110.136085
10.1017/S0967199400003762
10.1111/rda.13493
10.1016/j.stem.2020.05.014
10.1042/BCJ20180512
10.1016/j.theriogenology.2006.08.006
10.1089/clo.2007.0002
10.1186/s12958-021-00829-7
10.4161/cc.10.16.17093
10.1095/biolreprod.110.085282
10.1530/REP-15-0460
10.1371/journal.pone.0055941
10.1016/j.theriogenology.2008.05.046
10.1111/cpr.13059
10.1002/jcp.28357
10.1089/cell.2010.0060
10.1111/febs.14515
10.1038/nature24281
10.4142/jvs.2019.20.e31
10.1016/0012-1606(75)90061-5
10.1038/s41594-018-0075-z
10.1095/biolreprod.107.063149
10.1089/cell.2019.0008
10.1530/jrf.0.1160253
10.1016/j.theriogenology.2011.05.025
10.1530/rep.1.00772
10.1038/s41580-019-0132-4
10.5713/ajas.15.0051
10.1071/RD14176
10.1089/cell.2010.0094
10.1007/s10616-016-0057-0
10.1242/bio.023473
10.1530/REP-10-0528
10.1016/j.theriogenology.2019.11.027
10.2478/aoas-2018-0015
10.1371/journal.pone.0064705
10.1038/ng.3846
10.1017/S0967199408005133
10.1016/j.cell.2014.09.055
10.1007/102_2018_3
10.1080/10495398.2018.1559846
10.1262/jrd.09-149A
10.1371/journal.pone.0233880
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms23041969
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8879641
35216087
10_3390_ijms23041969
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
ALIPV
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
ESTFP
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c478t-604d3d7cde190ce416ef441f625467caec9cd6641c3ca0807dc2333b2ce4d8f43
IEDL.DBID BENPR
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767286900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
1661-6596
IngestDate Tue Nov 04 02:00:53 EST 2025
Mon Sep 08 14:47:00 EDT 2025
Tue Oct 07 07:13:49 EDT 2025
Wed Feb 19 02:27:23 EST 2025
Tue Nov 18 22:31:51 EST 2025
Sat Nov 29 07:08:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords somatic cell nuclear transfer
embryo
epigenetic modification
nuclear reprogramming
cloning efficiency
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-604d3d7cde190ce416ef441f625467caec9cd6641c3ca0807dc2333b2ce4d8f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4764-9101
0000-0003-0660-7156
OpenAccessLink https://www.proquest.com/docview/2632764105?pq-origsite=%requestingapplication%
PMID 35216087
PQID 2632764105
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879641
proquest_miscellaneous_2633867663
proquest_journals_2632764105
pubmed_primary_35216087
crossref_primary_10_3390_ijms23041969
crossref_citationtrail_10_3390_ijms23041969
PublicationCentury 2000
PublicationDate 20220210
PublicationDateYYYYMMDD 2022-02-10
PublicationDate_xml – month: 2
  year: 2022
  text: 20220210
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Meng (ref_115) 2009; 11
Conzatti (ref_70) 2018; 31
Yang (ref_202) 2005; 71
Hendrickson (ref_239) 2017; 49
Fang (ref_139) 2020; 31
Liu (ref_162) 2018; 145
Tecirlioglu (ref_38) 2003; 15
Lee (ref_79) 2017; 52
An (ref_151) 2019; 234
McGrath (ref_34) 1983; 220
Hosseini (ref_45) 2013; 15
Brierley (ref_93) 1998; 43
Shi (ref_135) 2003; 69
Ogura (ref_11) 2013; 368
Ono (ref_35) 2001; 122
Dai (ref_124) 2010; 285
Collins (ref_224) 1999; 60
Zhang (ref_6) 2021; 2021
Qasim (ref_232) 2019; 65
Wang (ref_211) 2019; 54
Ongaratto (ref_121) 2020; 28
Inoue (ref_195) 2020; 11
MacGregor (ref_186) 2019; 476
Lee (ref_237) 2021; 54
Moulavi (ref_44) 2020; 62
Schwarzer (ref_192) 2017; 551
Miyoshi (ref_222) 2010; 56
Das (ref_123) 2010; 12
Liu (ref_103) 2018; 172
Wang (ref_194) 2020; 151
Wen (ref_119) 2014; 81
Selokar (ref_16) 2018; 20
Rodrigues (ref_66) 2009; 44
Mangia (ref_52) 1975; 45
Liu (ref_155) 2016; 2
Shi (ref_27) 2008; 86
Hosseini (ref_46) 2013; 49
ref_73
Yu (ref_197) 2018; 115
Enright (ref_133) 2003; 69
Sun (ref_29) 2003; 31
Yang (ref_138) 2007; 133
Han (ref_184) 2018; 285
Lee (ref_225) 2021; 29
Chen (ref_145) 2015; 82
Matoba (ref_203) 2011; 108
ref_148
Sparman (ref_99) 2010; 54
Li (ref_223) 1996; 108
ref_88
Evans (ref_85) 1999; 23
Shyam (ref_234) 2020; 157
Yang (ref_159) 2013; 145
Yang (ref_171) 2018; 19
Fu (ref_71) 2015; 28
Jozi (ref_227) 2020; 10
Klinger (ref_18) 2021; 162
Held (ref_56) 2011; 76
Zhang (ref_149) 2020; 55
Steinborn (ref_87) 2000; 2
Chung (ref_160) 2015; 17
Yang (ref_206) 2019; 65
ref_214
Kikuchi (ref_229) 2000; 63
Song (ref_77) 2020; 22
Ono (ref_125) 2010; 83
Wang (ref_173) 2020; 27
Du (ref_41) 2007; 68
Akagi (ref_101) 2011; 57
Chen (ref_218) 2004; 126
ref_210
Boulesteix (ref_158) 2012; 58
Young (ref_7) 1998; 3
Niemann (ref_21) 2016; 86
Li (ref_28) 2008; 70
Song (ref_78) 2019; 208
Jones (ref_176) 2001; 60
Brockdorff (ref_199) 1998; 8
Planet (ref_238) 2017; 49
Zhang (ref_100) 2007; 9
Qiu (ref_129) 2017; 19
Long (ref_5) 2014; 81
Fathi (ref_69) 2017; 25
Cagnone (ref_58) 2016; 6
ref_208
Chen (ref_219) 2007; 104
Lee (ref_47) 2021; 63
Kishigami (ref_95) 2006; 340
Bhojwani (ref_53) 2007; 67
Kamimura (ref_141) 2021; 105
Huang (ref_168) 2017; 29
Saini (ref_137) 2016; 28
Samiec (ref_107) 2019; 90
Zhang (ref_193) 2020; 79
Tepekoy (ref_233) 2015; 32
Lagutina (ref_40) 2005; 130
Bhat (ref_236) 2018; 25
Bui (ref_143) 2012; 139
Jambhekar (ref_154) 2019; 20
Vajta (ref_37) 2003; 68
Ferreira (ref_82) 2021; 161
George (ref_42) 2011; 13
Santos (ref_156) 2003; 13
Wang (ref_183) 2016; 18
Sadeesh (ref_62) 2017; 69
Sharma (ref_226) 2021; 23
Zhang (ref_161) 2018; 70
Wang (ref_98) 2007; 77
Huan (ref_108) 2015; 17
Rao (ref_191) 2017; 171
Takeda (ref_86) 1999; 116
Vajta (ref_36) 2007; 25
Constant (ref_9) 2006; 75
Wu (ref_64) 2007; 17
Rathbone (ref_142) 2010; 12
Qu (ref_152) 2019; 25
Do (ref_215) 2015; 15
ref_109
Samiec (ref_140) 2018; 21
Oback (ref_39) 2003; 5
Meister (ref_181) 2004; 431
Loi (ref_3) 2016; 34
Kubota (ref_30) 1998; 51
Wakayama (ref_33) 1998; 394
Pichugin (ref_157) 2010; 139
Oikawa (ref_204) 2013; 59
Xu (ref_76) 2019; 21
Wang (ref_60) 2012; 2012
Wang (ref_17) 2020; 11
Patin (ref_175) 2001; 11
Jin (ref_132) 2017; 84
Wang (ref_185) 2019; 21
Srirattana (ref_102) 2014; 60
Jewgenow (ref_67) 2019; 126
Srirattana (ref_114) 2012; 14
ref_15
Spikings (ref_57) 2006; 131
Zheng (ref_187) 2019; 20
Cortez (ref_49) 2018; 20
Jin (ref_177) 2006; 325
Oh (ref_111) 2012; 74
Wee (ref_201) 2006; 281
Miyamoto (ref_150) 2017; 6
Cui (ref_110) 2011; 13
Miyoshi (ref_126) 2010; 12
Matoba (ref_116) 2014; 159
Yang (ref_241) 2020; 21
Wu (ref_212) 2020; 22
Inoue (ref_200) 2010; 330
Chawalit (ref_147) 2012; 19
Tian (ref_12) 2003; 1
Haarhuis (ref_190) 2017; 169
Velilla (ref_55) 2002; 57
Tsuji (ref_105) 2009; 17
Iager (ref_26) 2008; 10
Guo (ref_106) 2018; 117
Alhimaidi (ref_113) 2020; 27
Ding (ref_136) 2008; 70
Chen (ref_91) 2002; 67
Wilmut (ref_1) 1997; 385
Samiec (ref_14) 2018; 18
Zhao (ref_32) 2021; 68
Li (ref_120) 2019; 135
Zhou (ref_166) 2020; 34
Do (ref_89) 2012; 424
Lee (ref_230) 2008; 10
Vajta (ref_4) 2018; 20
Kim (ref_231) 2019; 20
Peura (ref_74) 1998; 50
Izquierdo (ref_59) 2011; 142
Whiddon (ref_240) 2017; 49
Srirattana (ref_80) 2019; 231
Xiang (ref_217) 2021; 167
Wilmut (ref_20) 2002; 419
ref_50
Zhai (ref_72) 2018; 85
Sekirina (ref_83) 1997; 5
Smith (ref_24) 2013; 14
Rybouchkin (ref_96) 2006; 74
Minor (ref_144) 2013; 288
Bui (ref_104) 2009; 138
ref_174
ref_54
Mohapatra (ref_61) 2015; 17
Meng (ref_165) 2020; 103
ref_178
Frydman (ref_207) 2011; 95
Yang (ref_117) 2021; 28
Jia (ref_63) 2019; 27
ref_182
Jullien (ref_19) 2011; 12
Ribeiro (ref_75) 2009; 11
Takeda (ref_84) 2003; 64
Qin (ref_153) 2021; 29
Huang (ref_167) 2016; 151
Kim (ref_220) 2007; 358
Xie (ref_172) 2016; 151
Hosseini (ref_48) 2015; 158
Alcoba (ref_65) 2013; 21
Lee (ref_228) 2019; 127
Srirattana (ref_81) 2018; 8
Kuroki (ref_216) 2013; 30
Srirattana (ref_94) 2017; 7
Kishigami (ref_97) 2007; 53
Qi (ref_213) 2020; 142
Bowles (ref_90) 2008; 26
ref_68
Sun (ref_122) 2021; 28
Adams (ref_179) 2005; 72
Jin (ref_128) 2016; 38
Weng (ref_169) 2020; 146
Enright (ref_23) 2005; 72
Gao (ref_180) 2018; 23
Matoba (ref_196) 2018; 23
Liu (ref_31) 2000; 18
ref_170
Saraiya (ref_221) 2010; 16
Ericsson (ref_51) 1993; 39
Ruan (ref_164) 2018; 10
Ashry (ref_209) 2021; 19
Niemann (ref_8) 2002; 4
Guo (ref_25) 2011; 10
Jin (ref_130) 2017; 41
ref_198
Zeng (ref_205) 2016; 62
Cortopassi (ref_92) 1992; 89
Chen (ref_189) 2020; 11
Yang (ref_13) 2007; 39
Sangalli (ref_112) 2012; 14
Chia (ref_235) 2017; 19
Zhao (ref_118) 2009; 81
Jeon (ref_134) 2008; 135
ref_43
Huang (ref_146) 2011; 411
Jin (ref_131) 2017; 87
Williams (ref_188) 2009; 326
Huang (ref_242) 2021; 105
Sproul (ref_22) 2005; 6
ref_2
Mallol (ref_127) 2014; 16
Loi (ref_10) 2013; 15
Zhang (ref_163) 2020; 160
References_xml – volume: 72
  start-page: 311
  year: 2005
  ident: ref_179
  article-title: Knockdown of the Dnmt1s transcript using small interfering RNA in primary murine and bovine fibroblast cells
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.20357
– volume: 14
  start-page: 204
  year: 2013
  ident: ref_24
  article-title: DNA methylation: Roles in mammalian development
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3354
– volume: 11
  start-page: 1813
  year: 2020
  ident: ref_189
  article-title: Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15607-z
– volume: 167
  start-page: 13
  year: 2021
  ident: ref_217
  article-title: Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2021.03.006
– ident: ref_214
  doi: 10.3390/ani11092483
– volume: 54
  start-page: 1671
  year: 2010
  ident: ref_99
  article-title: Cloning of non-human primates: The road “less traveled by”
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.103196ms
– volume: 31
  start-page: 12
  year: 2003
  ident: ref_29
  article-title: Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00083-5
– volume: 31
  start-page: 735
  year: 2018
  ident: ref_70
  article-title: Selection of developmentally competent human oocytes aspirated during cesarean section
  publication-title: J. Matern. Fetal Neonatal Med.
  doi: 10.1080/14767058.2017.1297405
– volume: 22
  start-page: 236
  year: 2020
  ident: ref_77
  article-title: Effect of additional cytoplasm of cloned embryo on in vitro developmental competence and reprogramming efficiency in mice
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2020.0022
– volume: 79
  start-page: 234
  year: 2020
  ident: ref_193
  article-title: Analysis of genome architecture during SCNT reveals a role of cohesin in impeding minor ZGA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.06.001
– volume: 50
  start-page: 185
  year: 1998
  ident: ref_74
  article-title: The effect of recipient oocyte volume on nuclear transfer in cattle
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/(SICI)1098-2795(199806)50:2<185::AID-MRD9>3.0.CO;2-G
– volume: 6
  start-page: 775
  year: 2005
  ident: ref_22
  article-title: The role of chromatin structure in regulating the expression of clustered genes
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1688
– volume: 17
  start-page: 758
  year: 2015
  ident: ref_160
  article-title: Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.10.001
– volume: 160
  start-page: 379
  year: 2020
  ident: ref_163
  article-title: TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos
  publication-title: Reproduction
  doi: 10.1530/REP-20-0021
– volume: 15
  start-page: 367
  year: 2013
  ident: ref_10
  article-title: Sheep: The first large animal model in nuclear transfer research
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2013.0032
– volume: 5
  start-page: 3
  year: 2003
  ident: ref_39
  article-title: Cloned cattle derived from a novel zona-free embryo reconstruction system
  publication-title: Cloning Stem Cells
  doi: 10.1089/153623003321512111
– volume: 58
  start-page: 467
  year: 2012
  ident: ref_158
  article-title: H3S10 phosphorylation marks constitutive heterochromatin during interphase in early mouse embryos until the 4-cell stage
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.11-109H
– volume: 151
  start-page: 86
  year: 2020
  ident: ref_194
  article-title: Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2020.04.013
– volume: 25
  start-page: 471
  year: 2019
  ident: ref_152
  article-title: Sperm-borne small RNAs regulate α-tubulin acetylation and epigenetic modification of early bovine somatic cell nuclear transfer embryos
  publication-title: Mol. Hum. Reprod.
  doi: 10.1093/molehr/gaz023
– volume: 1
  start-page: 98
  year: 2003
  ident: ref_12
  article-title: Cloning animals by somatic cell nuclear transfer—Biological factors
  publication-title: Reprod. Biol. Endocrinol.
  doi: 10.1186/1477-7827-1-98
– volume: 103
  start-page: 114
  year: 2020
  ident: ref_165
  article-title: Targeted histone demethylation improves somatic cell reprogramming into cloned blastocysts but not postimplantation bovine concepti
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioaa053
– ident: ref_170
  doi: 10.3390/ijms21144836
– volume: 17
  start-page: 141
  year: 2015
  ident: ref_61
  article-title: Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern
  publication-title: Cell Reprogram.
  doi: 10.1089/cell.2014.0077
– volume: 89
  start-page: 7370
  year: 1992
  ident: ref_92
  article-title: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.16.7370
– volume: 49
  start-page: 925
  year: 2017
  ident: ref_239
  article-title: Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3844
– volume: 15
  start-page: 86
  year: 2015
  ident: ref_215
  article-title: Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes
  publication-title: Reprod. Biol.
  doi: 10.1016/j.repbio.2015.01.002
– volume: 394
  start-page: 369
  year: 1998
  ident: ref_33
  article-title: Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei
  publication-title: Nature
  doi: 10.1038/28615
– ident: ref_73
  doi: 10.3390/ijms21072314
– volume: 2
  start-page: 16010
  year: 2016
  ident: ref_155
  article-title: Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing
  publication-title: Cell Discov.
  doi: 10.1038/celldisc.2016.10
– volume: 23
  start-page: 426
  year: 2018
  ident: ref_180
  article-title: Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.07.017
– volume: 133
  start-page: 219
  year: 2007
  ident: ref_138
  article-title: Rabbit somatic cell cloning: Effects of donor cell type, histone acetylation status and chimeric embryo complementation
  publication-title: Reproduction
  doi: 10.1530/rep.1.01206
– ident: ref_182
  doi: 10.1371/journal.pone.0180535
– volume: 12
  start-page: 95
  year: 2010
  ident: ref_123
  article-title: Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2009.0068
– volume: 27
  start-page: 2280
  year: 2020
  ident: ref_113
  article-title: The in vitro development of cloned sheep embryos treated with Scriptaid and trichostatin (A)
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2020.04.039
– volume: 51
  start-page: 281
  year: 1998
  ident: ref_30
  article-title: In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/(SICI)1098-2795(199811)51:3<281::AID-MRD7>3.0.CO;2-L
– volume: 115
  start-page: E11071
  year: 2018
  ident: ref_197
  article-title: Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1814514115
– volume: 3
  start-page: 155
  year: 1998
  ident: ref_7
  article-title: Large offspring syndrome in cattle and sheep
  publication-title: Rev. Reprod.
  doi: 10.1530/ror.0.0030155
– volume: 7
  start-page: 2065
  year: 2017
  ident: ref_94
  article-title: Manipulating the mitochondrial genome to enhance cattle embryo development
  publication-title: G3 Genes Genomes Genet.
  doi: 10.1534/g3.117.042655
– volume: 86
  start-page: 80
  year: 2016
  ident: ref_21
  article-title: Epigenetic reprogramming in mammalian species after SCNT-based cloning
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2016.04.021
– volume: 20
  start-page: 145
  year: 2018
  ident: ref_4
  article-title: Cloning: A Sleeping Beauty Awaiting the Kiss?
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2017.0058
– volume: 424
  start-page: 765
  year: 2012
  ident: ref_89
  article-title: Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.07.031
– volume: 117
  start-page: 161
  year: 2018
  ident: ref_106
  article-title: Effects of trichostatin A on pig SCNT blastocyst formation rate and cell number: A meta-analysis
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2017.12.011
– volume: 18
  start-page: 78
  year: 2016
  ident: ref_183
  article-title: Methyl-CpG-binding protein 2 improves the development of mouse somatic cell nuclear transfer embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2015.0060
– volume: 29
  start-page: 293
  year: 2021
  ident: ref_225
  article-title: Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs
  publication-title: Zygote
  doi: 10.1017/S0967199420000891
– volume: 10
  start-page: 494
  year: 2018
  ident: ref_164
  article-title: XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2017.12.015
– volume: 63
  start-page: 281
  year: 2021
  ident: ref_47
  article-title: Application of the modified handmade cloning technique to pigs
  publication-title: J. Anim. Sci. Technol.
  doi: 10.5187/jast.2021.e41
– volume: 34
  start-page: 1637
  year: 2020
  ident: ref_166
  article-title: Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos
  publication-title: FASEB J.
  doi: 10.1096/fj.201900578RR
– volume: 108
  start-page: 20621
  year: 2011
  ident: ref_203
  article-title: RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112664108
– volume: 44
  start-page: 255
  year: 2009
  ident: ref_66
  article-title: Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone serum profiles
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/j.1439-0531.2009.01408.x
– volume: 90
  start-page: 1127
  year: 2019
  ident: ref_107
  article-title: Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos
  publication-title: Anim. Sci. J.
  doi: 10.1111/asj.13260
– volume: 10
  start-page: 381
  year: 2008
  ident: ref_230
  article-title: Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2007.0091
– volume: 131
  start-page: 233
  year: 2006
  ident: ref_57
  article-title: Mitochondria directly influence fertilisation outcome in the pig
  publication-title: Reproduction
  doi: 10.1530/rep.1.00551
– volume: 138
  start-page: 309
  year: 2009
  ident: ref_104
  article-title: The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice
  publication-title: Reproduction
  doi: 10.1530/REP-08-0299
– volume: 29
  start-page: 331
  year: 2021
  ident: ref_153
  article-title: Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit
  publication-title: Zygote
  doi: 10.1017/S0967199420000805
– volume: 20
  start-page: 89
  year: 2018
  ident: ref_16
  article-title: Cloning of buffalo, a highly valued livestock species of South and Southeast Asia: Any achievements?
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2017.0051
– volume: 19
  start-page: 282
  year: 2017
  ident: ref_235
  article-title: Genomic instability during reprogramming by nuclear transfer is DNA replication dependent
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3485
– volume: 85
  start-page: 26
  year: 2018
  ident: ref_72
  article-title: Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22935
– volume: 21
  start-page: 217
  year: 2018
  ident: ref_140
  article-title: Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos
  publication-title: Pol. J. Vet. Sci.
– volume: 11
  start-page: 2150
  year: 2020
  ident: ref_195
  article-title: Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16044-8
– volume: 15
  start-page: 361
  year: 2003
  ident: ref_38
  article-title: Birth of a cloned calf derived from a vitrified hand-made cloned embryo
  publication-title: Reprod. Fertil. Dev.
  doi: 10.1071/RD03052
– volume: 22
  start-page: 277
  year: 2020
  ident: ref_212
  article-title: Effect of Rhodiola sachalinensis aqueous extract on in vitro maturation of porcine oocytes and subsequent in vitro embryonic development
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2020.0041
– volume: 161
  start-page: 269
  year: 2021
  ident: ref_82
  article-title: Does supplementation with mitochondria improve oocyte competence? A systematic review
  publication-title: Reproduction
  doi: 10.1530/REP-20-0351
– volume: 60
  start-page: 336
  year: 2014
  ident: ref_102
  article-title: Effects of trichostatin A on in vitro development and DNA methylation level of the satellite I region of swamp buffalo (Bubalus bubalis) cloned embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.2013-116
– volume: 340
  start-page: 183
  year: 2006
  ident: ref_95
  article-title: Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.11.164
– volume: 169
  start-page: 693
  year: 2017
  ident: ref_190
  article-title: The cohesin release factor WAPL restricts chromatin loop extension
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.013
– volume: 59
  start-page: 231
  year: 2013
  ident: ref_204
  article-title: RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.2012-195
– volume: 62
  start-page: 433
  year: 2020
  ident: ref_44
  article-title: Pregnancy and calving rates of cloned dromedary camels produced by conventional and handmade cloning techniques and in vitro and in vivo matured oocytes
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-020-00262-y
– volume: 105
  start-page: 1089
  year: 2021
  ident: ref_242
  article-title: Functional study of distinct domains of Dux in improving mouse SCNT embryonic development
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioab141
– volume: 86
  start-page: 1106
  year: 2008
  ident: ref_27
  article-title: Trichostatin A and nuclear reprogramming of cloned rabbit embryos
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2007-0718
– volume: 151
  start-page: 9
  year: 2016
  ident: ref_172
  article-title: Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming
  publication-title: Reproduction
  doi: 10.1530/REP-15-0338
– volume: 25
  start-page: 250
  year: 2007
  ident: ref_36
  article-title: Handmade cloning: The future way of nuclear transfer?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2007.04.004
– volume: 142
  start-page: 26
  year: 2020
  ident: ref_213
  article-title: Asiatic acid supplementation during the in vitro culture period improves early embryonic development of porcine embryos produced by parthenogenetic activation, somatic cell nuclear transfer and in vitro fertilization
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.09.027
– volume: 358
  start-page: 553
  year: 2007
  ident: ref_220
  article-title: Reversine stimulates adipocyte differentiation and downregulates Akt and p70(s6k) signaling pathways in 3T3-L1 cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.04.165
– volume: 23
  start-page: 304
  year: 2021
  ident: ref_226
  article-title: Exposure to pulsed electromagnetic fields improves the developmental competence and quality of somatic cell nuclear transfer buffalo (Bubalus bubalis) embryos produced using fibroblast cells and alters their epigenetic status and gene expression
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2021.0028
– volume: 330
  start-page: 496
  year: 2010
  ident: ref_200
  article-title: Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer
  publication-title: Science
  doi: 10.1126/science.1194174
– volume: 28
  start-page: 150
  year: 2021
  ident: ref_117
  article-title: Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.09.006
– volume: 16
  start-page: 1443
  year: 2010
  ident: ref_221
  article-title: Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2009.0343
– volume: 75
  start-page: 122
  year: 2006
  ident: ref_9
  article-title: Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.106.051581
– volume: 81
  start-page: 525
  year: 2009
  ident: ref_118
  article-title: Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.109.077016
– volume: 16
  start-page: 392
  year: 2014
  ident: ref_127
  article-title: Psammaplin A improves development and quality of somatic cell nuclear transfer mouse embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2014.0012
– volume: 65
  start-page: 533
  year: 2019
  ident: ref_206
  article-title: Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.2019-070
– volume: 55
  start-page: 255
  year: 2020
  ident: ref_149
  article-title: Vitamin C treatment of embryos, but not donor cells, improves the cloned embryonic development in sheep
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/rda.13606
– volume: 419
  start-page: 583
  year: 2002
  ident: ref_20
  article-title: Somatic cell nuclear transfer
  publication-title: Nature
  doi: 10.1038/nature01079
– volume: 84
  start-page: 340
  year: 2017
  ident: ref_132
  article-title: Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22787
– volume: 139
  start-page: 4330
  year: 2012
  ident: ref_143
  article-title: Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes
  publication-title: Development
  doi: 10.1242/dev.086116
– volume: 23
  start-page: 343
  year: 2018
  ident: ref_196
  article-title: Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.06.008
– volume: 71
  start-page: 431
  year: 2005
  ident: ref_202
  article-title: Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.20311
– volume: 368
  start-page: 20110329
  year: 2013
  ident: ref_11
  article-title: Recent advancements in cloning by somatic cell nuclear transfer
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2011.0329
– volume: 39
  start-page: 214
  year: 1993
  ident: ref_51
  article-title: Assessment of porcine oocytes using brilliant cresyl blue
  publication-title: Theriogenology
  doi: 10.1016/0093-691X(93)90069-H
– volume: 4
  start-page: 29
  year: 2002
  ident: ref_8
  article-title: Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development
  publication-title: Cloning Stem Cells
  doi: 10.1089/153623002753632020
– volume: 104
  start-page: 10482
  year: 2007
  ident: ref_219
  article-title: Reversine increases the plasticity of lineage-committed mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704360104
– volume: 32
  start-page: 337
  year: 2015
  ident: ref_233
  article-title: The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-014-0409-7
– volume: 87
  start-page: 298
  year: 2017
  ident: ref_131
  article-title: Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2016.09.011
– volume: 9
  start-page: 357
  year: 2007
  ident: ref_100
  article-title: An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2006.0090
– volume: 11
  start-page: 377
  year: 2009
  ident: ref_75
  article-title: Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2009.0022
– ident: ref_2
  doi: 10.3390/ijms22063099
– volume: 139
  start-page: 129
  year: 2010
  ident: ref_157
  article-title: Dynamics of constitutive heterochromatin: Two contrasted kinetics of genome restructuring in early cloned bovine embryos
  publication-title: Reproduction
  doi: 10.1530/REP-08-0435
– volume: 38
  start-page: 1433
  year: 2016
  ident: ref_128
  article-title: PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-016-2141-0
– volume: 21
  start-page: 238
  year: 2013
  ident: ref_65
  article-title: Selection of Rattus norvegicus oocytes for in vitro maturation by brilliant cresyl blue staining
  publication-title: Zygote
  doi: 10.1017/S0967199411000463
– volume: 8
  start-page: 328
  year: 1998
  ident: ref_199
  article-title: The role of Xist in X-inactivation
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(98)80090-7
– volume: 135
  start-page: 164
  year: 2019
  ident: ref_120
  article-title: In vitro production of canine blastocysts
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.06.016
– volume: 69
  start-page: 896
  year: 2003
  ident: ref_133
  article-title: Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.103.017954
– volume: 64
  start-page: 429
  year: 2003
  ident: ref_84
  article-title: Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.10279
– volume: 11
  start-page: 203
  year: 2009
  ident: ref_115
  article-title: Live birth of somatic cell-cloned rabbits following trichostatin a treatment and cotransfer of parthenogenetic embryos
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2008.0072
– volume: 43
  start-page: 217
  year: 1998
  ident: ref_93
  article-title: Role of mitochondrial DNA mutations in human aging: Implications for the central nervous system and muscle
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410430212
– volume: 411
  start-page: 397
  year: 2011
  ident: ref_146
  article-title: Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.06.160
– volume: 21
  start-page: 51
  year: 2019
  ident: ref_76
  article-title: Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2018.0050
– ident: ref_210
  doi: 10.3390/ani11020473
– volume: 172
  start-page: 881
  year: 2018
  ident: ref_103
  article-title: Cloning of macaque monkeys by somatic cell nuclear transfer
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.020
– volume: 29
  start-page: 1260
  year: 2017
  ident: ref_168
  article-title: Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos
  publication-title: Reprod. Fertil. Dev.
  doi: 10.1071/RD15463
– volume: 95
  start-page: 94
  year: 2011
  ident: ref_207
  article-title: Levels of follicular G-CSF and interleukin-15 appear as noninvasive biomarkers of subsequent successful birth in modified natural in vitro fertilization/intracytoplasmic sperm injection cycles
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2010.03.010
– volume: 72
  start-page: 944
  year: 2005
  ident: ref_23
  article-title: Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.104.033225
– volume: 60
  start-page: 208
  year: 2001
  ident: ref_176
  article-title: DNA hypomethylation of karyoplasts for bovine nuclear transplantation
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.1079
– volume: 28
  start-page: 2630
  year: 2021
  ident: ref_122
  article-title: HDAC6 is involved in the histone deacetylation of in vitro maturation oocytes and the reprogramming of nuclear transplantation in pig
  publication-title: Reprod. Sci.
  doi: 10.1007/s43032-021-00533-2
– ident: ref_109
  doi: 10.1371/journal.pone.0169092
– volume: 108
  start-page: 307
  year: 1996
  ident: ref_223
  article-title: Differential sensitivity of one-cell and two-cell rabbit embryos to sodium chloride and total osmolarity during culture into blastocysts
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.1080307
– volume: 41
  start-page: 1255
  year: 2017
  ident: ref_130
  article-title: The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000464389
– volume: 281
  start-page: 6048
  year: 2006
  ident: ref_201
  article-title: Inheritable histone H4 acetylation of somatic chromatins in cloned embryos
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511340200
– volume: 126
  start-page: 320
  year: 2019
  ident: ref_67
  article-title: Brilliant cresyl blue staining allows the selection for developmentally competent immature feline oocytes
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2018.12.021
– volume: 19
  start-page: 1
  year: 2017
  ident: ref_129
  article-title: Effects of Trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2016.0030
– volume: 122
  start-page: 731
  year: 2001
  ident: ref_35
  article-title: Production of cloned mice from embryonic stem cells arrested at metaphase
  publication-title: Reproduction
  doi: 10.1530/rep.0.1220731
– volume: 25
  start-page: 529
  year: 2017
  ident: ref_69
  article-title: Developmental competence of dromedary camel (Camelus dromedarius) oocytes selected using brilliant cresyl blue staining
  publication-title: Zygote
  doi: 10.1017/S0967199417000387
– volume: 74
  start-page: 1083
  year: 2006
  ident: ref_96
  article-title: Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.105.047456
– volume: 82
  start-page: 867
  year: 2015
  ident: ref_145
  article-title: Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22531
– volume: 20
  start-page: 625
  year: 2019
  ident: ref_154
  article-title: Roles and regulation of histone methylation in animal development
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0151-1
– volume: 62
  start-page: 591
  year: 2016
  ident: ref_205
  article-title: Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.2016-095
– volume: 126
  start-page: 410
  year: 2004
  ident: ref_218
  article-title: Dedifferentiation of lineage-committed cells by a small molecule
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037390k
– volume: 81
  start-page: 183
  year: 2014
  ident: ref_5
  article-title: Reshaping the transcriptional frontier: Epigenetics and somatic cell nuclear transfer
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22271
– volume: 70
  start-page: 1469
  year: 2018
  ident: ref_161
  article-title: Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos
  publication-title: Cytotechnology
  doi: 10.1007/s10616-018-0224-6
– volume: 68
  start-page: 571
  year: 2003
  ident: ref_37
  article-title: Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.102.008771
– volume: 69
  start-page: 301
  year: 2003
  ident: ref_135
  article-title: Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.102.012112
– volume: 49
  start-page: 941
  year: 2017
  ident: ref_238
  article-title: DUX-family transcription factors regulate zygotic genome activation in placental mammals
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3858
– volume: 53
  start-page: 165
  year: 2007
  ident: ref_97
  article-title: Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.18098
– volume: 49
  start-page: 569
  year: 2013
  ident: ref_46
  article-title: Simple, fast, and efficient method of manual oocyte enucleation using a pulled Pasteur pipette
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1007/s11626-013-9630-4
– ident: ref_50
  doi: 10.1371/journal.pone.0213737
– volume: 157
  start-page: 254
  year: 2020
  ident: ref_234
  article-title: Effect of Dickkopf-1 and colony stimulating factor-2 on the developmental competence, quality, gene expression and live birth rate of buffalo (Bubalus bubalis) embryos produced by hand-made cloning
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2020.07.022
– volume: 26
  start-page: 775
  year: 2008
  ident: ref_90
  article-title: Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0747
– volume: 23
  start-page: 90
  year: 1999
  ident: ref_85
  article-title: Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep
  publication-title: Nat. Genet.
  doi: 10.1038/12696
– volume: 11
  start-page: 1542
  year: 2001
  ident: ref_175
  article-title: Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00480-8
– volume: 6
  start-page: 23229
  year: 2016
  ident: ref_58
  article-title: Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency
  publication-title: Sci. Rep.
  doi: 10.1038/srep23229
– volume: 74
  start-page: 1409
  year: 2012
  ident: ref_111
  article-title: Trichostatin A improves preimplantation development of bovine cloned embryos and alters expression of epigenetic and pluripotency genes in cloned blastocysts
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.11-0510
– volume: 12
  start-page: 453
  year: 2011
  ident: ref_19
  article-title: Mechanisms of nuclear reprogramming by eggs and oocytes: A deterministic process?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3140
– volume: 220
  start-page: 1300
  year: 1983
  ident: ref_34
  article-title: Nuclear transplantation in the mouse embryo by microsurgery and cell fusion
  publication-title: Science
  doi: 10.1126/science.6857250
– volume: 13
  start-page: 1116
  year: 2003
  ident: ref_156
  article-title: Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00419-6
– volume: 127
  start-page: 80
  year: 2019
  ident: ref_228
  article-title: Effect of alanine supplementation during in vitro maturation on oocyte maturation and embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.01.001
– volume: 63
  start-page: 715
  year: 2000
  ident: ref_229
  article-title: Maturation/M-phase promoting factor: A regulator of aging in porcine oocytes
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod63.3.715
– volume: 18
  start-page: 223
  year: 2000
  ident: ref_31
  article-title: A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/72692
– volume: 39
  start-page: 295
  year: 2007
  ident: ref_13
  article-title: Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning
  publication-title: Nat. Genet.
  doi: 10.1038/ng1973
– ident: ref_54
  doi: 10.1371/journal.pone.0036181
– volume: 171
  start-page: 305
  year: 2017
  ident: ref_191
  article-title: Cohesin loss eliminates all loop domains
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.026
– volume: 68
  start-page: 2348
  year: 2021
  ident: ref_32
  article-title: Robotic label-free precise oocyte enucleation for improving developmental competence of cloned embryos
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3036494
– volume: 2012
  start-page: 7
  year: 2012
  ident: ref_60
  article-title: Selection of ovine oocytes by brilliant cresyl blue staining
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2012/161372
– volume: 2021
  start-page: 6681337
  year: 2021
  ident: ref_6
  article-title: Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development
  publication-title: Stem Cells Int.
  doi: 10.1155/2021/6681337
– volume: 27
  start-page: 166
  year: 2019
  ident: ref_63
  article-title: Use of oocytes selected by brilliant cresyl blue staining enhances rabbit cloned embryo development in vitro
  publication-title: Zygote
  doi: 10.1017/S0967199419000200
– volume: 10
  start-page: 5076
  year: 2020
  ident: ref_227
  article-title: Induced DNA hypomethylation by folic acid deprivation in bovine fibroblast donor cells improves reprogramming of somatic cell nuclear transfer embryos
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61797-3
– ident: ref_88
  doi: 10.1186/1471-213X-7-141
– ident: ref_148
  doi: 10.1371/journal.pone.0120033
– volume: 52
  start-page: 437
  year: 2017
  ident: ref_79
  article-title: Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/rda.12929
– volume: 19
  start-page: 976
  year: 2012
  ident: ref_147
  article-title: Trichostatin A and ascorbic acid assist in the development of porcine handmade cloned embryos via different physiologic pathways
  publication-title: Reprod. Sci.
  doi: 10.1177/1933719112440049
– ident: ref_68
  doi: 10.3390/ani10091496
– volume: 208
  start-page: 106125
  year: 2019
  ident: ref_78
  article-title: Production of cloned cats using additional complimentary cytoplasm
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2019.106125
– volume: 385
  start-page: 810
  year: 1997
  ident: ref_1
  article-title: Viable offspring derived from fetal and adult mammalian cells
  publication-title: Nature
  doi: 10.1038/385810a0
– volume: 19
  start-page: e46240
  year: 2018
  ident: ref_171
  article-title: KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846240
– volume: 326
  start-page: 289
  year: 2009
  ident: ref_188
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 145
  start-page: 149
  year: 2013
  ident: ref_159
  article-title: Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development
  publication-title: Reproduction
  doi: 10.1530/REP-11-0421
– volume: 20
  start-page: 4
  year: 2018
  ident: ref_49
  article-title: High pregnancy and calving rates with a limited number of transferred handmade cloned bovine embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2017.0024
– ident: ref_15
  doi: 10.3390/ijms22010236
– volume: 57
  start-page: 120
  year: 2011
  ident: ref_101
  article-title: Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.10-058A
– volume: 68
  start-page: 1104
  year: 2007
  ident: ref_41
  article-title: Piglets born from handmade cloning, an innovative cloning method without micromanipulation
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2007.07.021
– ident: ref_208
  doi: 10.1371/journal.pone.0230247
– volume: 21
  start-page: e50054
  year: 2020
  ident: ref_241
  article-title: Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202050054
– volume: 34
  start-page: 791
  year: 2016
  ident: ref_3
  article-title: A New, Dynamic Era for Somatic Cell Nuclear Transfer?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.03.008
– volume: 67
  start-page: 637
  year: 2002
  ident: ref_91
  article-title: Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod67.2.637
– volume: 158
  start-page: 11
  year: 2015
  ident: ref_48
  article-title: Chemically assisted somatic cell nuclear transfer without micromanipulator in the goat: Effects of demecolcine, cytochalasin-B, and MG-132 on the efficiency of a manual method of oocyte enucleation using a pulled Pasteur pipette
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2015.04.002
– volume: 17
  start-page: 722
  year: 2007
  ident: ref_64
  article-title: Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: A study using the mouse model
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.66
– volume: 12
  start-page: 67
  year: 2010
  ident: ref_126
  article-title: Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2009.0032
– volume: 81
  start-page: 332
  year: 2014
  ident: ref_119
  article-title: The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2013.09.032
– volume: 30
  start-page: 623
  year: 2013
  ident: ref_216
  article-title: Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro: Astaxanthin colocalization with and action on mitochondria
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-013-9987-z
– volume: 12
  start-page: 609
  year: 2010
  ident: ref_142
  article-title: Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2010.0015
– volume: 60
  start-page: 1188
  year: 1999
  ident: ref_224
  article-title: Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod60.5.1188
– volume: 14
  start-page: 248
  year: 2012
  ident: ref_114
  article-title: Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: Effect of Trichostatin A treatment
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2011.0099
– ident: ref_198
  doi: 10.1186/1471-2164-12-204
– volume: 135
  start-page: 815
  year: 2008
  ident: ref_134
  article-title: S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer
  publication-title: Reproduction
  doi: 10.1530/REP-07-0442
– volume: 57
  start-page: 1397
  year: 2002
  ident: ref_55
  article-title: Selection of prepubertal goat oocytes using the brilliant cresyl blue test
  publication-title: Theriogenology
  doi: 10.1016/S0093-691X(02)00645-3
– volume: 14
  start-page: 235
  year: 2012
  ident: ref_112
  article-title: Treatment of nuclear-donor cells or cloned zygotes with chromatin-modifying agents increases histone acetylation but does not improve full-term development of cloned cattle
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2011.0079
– volume: 70
  start-page: 622
  year: 2008
  ident: ref_136
  article-title: Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.04.042
– volume: 11
  start-page: 205
  year: 2020
  ident: ref_17
  article-title: Epigenetic reprogramming during somatic cell nuclear transfer: Recent progress and future directions
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00205
– volume: 145
  start-page: dev158261
  year: 2018
  ident: ref_162
  article-title: H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming
  publication-title: Development
  doi: 10.1242/dev.158261
– volume: 28
  start-page: 286
  year: 2020
  ident: ref_121
  article-title: Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development
  publication-title: Zygote
  doi: 10.1017/S0967199419000856
– volume: 17
  start-page: 191
  year: 2015
  ident: ref_108
  article-title: Epigenetic modification of cloned embryos improves Nanog reprogramming in pigs
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2014.0103
– volume: 65
  start-page: 259
  year: 2019
  ident: ref_232
  article-title: Effects of manganese on maturation of porcine oocytes in vitro and their subsequent embryo development after parthenogenetic activation and somatic cell nuclear transfer
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.2019-001
– volume: 8
  start-page: 7246
  year: 2018
  ident: ref_81
  article-title: Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25516-3
– volume: 288
  start-page: 13669
  year: 2013
  ident: ref_144
  article-title: Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C113.464800
– volume: 15
  start-page: 15
  year: 2013
  ident: ref_45
  article-title: Cloned sheep blastocysts derived from oocytes enucleated manually using a pulled pasteur pipette
  publication-title: Cell Reprogram.
  doi: 10.1089/cell.2012.0033
– volume: 325
  start-page: 445
  year: 2006
  ident: ref_177
  article-title: DNA methylation levels in porcine fetal fibroblasts induced by an inhibitor of methylation, 5-azacytidine
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-006-0201-9
– volume: 431
  start-page: 343
  year: 2004
  ident: ref_181
  article-title: Mechanisms of gene silencing by double-stranded RNA
  publication-title: Nature
  doi: 10.1038/nature02873
– volume: 105
  start-page: 543
  year: 2021
  ident: ref_141
  article-title: Improved development of mouse SCNT embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioab096
– volume: 285
  start-page: 31002
  year: 2010
  ident: ref_124
  article-title: Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.136085
– volume: 5
  start-page: 97
  year: 1997
  ident: ref_83
  article-title: The behaviour of mitochondria and cell integration during somatic hybridisation of sister blastomeres of the 2-cell mouse embryo
  publication-title: Zygote
  doi: 10.1017/S0967199400003762
– volume: 54
  start-page: 1195
  year: 2019
  ident: ref_211
  article-title: Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/rda.13493
– volume: 27
  start-page: 315
  year: 2020
  ident: ref_173
  article-title: Overcoming intrinsic H3K27me3 imprinting barriers improves post-implantation development after somatic cell nuclear transfer
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.05.014
– volume: 476
  start-page: 2141
  year: 2019
  ident: ref_186
  article-title: Large-scale chromatin organisation in interphase, mitosis and meiosis
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20180512
– volume: 67
  start-page: 341
  year: 2007
  ident: ref_53
  article-title: Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2006.08.006
– volume: 10
  start-page: 371
  year: 2008
  ident: ref_26
  article-title: Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos
  publication-title: Cloning Stem Cells
  doi: 10.1089/clo.2007.0002
– volume: 19
  start-page: 141
  year: 2021
  ident: ref_209
  article-title: Follistatin supplementation induces changes in CDX2 CpG methylation and improves in vitro development of bovine SCNT preimplantation embryos
  publication-title: Reprod. Biol. Endocrinol.
  doi: 10.1186/s12958-021-00829-7
– volume: 10
  start-page: 2662
  year: 2011
  ident: ref_25
  article-title: Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.16.17093
– volume: 83
  start-page: 929
  year: 2010
  ident: ref_125
  article-title: Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.110.085282
– volume: 151
  start-page: 39
  year: 2016
  ident: ref_167
  article-title: BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei
  publication-title: Reproduction
  doi: 10.1530/REP-15-0460
– ident: ref_43
  doi: 10.1371/journal.pone.0055941
– volume: 162
  start-page: F1
  year: 2021
  ident: ref_18
  article-title: Twenty-five years after Dolly—How far have we come?
  publication-title: Reproduction
– volume: 70
  start-page: 800
  year: 2008
  ident: ref_28
  article-title: High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.05.046
– volume: 54
  start-page: e13059
  year: 2021
  ident: ref_237
  article-title: Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.13059
– volume: 234
  start-page: 17370
  year: 2019
  ident: ref_151
  article-title: Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28357
– volume: 13
  start-page: 179
  year: 2011
  ident: ref_110
  article-title: Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2010.0060
– volume: 285
  start-page: 2708
  year: 2018
  ident: ref_184
  article-title: Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency
  publication-title: FEBS J.
  doi: 10.1111/febs.14515
– volume: 551
  start-page: 51
  year: 2017
  ident: ref_192
  article-title: Two independent modes of chromatin organization revealed by cohesin removal
  publication-title: Nature
  doi: 10.1038/nature24281
– volume: 20
  start-page: e31
  year: 2019
  ident: ref_231
  article-title: Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment
  publication-title: J. Vet. Sci.
  doi: 10.4142/jvs.2019.20.e31
– volume: 45
  start-page: 211
  year: 1975
  ident: ref_52
  article-title: Biochemical studies of growing mouse oocytes: Preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(75)90061-5
– volume: 25
  start-page: 446
  year: 2018
  ident: ref_236
  article-title: RPA and RAD51: Fork reversal, fork protection, and genome stability
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0075-z
– volume: 77
  start-page: 1007
  year: 2007
  ident: ref_98
  article-title: Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.107.063149
– volume: 21
  start-page: 221
  year: 2019
  ident: ref_185
  article-title: Overexpression of MBD3 improves reprogramming of cloned pig embryos
  publication-title: Cell. Reprogram.
  doi: 10.1089/cell.2019.0008
– volume: 116
  start-page: 253
  year: 1999
  ident: ref_86
  article-title: Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.1160253
– volume: 76
  start-page: 1215
  year: 2011
  ident: ref_56
  article-title: G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.05.025
– volume: 130
  start-page: 559
  year: 2005
  ident: ref_40
  article-title: Somatic cell nuclear transfer in horses: Effect of oocyte morphology, embryo reconstruction method and donor cell type
  publication-title: Reproduction
  doi: 10.1530/rep.1.00772
– volume: 20
  start-page: 535
  year: 2019
  ident: ref_187
  article-title: The role of 3D genome organization in development and cell differentiation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0132-4
– volume: 28
  start-page: 1703
  year: 2015
  ident: ref_71
  article-title: Subcellular characterization of porcine oocytes with different glucose-6-phosphate dehydrogenase activities
  publication-title: Asian-Australas. J. Anim. Sci.
  doi: 10.5713/ajas.15.0051
– volume: 28
  start-page: 824
  year: 2016
  ident: ref_137
  article-title: Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2′-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos
  publication-title: Reprod. Fertil. Dev.
  doi: 10.1071/RD14176
– volume: 13
  start-page: 263
  year: 2011
  ident: ref_42
  article-title: Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts
  publication-title: Cell Reprogram.
  doi: 10.1089/cell.2010.0094
– volume: 69
  start-page: 289
  year: 2017
  ident: ref_62
  article-title: Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos
  publication-title: Cytotechnology
  doi: 10.1007/s10616-016-0057-0
– volume: 6
  start-page: 415
  year: 2017
  ident: ref_150
  article-title: Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules
  publication-title: Biol. Open.
  doi: 10.1242/bio.023473
– volume: 142
  start-page: 517
  year: 2011
  ident: ref_59
  article-title: Brilliant cresyl blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep
  publication-title: Reproduction
  doi: 10.1530/REP-10-0528
– volume: 146
  start-page: 162
  year: 2020
  ident: ref_169
  article-title: Improvement in the in vitro development of cloned pig embryos after KDM4A overexpression and an H3K9me3 methyltransferase inhibitor treatment
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.11.027
– volume: 18
  start-page: 623
  year: 2018
  ident: ref_14
  article-title: Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals?—A review
  publication-title: Ann. Anim. Sci.
  doi: 10.2478/aoas-2018-0015
– volume: 2
  start-page: 157
  year: 2000
  ident: ref_87
  article-title: Mitochondrial DNA transmission in cattle cloned by nuclear transfer of adult and fetal cells
  publication-title: Cloning
– ident: ref_178
  doi: 10.1371/journal.pone.0064705
– volume: 49
  start-page: 935
  year: 2017
  ident: ref_240
  article-title: Conservation and innovation in the DUX4-family gene network
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3846
– volume: 17
  start-page: 109
  year: 2009
  ident: ref_105
  article-title: The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine
  publication-title: Zygote
  doi: 10.1017/S0967199408005133
– volume: 159
  start-page: 884
  year: 2014
  ident: ref_116
  article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.055
– volume: 231
  start-page: 75
  year: 2019
  ident: ref_80
  article-title: Transmission of dysfunctional mitochondrial DNA and its implications for mammalian reproduction
  publication-title: Adv. Anat. Embryol. Cell Biol.
  doi: 10.1007/102_2018_3
– volume: 31
  start-page: 155
  year: 2020
  ident: ref_139
  article-title: Effect of supplementation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos
  publication-title: Anim. Biotechnol.
  doi: 10.1080/10495398.2018.1559846
– volume: 56
  start-page: 291
  year: 2010
  ident: ref_222
  article-title: Beneficial effects of Reversine on in vitro development of miniature pig somatic cell nuclear transfer embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.09-149A
– ident: ref_174
  doi: 10.1371/journal.pone.0233880
SSID ssj0023259
Score 2.513353
SecondaryResourceType review_article
Snippet Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1969
SubjectTerms Animals
Cattle
Cellular Reprogramming - genetics
Cellular Reprogramming - physiology
Chromatin
Chromosomes
Cloning
Cloning, Organism - methods
Cytoplasm
DNA methylation
DNA Methylation - genetics
DNA Methylation - physiology
Efficiency
Embryo, Mammalian - physiology
Embryonic Development - genetics
Embryonic Development - physiology
Embryos
Epigenesis, Genetic - genetics
Epigenetics
Gene expression
Humans
Light
Mitochondrial DNA
Nuclear Transfer Techniques
Oocytes - physiology
Review
Sheep
Title Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer
URI https://www.ncbi.nlm.nih.gov/pubmed/35216087
https://www.proquest.com/docview/2632764105
https://www.proquest.com/docview/2633867663
https://pubmed.ncbi.nlm.nih.gov/PMC8879641
Volume 23
WOSCitedRecordID wos000767286900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXZC48H4ElpWR4ISsTWNjuycEq67gsKXiIZVT5PghikqyNF0k_j0zThq2ILhwiWR5FFse2_ONPf4G4EmweRWMEtwYa7j0IfLKVYELkyubO8Sw0qZkE3o2M4vFZN4fuLV9WOV2T0wbtW8cnZEfEa-4VhSU-OLsG6esUXS72qfQ2IN9YiqTI9h_NZ3N3w0ulyhSurQxWiGunk9UF_ou0NE_Wn752tKJKPHD7BqlP5Dm7wGTFyzQyfX_7fsNuNZjT_aymyw34VKob8GVLhvlj9sw3TLVhpZtGtYdNwSGCJFNE9EEvdJkTWTvm8Tzyo7DasVmRIhs1ywZvRjWd-DjyfTD8WveZ1ngTmqz4SqXXnjtfEBs4AICtBARI0VFTPna2eAmzivsvRPOIr7U3hVCiKpAWW-iFHdhVDd1uA9sXEnrCvyLklEqr41F7zMqFfPcVT6qDJ5th7l0PQU5ZcJYleiKkFLKi0rJ4OkgfdZRb_xF7mA76mW_ANvy15Bn8HioxqVD9yG2Ds15khFGacRcGdzrFDw0hLh0rHKjM9A7qh8EiJZ7t6Zefk703LhtT7DlB__u1kO4WtBLCsotkx_AaLM-D4_gsvu-WbbrQ9jTC52-5rCf01g6Ld5iaf7mdP7pJxy-An0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceD8CBYxET8iqNw62c0AIla26artaiSKVU3D8EFstSdlsQf1T_EbGedEFwa0Hzh7FSWY88409_gbghdMsd0pwqpRWNLHO09zkjnLFhGYGMWyi62YTcjJRx8fpdA1-dHdhQlll5xNrR21LE_bItwOvuBShKPHN6VcaukaF09WuhUZjFvvu_DumbNXr8TvU71Yc746OdvZo21WAmkSqJRUssdxKYx3GQuMQkDiPmMCLwAwvjXYmNVbgTIYbjXhKWhNzzvMYZa3yCcfnXoH1BI1dDWB9Oj6cfuxTPB7X7dmGGPWoeJWKptSe85Rtz06-VGEHNvDRrAbBP5Dt7wWaFyLe7s3_7V_dghsttiZvm8VwG9ZccQeuNd02z-_CqGPidRVZlqTZTnEEETAZ1UQa4RYqKT15X9Y8tmTHzedkEgif9YLUQd27xT34cCnfcB8GRVm4h0CGeaJNjE8RiU-ElUpjdu2F8IyZ3HoRwctOrZlpKdZDp495hqlWMILsohFEsNVLnzbUIn-R2-y0nLUOpsp-qTiC5_0wuoZw3qMLV57VMlwJiZgyggeNQfUTIe4eCqZkBHLF1HqBQDu-OlLMPtf04xiWUpz50b9f6xls7B0dHmQH48n-Y7geh1sjoY8O24TBcnHmnsBV8205qxZP2zVE4NNlm-JPrsZb8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXngUCBYxET8hab2xs54AQandFVbRUAqTeguOHWLQkZbMF9a_x6xjnRRcEtx44exQnmfHMN_b4G4Cn3rDCa8mp1kZT4XyghS085ZpJwyxiWGGaZhNqNtNHR9nhBvzo78LEssreJzaO2lU27pGPIq-4krEocRS6sojDvenL4680dpCKJ619O43WRA786XdM3-oX-3uo6500nU7e776mXYcBaoXSKyqZcNwp6zzGResRnPiA-CDIyBKvrPE2s07irJZbg9hKOZtyzosUZZ0OguNzL8BFJTAox7LB9O2Q7PG0adQ2xvhH5fNMtkX3nGdsNP_8pY57sZGZZj0c_oFxfy_VPBP7ptf_5792A651iJu8apfITdjw5S243PbgPL0Nk56f19dkVZF2k8UTxMVk0tBrxLuppArkXdWw25Jdv1iQWaSBNkvShPrgl1vw4Vy-4Q5sllXp7wEZF8LYFJ8iRRDSKW0w5w5SBsZs4YJM4Fmv4tx2xOux_8cixwQsGkR-1iAS2Bmkj1vCkb_Ibfcazzu3U-e_1J3Ak2EYHUY8BTKlr04aGa6lQqSZwN3WuIaJEI2PJdMqAbVmdoNAJCNfHynnnxpScgxWGc58_9-v9RiuoP3lb_ZnBw_gahqvksTmOmwbNlfLE_8QLtlvq3m9fNQsJgIfz9sOfwIn8GMt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+Improve+the+Efficiency+of+Somatic+Cell+Nuclear+Transfer&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Srirattana%2C+Kanokwan&rft.au=Kaneda%2C+Masahiro&rft.au=Parnpai%2C+Rangsun&rft.date=2022-02-10&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fijms23041969&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon