Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the over...
Uložené v:
| Vydané v: | International journal of molecular sciences Ročník 23; číslo 4; s. 1969 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
10.02.2022
MDPI |
| Predmet: | |
| ISSN: | 1422-0067, 1661-6596, 1422-0067 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency. |
|---|---|
| AbstractList | Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency. Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency. |
| Author | Parnpai, Rangsun Srirattana, Kanokwan Kaneda, Masahiro |
| AuthorAffiliation | 2 Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; kanedam@cc.tuat.ac.jp 1 Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; kanokwan.sri@sut.ac.th |
| AuthorAffiliation_xml | – name: 1 Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; kanokwan.sri@sut.ac.th – name: 2 Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; kanedam@cc.tuat.ac.jp |
| Author_xml | – sequence: 1 givenname: Kanokwan surname: Srirattana fullname: Srirattana, Kanokwan – sequence: 2 givenname: Masahiro orcidid: 0000-0003-0660-7156 surname: Kaneda fullname: Kaneda, Masahiro – sequence: 3 givenname: Rangsun orcidid: 0000-0002-4764-9101 surname: Parnpai fullname: Parnpai, Rangsun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35216087$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkc1rGzEQxUVJaWK3t56DIJce6lZflnYvgWDcJGDag9OzUGZHiczuypF2A_nvK-M0OCGnGZjfPN6bmZCjPvZIyFfOfkhZs59h02UhmeK1rj-QE66EmDGmzdFBf0wmOW8YE1LM60_kWM4F16wyJ2S5HpIb8C5gpkOk1902xUekwz3SpfcBAvbwRKOn69i5IQBdYNvS3yO06BK9Sa7PHtNn8tG7NuOX5zolf38tbxZXs9Wfy-vFxWoGylTDTDPVyMZAg7xmgIpr9Epxr8VcaQMOoYZGa8VBgmMVMw0IKeWtKGxTeSWn5Hyvux1vO2wA--K-tdsUOpeebHTBvp704d7exUdbVaYuukXg27NAig8j5sF2IUOJ5HqMY7ZCS1lpo0uZkrM36CaOqS_xdpQwRY7NC3V66OjFyv8LF-D7HoAUc07oXxDO7O6B9vCBBRdvcAhDOXzc5Qnt-0v_AHE6nn4 |
| CitedBy_id | crossref_primary_10_1016_j_jia_2025_03_005 crossref_primary_10_3390_ijms232415975 crossref_primary_10_1016_j_bcab_2025_103553 crossref_primary_10_1371_journal_pone_0300754 crossref_primary_10_3390_app13084798 crossref_primary_10_3390_ijms252413675 crossref_primary_10_3390_ijms232213786 crossref_primary_10_1016_j_theriogenology_2024_01_003 crossref_primary_10_1016_j_theriogenology_2025_01_029 crossref_primary_10_3389_fcell_2025_1532962 crossref_primary_10_3390_ijms26073310 crossref_primary_10_1016_j_anireprosci_2025_107945 crossref_primary_10_17816_gc638127 crossref_primary_10_1016_j_therwi_2025_100125 crossref_primary_10_1080_10495398_2024_2394692 crossref_primary_10_1016_j_repbio_2024_100965 crossref_primary_10_1016_j_gene_2025_149715 crossref_primary_10_1177_09636897231164712 crossref_primary_10_3390_ijms23094572 crossref_primary_10_3390_ijms25031459 crossref_primary_10_3390_ani14040589 crossref_primary_10_5713_ab_22_0389 crossref_primary_10_1111_rda_70112 crossref_primary_10_3390_ani15071022 crossref_primary_10_3390_ijms231810296 crossref_primary_10_1016_j_repbio_2023_100853 crossref_primary_10_1186_s12864_022_09015_4 crossref_primary_10_1098_rsob_230358 crossref_primary_10_1016_j_theriogenology_2024_11_016 crossref_primary_10_1093_biolre_ioaf133 |
| Cites_doi | 10.1002/mrd.20357 10.1038/nrg3354 10.1038/s41467-020-15607-z 10.1016/j.theriogenology.2021.03.006 10.3390/ani11092483 10.1387/ijdb.103196ms 10.1016/S1046-2023(03)00083-5 10.1080/14767058.2017.1297405 10.1089/cell.2020.0022 10.1016/j.molcel.2020.06.001 10.1002/(SICI)1098-2795(199806)50:2<185::AID-MRD9>3.0.CO;2-G 10.1038/nrg1688 10.1016/j.stem.2015.10.001 10.1530/REP-20-0021 10.1089/cell.2013.0032 10.1089/153623003321512111 10.1262/jrd.11-109H 10.1016/j.theriogenology.2020.04.013 10.1093/molehr/gaz023 10.1186/1477-7827-1-98 10.1093/biolre/ioaa053 10.3390/ijms21144836 10.1089/cell.2014.0077 10.1073/pnas.89.16.7370 10.1038/ng.3844 10.1016/j.repbio.2015.01.002 10.1038/28615 10.3390/ijms21072314 10.1038/celldisc.2016.10 10.1016/j.stem.2018.07.017 10.1530/rep.1.01206 10.1371/journal.pone.0180535 10.1089/cell.2009.0068 10.1016/j.sjbs.2020.04.039 10.1002/(SICI)1098-2795(199811)51:3<281::AID-MRD7>3.0.CO;2-L 10.1073/pnas.1814514115 10.1530/ror.0.0030155 10.1534/g3.117.042655 10.1016/j.theriogenology.2016.04.021 10.1089/cell.2017.0058 10.1016/j.bbrc.2012.07.031 10.1016/j.rvsc.2017.12.011 10.1089/cell.2015.0060 10.1017/S0967199420000891 10.1016/j.stemcr.2017.12.015 10.5187/jast.2021.e41 10.1096/fj.201900578RR 10.1073/pnas.1112664108 10.1111/j.1439-0531.2009.01408.x 10.1111/asj.13260 10.1089/clo.2007.0091 10.1530/rep.1.00551 10.1530/REP-08-0299 10.1017/S0967199420000805 10.1089/cell.2017.0051 10.1038/ncb3485 10.1002/mrd.22935 10.1038/s41467-020-16044-8 10.1071/RD03052 10.1089/cell.2020.0041 10.1530/REP-20-0351 10.1262/jrd.2013-116 10.1016/j.bbrc.2005.11.164 10.1016/j.cell.2017.04.013 10.1262/jrd.2012-195 10.1007/s12033-020-00262-y 10.1093/biolre/ioab141 10.2527/jas.2007-0718 10.1530/REP-15-0338 10.1016/j.tibtech.2007.04.004 10.1016/j.theriogenology.2019.09.027 10.1016/j.bbrc.2007.04.165 10.1089/cell.2021.0028 10.1126/science.1194174 10.1016/j.stem.2020.09.006 10.1089/ten.tea.2009.0343 10.1095/biolreprod.106.051581 10.1095/biolreprod.109.077016 10.1089/cell.2014.0012 10.1262/jrd.2019-070 10.1111/rda.13606 10.1038/nature01079 10.1002/mrd.22787 10.1242/dev.086116 10.1016/j.stem.2018.06.008 10.1002/mrd.20311 10.1098/rstb.2011.0329 10.1016/0093-691X(93)90069-H 10.1089/153623002753632020 10.1073/pnas.0704360104 10.1007/s10815-014-0409-7 10.1016/j.theriogenology.2016.09.011 10.1089/clo.2006.0090 10.1089/clo.2009.0022 10.3390/ijms22063099 10.1530/REP-08-0435 10.1007/s10529-016-2141-0 10.1017/S0967199411000463 10.1016/S0959-437X(98)80090-7 10.1016/j.theriogenology.2019.06.016 10.1095/biolreprod.103.017954 10.1002/mrd.10279 10.1089/clo.2008.0072 10.1002/ana.410430212 10.1016/j.bbrc.2011.06.160 10.1089/cell.2018.0050 10.3390/ani11020473 10.1016/j.cell.2018.01.020 10.1071/RD15463 10.1016/j.fertnstert.2010.03.010 10.1095/biolreprod.104.033225 10.1002/mrd.1079 10.1007/s43032-021-00533-2 10.1371/journal.pone.0169092 10.1530/jrf.0.1080307 10.1159/000464389 10.1074/jbc.M511340200 10.1016/j.theriogenology.2018.12.021 10.1089/cell.2016.0030 10.1530/rep.0.1220731 10.1017/S0967199417000387 10.1095/biolreprod.105.047456 10.1002/mrd.22531 10.1038/s41580-019-0151-1 10.1262/jrd.2016-095 10.1021/ja037390k 10.1002/mrd.22271 10.1007/s10616-018-0224-6 10.1095/biolreprod.102.008771 10.1095/biolreprod.102.012112 10.1038/ng.3858 10.1262/jrd.18098 10.1007/s11626-013-9630-4 10.1371/journal.pone.0213737 10.1016/j.theriogenology.2020.07.022 10.1634/stemcells.2007-0747 10.1038/12696 10.1016/S0960-9822(01)00480-8 10.1038/srep23229 10.1292/jvms.11-0510 10.1038/nrm3140 10.1126/science.6857250 10.1016/S0960-9822(03)00419-6 10.1016/j.theriogenology.2019.01.001 10.1095/biolreprod63.3.715 10.1038/72692 10.1038/ng1973 10.1371/journal.pone.0036181 10.1016/j.cell.2017.09.026 10.1109/TBME.2020.3036494 10.1155/2012/161372 10.1155/2021/6681337 10.1017/S0967199419000200 10.1038/s41598-020-61797-3 10.1186/1471-213X-7-141 10.1371/journal.pone.0120033 10.1111/rda.12929 10.1177/1933719112440049 10.3390/ani10091496 10.1016/j.anireprosci.2019.106125 10.1038/385810a0 10.15252/embr.201846240 10.1126/science.1181369 10.1530/REP-11-0421 10.1089/cell.2017.0024 10.3390/ijms22010236 10.1262/jrd.10-058A 10.1016/j.theriogenology.2007.07.021 10.1371/journal.pone.0230247 10.15252/embr.202050054 10.1016/j.tibtech.2016.03.008 10.1095/biolreprod67.2.637 10.1016/j.anireprosci.2015.04.002 10.1038/cr.2007.66 10.1089/cell.2009.0032 10.1016/j.theriogenology.2013.09.032 10.1007/s10815-013-9987-z 10.1089/cell.2010.0015 10.1095/biolreprod60.5.1188 10.1089/cell.2011.0099 10.1186/1471-2164-12-204 10.1530/REP-07-0442 10.1016/S0093-691X(02)00645-3 10.1089/cell.2011.0079 10.1016/j.theriogenology.2008.04.042 10.3389/fgene.2020.00205 10.1242/dev.158261 10.1017/S0967199419000856 10.1089/cell.2014.0103 10.1262/jrd.2019-001 10.1038/s41598-018-25516-3 10.1074/jbc.C113.464800 10.1089/cell.2012.0033 10.1007/s00441-006-0201-9 10.1038/nature02873 10.1093/biolre/ioab096 10.1074/jbc.M110.136085 10.1017/S0967199400003762 10.1111/rda.13493 10.1016/j.stem.2020.05.014 10.1042/BCJ20180512 10.1016/j.theriogenology.2006.08.006 10.1089/clo.2007.0002 10.1186/s12958-021-00829-7 10.4161/cc.10.16.17093 10.1095/biolreprod.110.085282 10.1530/REP-15-0460 10.1371/journal.pone.0055941 10.1016/j.theriogenology.2008.05.046 10.1111/cpr.13059 10.1002/jcp.28357 10.1089/cell.2010.0060 10.1111/febs.14515 10.1038/nature24281 10.4142/jvs.2019.20.e31 10.1016/0012-1606(75)90061-5 10.1038/s41594-018-0075-z 10.1095/biolreprod.107.063149 10.1089/cell.2019.0008 10.1530/jrf.0.1160253 10.1016/j.theriogenology.2011.05.025 10.1530/rep.1.00772 10.1038/s41580-019-0132-4 10.5713/ajas.15.0051 10.1071/RD14176 10.1089/cell.2010.0094 10.1007/s10616-016-0057-0 10.1242/bio.023473 10.1530/REP-10-0528 10.1016/j.theriogenology.2019.11.027 10.2478/aoas-2018-0015 10.1371/journal.pone.0064705 10.1038/ng.3846 10.1017/S0967199408005133 10.1016/j.cell.2014.09.055 10.1007/102_2018_3 10.1080/10495398.2018.1559846 10.1262/jrd.09-149A 10.1371/journal.pone.0233880 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.3390/ijms23041969 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC8879641 35216087 10_3390_ijms23041969 |
| Genre | Journal Article Review |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF ALIPV BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK ESTFP K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c478t-604d3d7cde190ce416ef441f625467caec9cd6641c3ca0807dc2333b2ce4d8f43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767286900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 1661-6596 |
| IngestDate | Tue Nov 04 02:00:53 EST 2025 Mon Sep 08 14:47:00 EDT 2025 Tue Oct 07 07:13:49 EDT 2025 Wed Feb 19 02:27:23 EST 2025 Tue Nov 18 22:31:51 EST 2025 Sat Nov 29 07:08:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | somatic cell nuclear transfer embryo epigenetic modification nuclear reprogramming cloning efficiency |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-604d3d7cde190ce416ef441f625467caec9cd6641c3ca0807dc2333b2ce4d8f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4764-9101 0000-0003-0660-7156 |
| OpenAccessLink | https://www.proquest.com/docview/2632764105?pq-origsite=%requestingapplication% |
| PMID | 35216087 |
| PQID | 2632764105 |
| PQPubID | 2032341 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879641 proquest_miscellaneous_2633867663 proquest_journals_2632764105 pubmed_primary_35216087 crossref_primary_10_3390_ijms23041969 crossref_citationtrail_10_3390_ijms23041969 |
| PublicationCentury | 2000 |
| PublicationDate | 20220210 |
| PublicationDateYYYYMMDD | 2022-02-10 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220210 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Meng (ref_115) 2009; 11 Conzatti (ref_70) 2018; 31 Yang (ref_202) 2005; 71 Hendrickson (ref_239) 2017; 49 Fang (ref_139) 2020; 31 Liu (ref_162) 2018; 145 Tecirlioglu (ref_38) 2003; 15 Lee (ref_79) 2017; 52 An (ref_151) 2019; 234 McGrath (ref_34) 1983; 220 Hosseini (ref_45) 2013; 15 Brierley (ref_93) 1998; 43 Shi (ref_135) 2003; 69 Ogura (ref_11) 2013; 368 Ono (ref_35) 2001; 122 Dai (ref_124) 2010; 285 Collins (ref_224) 1999; 60 Zhang (ref_6) 2021; 2021 Qasim (ref_232) 2019; 65 Wang (ref_211) 2019; 54 Ongaratto (ref_121) 2020; 28 Inoue (ref_195) 2020; 11 MacGregor (ref_186) 2019; 476 Lee (ref_237) 2021; 54 Moulavi (ref_44) 2020; 62 Schwarzer (ref_192) 2017; 551 Miyoshi (ref_222) 2010; 56 Das (ref_123) 2010; 12 Liu (ref_103) 2018; 172 Wang (ref_194) 2020; 151 Wen (ref_119) 2014; 81 Selokar (ref_16) 2018; 20 Rodrigues (ref_66) 2009; 44 Mangia (ref_52) 1975; 45 Liu (ref_155) 2016; 2 Shi (ref_27) 2008; 86 Hosseini (ref_46) 2013; 49 ref_73 Yu (ref_197) 2018; 115 Enright (ref_133) 2003; 69 Sun (ref_29) 2003; 31 Yang (ref_138) 2007; 133 Han (ref_184) 2018; 285 Lee (ref_225) 2021; 29 Chen (ref_145) 2015; 82 Matoba (ref_203) 2011; 108 ref_148 Sparman (ref_99) 2010; 54 Li (ref_223) 1996; 108 ref_88 Evans (ref_85) 1999; 23 Shyam (ref_234) 2020; 157 Yang (ref_159) 2013; 145 Yang (ref_171) 2018; 19 Fu (ref_71) 2015; 28 Jozi (ref_227) 2020; 10 Klinger (ref_18) 2021; 162 Held (ref_56) 2011; 76 Zhang (ref_149) 2020; 55 Steinborn (ref_87) 2000; 2 Chung (ref_160) 2015; 17 Yang (ref_206) 2019; 65 ref_214 Kikuchi (ref_229) 2000; 63 Song (ref_77) 2020; 22 Ono (ref_125) 2010; 83 Wang (ref_173) 2020; 27 Du (ref_41) 2007; 68 Akagi (ref_101) 2011; 57 Chen (ref_218) 2004; 126 ref_210 Boulesteix (ref_158) 2012; 58 Young (ref_7) 1998; 3 Niemann (ref_21) 2016; 86 Li (ref_28) 2008; 70 Song (ref_78) 2019; 208 Jones (ref_176) 2001; 60 Brockdorff (ref_199) 1998; 8 Planet (ref_238) 2017; 49 Zhang (ref_100) 2007; 9 Qiu (ref_129) 2017; 19 Long (ref_5) 2014; 81 Fathi (ref_69) 2017; 25 Cagnone (ref_58) 2016; 6 ref_208 Chen (ref_219) 2007; 104 Lee (ref_47) 2021; 63 Kishigami (ref_95) 2006; 340 Bhojwani (ref_53) 2007; 67 Kamimura (ref_141) 2021; 105 Huang (ref_168) 2017; 29 Saini (ref_137) 2016; 28 Samiec (ref_107) 2019; 90 Zhang (ref_193) 2020; 79 Tepekoy (ref_233) 2015; 32 Lagutina (ref_40) 2005; 130 Bhat (ref_236) 2018; 25 Bui (ref_143) 2012; 139 Jambhekar (ref_154) 2019; 20 Vajta (ref_37) 2003; 68 Ferreira (ref_82) 2021; 161 George (ref_42) 2011; 13 Santos (ref_156) 2003; 13 Wang (ref_183) 2016; 18 Sadeesh (ref_62) 2017; 69 Sharma (ref_226) 2021; 23 Zhang (ref_161) 2018; 70 Wang (ref_98) 2007; 77 Huan (ref_108) 2015; 17 Rao (ref_191) 2017; 171 Takeda (ref_86) 1999; 116 Vajta (ref_36) 2007; 25 Constant (ref_9) 2006; 75 Wu (ref_64) 2007; 17 Rathbone (ref_142) 2010; 12 Qu (ref_152) 2019; 25 Do (ref_215) 2015; 15 ref_109 Samiec (ref_140) 2018; 21 Oback (ref_39) 2003; 5 Meister (ref_181) 2004; 431 Loi (ref_3) 2016; 34 Kubota (ref_30) 1998; 51 Wakayama (ref_33) 1998; 394 Pichugin (ref_157) 2010; 139 Oikawa (ref_204) 2013; 59 Xu (ref_76) 2019; 21 Wang (ref_60) 2012; 2012 Wang (ref_17) 2020; 11 Patin (ref_175) 2001; 11 Jin (ref_132) 2017; 84 Wang (ref_185) 2019; 21 Srirattana (ref_102) 2014; 60 Jewgenow (ref_67) 2019; 126 Srirattana (ref_114) 2012; 14 ref_15 Spikings (ref_57) 2006; 131 Zheng (ref_187) 2019; 20 Cortez (ref_49) 2018; 20 Jin (ref_177) 2006; 325 Oh (ref_111) 2012; 74 Wee (ref_201) 2006; 281 Miyamoto (ref_150) 2017; 6 Cui (ref_110) 2011; 13 Miyoshi (ref_126) 2010; 12 Matoba (ref_116) 2014; 159 Yang (ref_241) 2020; 21 Wu (ref_212) 2020; 22 Inoue (ref_200) 2010; 330 Chawalit (ref_147) 2012; 19 Tian (ref_12) 2003; 1 Haarhuis (ref_190) 2017; 169 Velilla (ref_55) 2002; 57 Tsuji (ref_105) 2009; 17 Iager (ref_26) 2008; 10 Guo (ref_106) 2018; 117 Alhimaidi (ref_113) 2020; 27 Ding (ref_136) 2008; 70 Chen (ref_91) 2002; 67 Wilmut (ref_1) 1997; 385 Samiec (ref_14) 2018; 18 Zhao (ref_32) 2021; 68 Li (ref_120) 2019; 135 Zhou (ref_166) 2020; 34 Do (ref_89) 2012; 424 Lee (ref_230) 2008; 10 Vajta (ref_4) 2018; 20 Kim (ref_231) 2019; 20 Peura (ref_74) 1998; 50 Izquierdo (ref_59) 2011; 142 Whiddon (ref_240) 2017; 49 Srirattana (ref_80) 2019; 231 Xiang (ref_217) 2021; 167 Wilmut (ref_20) 2002; 419 ref_50 Zhai (ref_72) 2018; 85 Sekirina (ref_83) 1997; 5 Smith (ref_24) 2013; 14 Rybouchkin (ref_96) 2006; 74 Minor (ref_144) 2013; 288 Bui (ref_104) 2009; 138 ref_174 ref_54 Mohapatra (ref_61) 2015; 17 Meng (ref_165) 2020; 103 ref_178 Frydman (ref_207) 2011; 95 Yang (ref_117) 2021; 28 Jia (ref_63) 2019; 27 ref_182 Jullien (ref_19) 2011; 12 Ribeiro (ref_75) 2009; 11 Takeda (ref_84) 2003; 64 Qin (ref_153) 2021; 29 Huang (ref_167) 2016; 151 Kim (ref_220) 2007; 358 Xie (ref_172) 2016; 151 Hosseini (ref_48) 2015; 158 Alcoba (ref_65) 2013; 21 Lee (ref_228) 2019; 127 Srirattana (ref_81) 2018; 8 Kuroki (ref_216) 2013; 30 Srirattana (ref_94) 2017; 7 Kishigami (ref_97) 2007; 53 Qi (ref_213) 2020; 142 Bowles (ref_90) 2008; 26 ref_68 Sun (ref_122) 2021; 28 Adams (ref_179) 2005; 72 Jin (ref_128) 2016; 38 Weng (ref_169) 2020; 146 Enright (ref_23) 2005; 72 Gao (ref_180) 2018; 23 Matoba (ref_196) 2018; 23 Liu (ref_31) 2000; 18 ref_170 Saraiya (ref_221) 2010; 16 Ericsson (ref_51) 1993; 39 Ruan (ref_164) 2018; 10 Ashry (ref_209) 2021; 19 Niemann (ref_8) 2002; 4 Guo (ref_25) 2011; 10 Jin (ref_130) 2017; 41 ref_198 Zeng (ref_205) 2016; 62 Cortopassi (ref_92) 1992; 89 Chen (ref_189) 2020; 11 Yang (ref_13) 2007; 39 Sangalli (ref_112) 2012; 14 Chia (ref_235) 2017; 19 Zhao (ref_118) 2009; 81 Jeon (ref_134) 2008; 135 ref_43 Huang (ref_146) 2011; 411 Jin (ref_131) 2017; 87 Williams (ref_188) 2009; 326 Huang (ref_242) 2021; 105 Sproul (ref_22) 2005; 6 ref_2 Mallol (ref_127) 2014; 16 Loi (ref_10) 2013; 15 Zhang (ref_163) 2020; 160 |
| References_xml | – volume: 72 start-page: 311 year: 2005 ident: ref_179 article-title: Knockdown of the Dnmt1s transcript using small interfering RNA in primary murine and bovine fibroblast cells publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20357 – volume: 14 start-page: 204 year: 2013 ident: ref_24 article-title: DNA methylation: Roles in mammalian development publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3354 – volume: 11 start-page: 1813 year: 2020 ident: ref_189 article-title: Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos publication-title: Nat. Commun. doi: 10.1038/s41467-020-15607-z – volume: 167 start-page: 13 year: 2021 ident: ref_217 article-title: Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes publication-title: Theriogenology doi: 10.1016/j.theriogenology.2021.03.006 – ident: ref_214 doi: 10.3390/ani11092483 – volume: 54 start-page: 1671 year: 2010 ident: ref_99 article-title: Cloning of non-human primates: The road “less traveled by” publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.103196ms – volume: 31 start-page: 12 year: 2003 ident: ref_29 article-title: Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation publication-title: Methods doi: 10.1016/S1046-2023(03)00083-5 – volume: 31 start-page: 735 year: 2018 ident: ref_70 article-title: Selection of developmentally competent human oocytes aspirated during cesarean section publication-title: J. Matern. Fetal Neonatal Med. doi: 10.1080/14767058.2017.1297405 – volume: 22 start-page: 236 year: 2020 ident: ref_77 article-title: Effect of additional cytoplasm of cloned embryo on in vitro developmental competence and reprogramming efficiency in mice publication-title: Cell. Reprogram. doi: 10.1089/cell.2020.0022 – volume: 79 start-page: 234 year: 2020 ident: ref_193 article-title: Analysis of genome architecture during SCNT reveals a role of cohesin in impeding minor ZGA publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.06.001 – volume: 50 start-page: 185 year: 1998 ident: ref_74 article-title: The effect of recipient oocyte volume on nuclear transfer in cattle publication-title: Mol. Reprod. Dev. doi: 10.1002/(SICI)1098-2795(199806)50:2<185::AID-MRD9>3.0.CO;2-G – volume: 6 start-page: 775 year: 2005 ident: ref_22 article-title: The role of chromatin structure in regulating the expression of clustered genes publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1688 – volume: 17 start-page: 758 year: 2015 ident: ref_160 article-title: Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.10.001 – volume: 160 start-page: 379 year: 2020 ident: ref_163 article-title: TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos publication-title: Reproduction doi: 10.1530/REP-20-0021 – volume: 15 start-page: 367 year: 2013 ident: ref_10 article-title: Sheep: The first large animal model in nuclear transfer research publication-title: Cell. Reprogram. doi: 10.1089/cell.2013.0032 – volume: 5 start-page: 3 year: 2003 ident: ref_39 article-title: Cloned cattle derived from a novel zona-free embryo reconstruction system publication-title: Cloning Stem Cells doi: 10.1089/153623003321512111 – volume: 58 start-page: 467 year: 2012 ident: ref_158 article-title: H3S10 phosphorylation marks constitutive heterochromatin during interphase in early mouse embryos until the 4-cell stage publication-title: J. Reprod. Dev. doi: 10.1262/jrd.11-109H – volume: 151 start-page: 86 year: 2020 ident: ref_194 article-title: Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology publication-title: Theriogenology doi: 10.1016/j.theriogenology.2020.04.013 – volume: 25 start-page: 471 year: 2019 ident: ref_152 article-title: Sperm-borne small RNAs regulate α-tubulin acetylation and epigenetic modification of early bovine somatic cell nuclear transfer embryos publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gaz023 – volume: 1 start-page: 98 year: 2003 ident: ref_12 article-title: Cloning animals by somatic cell nuclear transfer—Biological factors publication-title: Reprod. Biol. Endocrinol. doi: 10.1186/1477-7827-1-98 – volume: 103 start-page: 114 year: 2020 ident: ref_165 article-title: Targeted histone demethylation improves somatic cell reprogramming into cloned blastocysts but not postimplantation bovine concepti publication-title: Biol. Reprod. doi: 10.1093/biolre/ioaa053 – ident: ref_170 doi: 10.3390/ijms21144836 – volume: 17 start-page: 141 year: 2015 ident: ref_61 article-title: Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern publication-title: Cell Reprogram. doi: 10.1089/cell.2014.0077 – volume: 89 start-page: 7370 year: 1992 ident: ref_92 article-title: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.16.7370 – volume: 49 start-page: 925 year: 2017 ident: ref_239 article-title: Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons publication-title: Nat. Genet. doi: 10.1038/ng.3844 – volume: 15 start-page: 86 year: 2015 ident: ref_215 article-title: Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes publication-title: Reprod. Biol. doi: 10.1016/j.repbio.2015.01.002 – volume: 394 start-page: 369 year: 1998 ident: ref_33 article-title: Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei publication-title: Nature doi: 10.1038/28615 – ident: ref_73 doi: 10.3390/ijms21072314 – volume: 2 start-page: 16010 year: 2016 ident: ref_155 article-title: Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing publication-title: Cell Discov. doi: 10.1038/celldisc.2016.10 – volume: 23 start-page: 426 year: 2018 ident: ref_180 article-title: Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.07.017 – volume: 133 start-page: 219 year: 2007 ident: ref_138 article-title: Rabbit somatic cell cloning: Effects of donor cell type, histone acetylation status and chimeric embryo complementation publication-title: Reproduction doi: 10.1530/rep.1.01206 – ident: ref_182 doi: 10.1371/journal.pone.0180535 – volume: 12 start-page: 95 year: 2010 ident: ref_123 article-title: Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs publication-title: Cell. Reprogram. doi: 10.1089/cell.2009.0068 – volume: 27 start-page: 2280 year: 2020 ident: ref_113 article-title: The in vitro development of cloned sheep embryos treated with Scriptaid and trichostatin (A) publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2020.04.039 – volume: 51 start-page: 281 year: 1998 ident: ref_30 article-title: In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation publication-title: Mol. Reprod. Dev. doi: 10.1002/(SICI)1098-2795(199811)51:3<281::AID-MRD7>3.0.CO;2-L – volume: 115 start-page: E11071 year: 2018 ident: ref_197 article-title: Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1814514115 – volume: 3 start-page: 155 year: 1998 ident: ref_7 article-title: Large offspring syndrome in cattle and sheep publication-title: Rev. Reprod. doi: 10.1530/ror.0.0030155 – volume: 7 start-page: 2065 year: 2017 ident: ref_94 article-title: Manipulating the mitochondrial genome to enhance cattle embryo development publication-title: G3 Genes Genomes Genet. doi: 10.1534/g3.117.042655 – volume: 86 start-page: 80 year: 2016 ident: ref_21 article-title: Epigenetic reprogramming in mammalian species after SCNT-based cloning publication-title: Theriogenology doi: 10.1016/j.theriogenology.2016.04.021 – volume: 20 start-page: 145 year: 2018 ident: ref_4 article-title: Cloning: A Sleeping Beauty Awaiting the Kiss? publication-title: Cell. Reprogram. doi: 10.1089/cell.2017.0058 – volume: 424 start-page: 765 year: 2012 ident: ref_89 article-title: Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.07.031 – volume: 117 start-page: 161 year: 2018 ident: ref_106 article-title: Effects of trichostatin A on pig SCNT blastocyst formation rate and cell number: A meta-analysis publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2017.12.011 – volume: 18 start-page: 78 year: 2016 ident: ref_183 article-title: Methyl-CpG-binding protein 2 improves the development of mouse somatic cell nuclear transfer embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2015.0060 – volume: 29 start-page: 293 year: 2021 ident: ref_225 article-title: Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs publication-title: Zygote doi: 10.1017/S0967199420000891 – volume: 10 start-page: 494 year: 2018 ident: ref_164 article-title: XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.12.015 – volume: 63 start-page: 281 year: 2021 ident: ref_47 article-title: Application of the modified handmade cloning technique to pigs publication-title: J. Anim. Sci. Technol. doi: 10.5187/jast.2021.e41 – volume: 34 start-page: 1637 year: 2020 ident: ref_166 article-title: Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos publication-title: FASEB J. doi: 10.1096/fj.201900578RR – volume: 108 start-page: 20621 year: 2011 ident: ref_203 article-title: RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112664108 – volume: 44 start-page: 255 year: 2009 ident: ref_66 article-title: Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone serum profiles publication-title: Reprod. Domest. Anim. doi: 10.1111/j.1439-0531.2009.01408.x – volume: 90 start-page: 1127 year: 2019 ident: ref_107 article-title: Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos publication-title: Anim. Sci. J. doi: 10.1111/asj.13260 – volume: 10 start-page: 381 year: 2008 ident: ref_230 article-title: Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer publication-title: Cloning Stem Cells doi: 10.1089/clo.2007.0091 – volume: 131 start-page: 233 year: 2006 ident: ref_57 article-title: Mitochondria directly influence fertilisation outcome in the pig publication-title: Reproduction doi: 10.1530/rep.1.00551 – volume: 138 start-page: 309 year: 2009 ident: ref_104 article-title: The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice publication-title: Reproduction doi: 10.1530/REP-08-0299 – volume: 29 start-page: 331 year: 2021 ident: ref_153 article-title: Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit publication-title: Zygote doi: 10.1017/S0967199420000805 – volume: 20 start-page: 89 year: 2018 ident: ref_16 article-title: Cloning of buffalo, a highly valued livestock species of South and Southeast Asia: Any achievements? publication-title: Cell. Reprogram. doi: 10.1089/cell.2017.0051 – volume: 19 start-page: 282 year: 2017 ident: ref_235 article-title: Genomic instability during reprogramming by nuclear transfer is DNA replication dependent publication-title: Nat. Cell Biol. doi: 10.1038/ncb3485 – volume: 85 start-page: 26 year: 2018 ident: ref_72 article-title: Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22935 – volume: 21 start-page: 217 year: 2018 ident: ref_140 article-title: Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos publication-title: Pol. J. Vet. Sci. – volume: 11 start-page: 2150 year: 2020 ident: ref_195 article-title: Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas publication-title: Nat. Commun. doi: 10.1038/s41467-020-16044-8 – volume: 15 start-page: 361 year: 2003 ident: ref_38 article-title: Birth of a cloned calf derived from a vitrified hand-made cloned embryo publication-title: Reprod. Fertil. Dev. doi: 10.1071/RD03052 – volume: 22 start-page: 277 year: 2020 ident: ref_212 article-title: Effect of Rhodiola sachalinensis aqueous extract on in vitro maturation of porcine oocytes and subsequent in vitro embryonic development publication-title: Cell. Reprogram. doi: 10.1089/cell.2020.0041 – volume: 161 start-page: 269 year: 2021 ident: ref_82 article-title: Does supplementation with mitochondria improve oocyte competence? A systematic review publication-title: Reproduction doi: 10.1530/REP-20-0351 – volume: 60 start-page: 336 year: 2014 ident: ref_102 article-title: Effects of trichostatin A on in vitro development and DNA methylation level of the satellite I region of swamp buffalo (Bubalus bubalis) cloned embryos publication-title: J. Reprod. Dev. doi: 10.1262/jrd.2013-116 – volume: 340 start-page: 183 year: 2006 ident: ref_95 article-title: Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.11.164 – volume: 169 start-page: 693 year: 2017 ident: ref_190 article-title: The cohesin release factor WAPL restricts chromatin loop extension publication-title: Cell doi: 10.1016/j.cell.2017.04.013 – volume: 59 start-page: 231 year: 2013 ident: ref_204 article-title: RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos publication-title: J. Reprod. Dev. doi: 10.1262/jrd.2012-195 – volume: 62 start-page: 433 year: 2020 ident: ref_44 article-title: Pregnancy and calving rates of cloned dromedary camels produced by conventional and handmade cloning techniques and in vitro and in vivo matured oocytes publication-title: Mol. Biotechnol. doi: 10.1007/s12033-020-00262-y – volume: 105 start-page: 1089 year: 2021 ident: ref_242 article-title: Functional study of distinct domains of Dux in improving mouse SCNT embryonic development publication-title: Biol. Reprod. doi: 10.1093/biolre/ioab141 – volume: 86 start-page: 1106 year: 2008 ident: ref_27 article-title: Trichostatin A and nuclear reprogramming of cloned rabbit embryos publication-title: J. Anim. Sci. doi: 10.2527/jas.2007-0718 – volume: 151 start-page: 9 year: 2016 ident: ref_172 article-title: Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming publication-title: Reproduction doi: 10.1530/REP-15-0338 – volume: 25 start-page: 250 year: 2007 ident: ref_36 article-title: Handmade cloning: The future way of nuclear transfer? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2007.04.004 – volume: 142 start-page: 26 year: 2020 ident: ref_213 article-title: Asiatic acid supplementation during the in vitro culture period improves early embryonic development of porcine embryos produced by parthenogenetic activation, somatic cell nuclear transfer and in vitro fertilization publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.09.027 – volume: 358 start-page: 553 year: 2007 ident: ref_220 article-title: Reversine stimulates adipocyte differentiation and downregulates Akt and p70(s6k) signaling pathways in 3T3-L1 cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.04.165 – volume: 23 start-page: 304 year: 2021 ident: ref_226 article-title: Exposure to pulsed electromagnetic fields improves the developmental competence and quality of somatic cell nuclear transfer buffalo (Bubalus bubalis) embryos produced using fibroblast cells and alters their epigenetic status and gene expression publication-title: Cell. Reprogram. doi: 10.1089/cell.2021.0028 – volume: 330 start-page: 496 year: 2010 ident: ref_200 article-title: Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer publication-title: Science doi: 10.1126/science.1194174 – volume: 28 start-page: 150 year: 2021 ident: ref_117 article-title: Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.09.006 – volume: 16 start-page: 1443 year: 2010 ident: ref_221 article-title: Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2009.0343 – volume: 75 start-page: 122 year: 2006 ident: ref_9 article-title: Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois publication-title: Biol. Reprod. doi: 10.1095/biolreprod.106.051581 – volume: 81 start-page: 525 year: 2009 ident: ref_118 article-title: Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer publication-title: Biol. Reprod. doi: 10.1095/biolreprod.109.077016 – volume: 16 start-page: 392 year: 2014 ident: ref_127 article-title: Psammaplin A improves development and quality of somatic cell nuclear transfer mouse embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2014.0012 – volume: 65 start-page: 533 year: 2019 ident: ref_206 article-title: Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression publication-title: J. Reprod. Dev. doi: 10.1262/jrd.2019-070 – volume: 55 start-page: 255 year: 2020 ident: ref_149 article-title: Vitamin C treatment of embryos, but not donor cells, improves the cloned embryonic development in sheep publication-title: Reprod. Domest. Anim. doi: 10.1111/rda.13606 – volume: 419 start-page: 583 year: 2002 ident: ref_20 article-title: Somatic cell nuclear transfer publication-title: Nature doi: 10.1038/nature01079 – volume: 84 start-page: 340 year: 2017 ident: ref_132 article-title: Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22787 – volume: 139 start-page: 4330 year: 2012 ident: ref_143 article-title: Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes publication-title: Development doi: 10.1242/dev.086116 – volume: 23 start-page: 343 year: 2018 ident: ref_196 article-title: Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.06.008 – volume: 71 start-page: 431 year: 2005 ident: ref_202 article-title: Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20311 – volume: 368 start-page: 20110329 year: 2013 ident: ref_11 article-title: Recent advancements in cloning by somatic cell nuclear transfer publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. doi: 10.1098/rstb.2011.0329 – volume: 39 start-page: 214 year: 1993 ident: ref_51 article-title: Assessment of porcine oocytes using brilliant cresyl blue publication-title: Theriogenology doi: 10.1016/0093-691X(93)90069-H – volume: 4 start-page: 29 year: 2002 ident: ref_8 article-title: Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development publication-title: Cloning Stem Cells doi: 10.1089/153623002753632020 – volume: 104 start-page: 10482 year: 2007 ident: ref_219 article-title: Reversine increases the plasticity of lineage-committed mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0704360104 – volume: 32 start-page: 337 year: 2015 ident: ref_233 article-title: The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-014-0409-7 – volume: 87 start-page: 298 year: 2017 ident: ref_131 article-title: Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos publication-title: Theriogenology doi: 10.1016/j.theriogenology.2016.09.011 – volume: 9 start-page: 357 year: 2007 ident: ref_100 article-title: An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer publication-title: Cloning Stem Cells doi: 10.1089/clo.2006.0090 – volume: 11 start-page: 377 year: 2009 ident: ref_75 article-title: Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes publication-title: Cloning Stem Cells doi: 10.1089/clo.2009.0022 – ident: ref_2 doi: 10.3390/ijms22063099 – volume: 139 start-page: 129 year: 2010 ident: ref_157 article-title: Dynamics of constitutive heterochromatin: Two contrasted kinetics of genome restructuring in early cloned bovine embryos publication-title: Reproduction doi: 10.1530/REP-08-0435 – volume: 38 start-page: 1433 year: 2016 ident: ref_128 article-title: PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos publication-title: Biotechnol. Lett. doi: 10.1007/s10529-016-2141-0 – volume: 21 start-page: 238 year: 2013 ident: ref_65 article-title: Selection of Rattus norvegicus oocytes for in vitro maturation by brilliant cresyl blue staining publication-title: Zygote doi: 10.1017/S0967199411000463 – volume: 8 start-page: 328 year: 1998 ident: ref_199 article-title: The role of Xist in X-inactivation publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(98)80090-7 – volume: 135 start-page: 164 year: 2019 ident: ref_120 article-title: In vitro production of canine blastocysts publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.06.016 – volume: 69 start-page: 896 year: 2003 ident: ref_133 article-title: Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine publication-title: Biol. Reprod. doi: 10.1095/biolreprod.103.017954 – volume: 64 start-page: 429 year: 2003 ident: ref_84 article-title: Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.10279 – volume: 11 start-page: 203 year: 2009 ident: ref_115 article-title: Live birth of somatic cell-cloned rabbits following trichostatin a treatment and cotransfer of parthenogenetic embryos publication-title: Cloning Stem Cells doi: 10.1089/clo.2008.0072 – volume: 43 start-page: 217 year: 1998 ident: ref_93 article-title: Role of mitochondrial DNA mutations in human aging: Implications for the central nervous system and muscle publication-title: Ann. Neurol. doi: 10.1002/ana.410430212 – volume: 411 start-page: 397 year: 2011 ident: ref_146 article-title: Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.06.160 – volume: 21 start-page: 51 year: 2019 ident: ref_76 article-title: Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm publication-title: Cell. Reprogram. doi: 10.1089/cell.2018.0050 – ident: ref_210 doi: 10.3390/ani11020473 – volume: 172 start-page: 881 year: 2018 ident: ref_103 article-title: Cloning of macaque monkeys by somatic cell nuclear transfer publication-title: Cell doi: 10.1016/j.cell.2018.01.020 – volume: 29 start-page: 1260 year: 2017 ident: ref_168 article-title: Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos publication-title: Reprod. Fertil. Dev. doi: 10.1071/RD15463 – volume: 95 start-page: 94 year: 2011 ident: ref_207 article-title: Levels of follicular G-CSF and interleukin-15 appear as noninvasive biomarkers of subsequent successful birth in modified natural in vitro fertilization/intracytoplasmic sperm injection cycles publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2010.03.010 – volume: 72 start-page: 944 year: 2005 ident: ref_23 article-title: Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine publication-title: Biol. Reprod. doi: 10.1095/biolreprod.104.033225 – volume: 60 start-page: 208 year: 2001 ident: ref_176 article-title: DNA hypomethylation of karyoplasts for bovine nuclear transplantation publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.1079 – volume: 28 start-page: 2630 year: 2021 ident: ref_122 article-title: HDAC6 is involved in the histone deacetylation of in vitro maturation oocytes and the reprogramming of nuclear transplantation in pig publication-title: Reprod. Sci. doi: 10.1007/s43032-021-00533-2 – ident: ref_109 doi: 10.1371/journal.pone.0169092 – volume: 108 start-page: 307 year: 1996 ident: ref_223 article-title: Differential sensitivity of one-cell and two-cell rabbit embryos to sodium chloride and total osmolarity during culture into blastocysts publication-title: J. Reprod. Fertil. doi: 10.1530/jrf.0.1080307 – volume: 41 start-page: 1255 year: 2017 ident: ref_130 article-title: The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos publication-title: Cell. Physiol. Biochem. doi: 10.1159/000464389 – volume: 281 start-page: 6048 year: 2006 ident: ref_201 article-title: Inheritable histone H4 acetylation of somatic chromatins in cloned embryos publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511340200 – volume: 126 start-page: 320 year: 2019 ident: ref_67 article-title: Brilliant cresyl blue staining allows the selection for developmentally competent immature feline oocytes publication-title: Theriogenology doi: 10.1016/j.theriogenology.2018.12.021 – volume: 19 start-page: 1 year: 2017 ident: ref_129 article-title: Effects of Trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2016.0030 – volume: 122 start-page: 731 year: 2001 ident: ref_35 article-title: Production of cloned mice from embryonic stem cells arrested at metaphase publication-title: Reproduction doi: 10.1530/rep.0.1220731 – volume: 25 start-page: 529 year: 2017 ident: ref_69 article-title: Developmental competence of dromedary camel (Camelus dromedarius) oocytes selected using brilliant cresyl blue staining publication-title: Zygote doi: 10.1017/S0967199417000387 – volume: 74 start-page: 1083 year: 2006 ident: ref_96 article-title: Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer publication-title: Biol. Reprod. doi: 10.1095/biolreprod.105.047456 – volume: 82 start-page: 867 year: 2015 ident: ref_145 article-title: Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22531 – volume: 20 start-page: 625 year: 2019 ident: ref_154 article-title: Roles and regulation of histone methylation in animal development publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0151-1 – volume: 62 start-page: 591 year: 2016 ident: ref_205 article-title: Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos publication-title: J. Reprod. Dev. doi: 10.1262/jrd.2016-095 – volume: 126 start-page: 410 year: 2004 ident: ref_218 article-title: Dedifferentiation of lineage-committed cells by a small molecule publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037390k – volume: 81 start-page: 183 year: 2014 ident: ref_5 article-title: Reshaping the transcriptional frontier: Epigenetics and somatic cell nuclear transfer publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22271 – volume: 70 start-page: 1469 year: 2018 ident: ref_161 article-title: Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos publication-title: Cytotechnology doi: 10.1007/s10616-018-0224-6 – volume: 68 start-page: 571 year: 2003 ident: ref_37 article-title: Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro publication-title: Biol. Reprod. doi: 10.1095/biolreprod.102.008771 – volume: 69 start-page: 301 year: 2003 ident: ref_135 article-title: Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos publication-title: Biol. Reprod. doi: 10.1095/biolreprod.102.012112 – volume: 49 start-page: 941 year: 2017 ident: ref_238 article-title: DUX-family transcription factors regulate zygotic genome activation in placental mammals publication-title: Nat. Genet. doi: 10.1038/ng.3858 – volume: 53 start-page: 165 year: 2007 ident: ref_97 article-title: Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer publication-title: J. Reprod. Dev. doi: 10.1262/jrd.18098 – volume: 49 start-page: 569 year: 2013 ident: ref_46 article-title: Simple, fast, and efficient method of manual oocyte enucleation using a pulled Pasteur pipette publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1007/s11626-013-9630-4 – ident: ref_50 doi: 10.1371/journal.pone.0213737 – volume: 157 start-page: 254 year: 2020 ident: ref_234 article-title: Effect of Dickkopf-1 and colony stimulating factor-2 on the developmental competence, quality, gene expression and live birth rate of buffalo (Bubalus bubalis) embryos produced by hand-made cloning publication-title: Theriogenology doi: 10.1016/j.theriogenology.2020.07.022 – volume: 26 start-page: 775 year: 2008 ident: ref_90 article-title: Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts publication-title: Stem Cells doi: 10.1634/stemcells.2007-0747 – volume: 23 start-page: 90 year: 1999 ident: ref_85 article-title: Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep publication-title: Nat. Genet. doi: 10.1038/12696 – volume: 11 start-page: 1542 year: 2001 ident: ref_175 article-title: Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00480-8 – volume: 6 start-page: 23229 year: 2016 ident: ref_58 article-title: Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency publication-title: Sci. Rep. doi: 10.1038/srep23229 – volume: 74 start-page: 1409 year: 2012 ident: ref_111 article-title: Trichostatin A improves preimplantation development of bovine cloned embryos and alters expression of epigenetic and pluripotency genes in cloned blastocysts publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.11-0510 – volume: 12 start-page: 453 year: 2011 ident: ref_19 article-title: Mechanisms of nuclear reprogramming by eggs and oocytes: A deterministic process? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3140 – volume: 220 start-page: 1300 year: 1983 ident: ref_34 article-title: Nuclear transplantation in the mouse embryo by microsurgery and cell fusion publication-title: Science doi: 10.1126/science.6857250 – volume: 13 start-page: 1116 year: 2003 ident: ref_156 article-title: Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00419-6 – volume: 127 start-page: 80 year: 2019 ident: ref_228 article-title: Effect of alanine supplementation during in vitro maturation on oocyte maturation and embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.01.001 – volume: 63 start-page: 715 year: 2000 ident: ref_229 article-title: Maturation/M-phase promoting factor: A regulator of aging in porcine oocytes publication-title: Biol. Reprod. doi: 10.1095/biolreprod63.3.715 – volume: 18 start-page: 223 year: 2000 ident: ref_31 article-title: A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes publication-title: Nat. Biotechnol. doi: 10.1038/72692 – volume: 39 start-page: 295 year: 2007 ident: ref_13 article-title: Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning publication-title: Nat. Genet. doi: 10.1038/ng1973 – ident: ref_54 doi: 10.1371/journal.pone.0036181 – volume: 171 start-page: 305 year: 2017 ident: ref_191 article-title: Cohesin loss eliminates all loop domains publication-title: Cell doi: 10.1016/j.cell.2017.09.026 – volume: 68 start-page: 2348 year: 2021 ident: ref_32 article-title: Robotic label-free precise oocyte enucleation for improving developmental competence of cloned embryos publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3036494 – volume: 2012 start-page: 7 year: 2012 ident: ref_60 article-title: Selection of ovine oocytes by brilliant cresyl blue staining publication-title: J. Biomed. Biotechnol. doi: 10.1155/2012/161372 – volume: 2021 start-page: 6681337 year: 2021 ident: ref_6 article-title: Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development publication-title: Stem Cells Int. doi: 10.1155/2021/6681337 – volume: 27 start-page: 166 year: 2019 ident: ref_63 article-title: Use of oocytes selected by brilliant cresyl blue staining enhances rabbit cloned embryo development in vitro publication-title: Zygote doi: 10.1017/S0967199419000200 – volume: 10 start-page: 5076 year: 2020 ident: ref_227 article-title: Induced DNA hypomethylation by folic acid deprivation in bovine fibroblast donor cells improves reprogramming of somatic cell nuclear transfer embryos publication-title: Sci. Rep. doi: 10.1038/s41598-020-61797-3 – ident: ref_88 doi: 10.1186/1471-213X-7-141 – ident: ref_148 doi: 10.1371/journal.pone.0120033 – volume: 52 start-page: 437 year: 2017 ident: ref_79 article-title: Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development publication-title: Reprod. Domest. Anim. doi: 10.1111/rda.12929 – volume: 19 start-page: 976 year: 2012 ident: ref_147 article-title: Trichostatin A and ascorbic acid assist in the development of porcine handmade cloned embryos via different physiologic pathways publication-title: Reprod. Sci. doi: 10.1177/1933719112440049 – ident: ref_68 doi: 10.3390/ani10091496 – volume: 208 start-page: 106125 year: 2019 ident: ref_78 article-title: Production of cloned cats using additional complimentary cytoplasm publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2019.106125 – volume: 385 start-page: 810 year: 1997 ident: ref_1 article-title: Viable offspring derived from fetal and adult mammalian cells publication-title: Nature doi: 10.1038/385810a0 – volume: 19 start-page: e46240 year: 2018 ident: ref_171 article-title: KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system publication-title: EMBO Rep. doi: 10.15252/embr.201846240 – volume: 326 start-page: 289 year: 2009 ident: ref_188 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 145 start-page: 149 year: 2013 ident: ref_159 article-title: Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development publication-title: Reproduction doi: 10.1530/REP-11-0421 – volume: 20 start-page: 4 year: 2018 ident: ref_49 article-title: High pregnancy and calving rates with a limited number of transferred handmade cloned bovine embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2017.0024 – ident: ref_15 doi: 10.3390/ijms22010236 – volume: 57 start-page: 120 year: 2011 ident: ref_101 article-title: Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos publication-title: J. Reprod. Dev. doi: 10.1262/jrd.10-058A – volume: 68 start-page: 1104 year: 2007 ident: ref_41 article-title: Piglets born from handmade cloning, an innovative cloning method without micromanipulation publication-title: Theriogenology doi: 10.1016/j.theriogenology.2007.07.021 – ident: ref_208 doi: 10.1371/journal.pone.0230247 – volume: 21 start-page: e50054 year: 2020 ident: ref_241 article-title: Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming publication-title: EMBO Rep. doi: 10.15252/embr.202050054 – volume: 34 start-page: 791 year: 2016 ident: ref_3 article-title: A New, Dynamic Era for Somatic Cell Nuclear Transfer? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.03.008 – volume: 67 start-page: 637 year: 2002 ident: ref_91 article-title: Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos publication-title: Biol. Reprod. doi: 10.1095/biolreprod67.2.637 – volume: 158 start-page: 11 year: 2015 ident: ref_48 article-title: Chemically assisted somatic cell nuclear transfer without micromanipulator in the goat: Effects of demecolcine, cytochalasin-B, and MG-132 on the efficiency of a manual method of oocyte enucleation using a pulled Pasteur pipette publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2015.04.002 – volume: 17 start-page: 722 year: 2007 ident: ref_64 article-title: Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: A study using the mouse model publication-title: Cell Res. doi: 10.1038/cr.2007.66 – volume: 12 start-page: 67 year: 2010 ident: ref_126 article-title: Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2009.0032 – volume: 81 start-page: 332 year: 2014 ident: ref_119 article-title: The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos publication-title: Theriogenology doi: 10.1016/j.theriogenology.2013.09.032 – volume: 30 start-page: 623 year: 2013 ident: ref_216 article-title: Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro: Astaxanthin colocalization with and action on mitochondria publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-013-9987-z – volume: 12 start-page: 609 year: 2010 ident: ref_142 article-title: Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate publication-title: Cell. Reprogram. doi: 10.1089/cell.2010.0015 – volume: 60 start-page: 1188 year: 1999 ident: ref_224 article-title: Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos publication-title: Biol. Reprod. doi: 10.1095/biolreprod60.5.1188 – volume: 14 start-page: 248 year: 2012 ident: ref_114 article-title: Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: Effect of Trichostatin A treatment publication-title: Cell. Reprogram. doi: 10.1089/cell.2011.0099 – ident: ref_198 doi: 10.1186/1471-2164-12-204 – volume: 135 start-page: 815 year: 2008 ident: ref_134 article-title: S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer publication-title: Reproduction doi: 10.1530/REP-07-0442 – volume: 57 start-page: 1397 year: 2002 ident: ref_55 article-title: Selection of prepubertal goat oocytes using the brilliant cresyl blue test publication-title: Theriogenology doi: 10.1016/S0093-691X(02)00645-3 – volume: 14 start-page: 235 year: 2012 ident: ref_112 article-title: Treatment of nuclear-donor cells or cloned zygotes with chromatin-modifying agents increases histone acetylation but does not improve full-term development of cloned cattle publication-title: Cell. Reprogram. doi: 10.1089/cell.2011.0079 – volume: 70 start-page: 622 year: 2008 ident: ref_136 article-title: Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.04.042 – volume: 11 start-page: 205 year: 2020 ident: ref_17 article-title: Epigenetic reprogramming during somatic cell nuclear transfer: Recent progress and future directions publication-title: Front. Genet. doi: 10.3389/fgene.2020.00205 – volume: 145 start-page: dev158261 year: 2018 ident: ref_162 article-title: H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming publication-title: Development doi: 10.1242/dev.158261 – volume: 28 start-page: 286 year: 2020 ident: ref_121 article-title: Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development publication-title: Zygote doi: 10.1017/S0967199419000856 – volume: 17 start-page: 191 year: 2015 ident: ref_108 article-title: Epigenetic modification of cloned embryos improves Nanog reprogramming in pigs publication-title: Cell. Reprogram. doi: 10.1089/cell.2014.0103 – volume: 65 start-page: 259 year: 2019 ident: ref_232 article-title: Effects of manganese on maturation of porcine oocytes in vitro and their subsequent embryo development after parthenogenetic activation and somatic cell nuclear transfer publication-title: J. Reprod. Dev. doi: 10.1262/jrd.2019-001 – volume: 8 start-page: 7246 year: 2018 ident: ref_81 article-title: Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer publication-title: Sci. Rep. doi: 10.1038/s41598-018-25516-3 – volume: 288 start-page: 13669 year: 2013 ident: ref_144 article-title: Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine publication-title: J. Biol. Chem. doi: 10.1074/jbc.C113.464800 – volume: 15 start-page: 15 year: 2013 ident: ref_45 article-title: Cloned sheep blastocysts derived from oocytes enucleated manually using a pulled pasteur pipette publication-title: Cell Reprogram. doi: 10.1089/cell.2012.0033 – volume: 325 start-page: 445 year: 2006 ident: ref_177 article-title: DNA methylation levels in porcine fetal fibroblasts induced by an inhibitor of methylation, 5-azacytidine publication-title: Cell Tissue Res. doi: 10.1007/s00441-006-0201-9 – volume: 431 start-page: 343 year: 2004 ident: ref_181 article-title: Mechanisms of gene silencing by double-stranded RNA publication-title: Nature doi: 10.1038/nature02873 – volume: 105 start-page: 543 year: 2021 ident: ref_141 article-title: Improved development of mouse SCNT embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors publication-title: Biol. Reprod. doi: 10.1093/biolre/ioab096 – volume: 285 start-page: 31002 year: 2010 ident: ref_124 article-title: Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.136085 – volume: 5 start-page: 97 year: 1997 ident: ref_83 article-title: The behaviour of mitochondria and cell integration during somatic hybridisation of sister blastomeres of the 2-cell mouse embryo publication-title: Zygote doi: 10.1017/S0967199400003762 – volume: 54 start-page: 1195 year: 2019 ident: ref_211 article-title: Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer publication-title: Reprod. Domest. Anim. doi: 10.1111/rda.13493 – volume: 27 start-page: 315 year: 2020 ident: ref_173 article-title: Overcoming intrinsic H3K27me3 imprinting barriers improves post-implantation development after somatic cell nuclear transfer publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.05.014 – volume: 476 start-page: 2141 year: 2019 ident: ref_186 article-title: Large-scale chromatin organisation in interphase, mitosis and meiosis publication-title: Biochem. J. doi: 10.1042/BCJ20180512 – volume: 67 start-page: 341 year: 2007 ident: ref_53 article-title: Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer publication-title: Theriogenology doi: 10.1016/j.theriogenology.2006.08.006 – volume: 10 start-page: 371 year: 2008 ident: ref_26 article-title: Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos publication-title: Cloning Stem Cells doi: 10.1089/clo.2007.0002 – volume: 19 start-page: 141 year: 2021 ident: ref_209 article-title: Follistatin supplementation induces changes in CDX2 CpG methylation and improves in vitro development of bovine SCNT preimplantation embryos publication-title: Reprod. Biol. Endocrinol. doi: 10.1186/s12958-021-00829-7 – volume: 10 start-page: 2662 year: 2011 ident: ref_25 article-title: Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond publication-title: Cell Cycle doi: 10.4161/cc.10.16.17093 – volume: 83 start-page: 929 year: 2010 ident: ref_125 article-title: Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.110.085282 – volume: 151 start-page: 39 year: 2016 ident: ref_167 article-title: BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei publication-title: Reproduction doi: 10.1530/REP-15-0460 – ident: ref_43 doi: 10.1371/journal.pone.0055941 – volume: 162 start-page: F1 year: 2021 ident: ref_18 article-title: Twenty-five years after Dolly—How far have we come? publication-title: Reproduction – volume: 70 start-page: 800 year: 2008 ident: ref_28 article-title: High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.05.046 – volume: 54 start-page: e13059 year: 2021 ident: ref_237 article-title: Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos publication-title: Cell Prolif. doi: 10.1111/cpr.13059 – volume: 234 start-page: 17370 year: 2019 ident: ref_151 article-title: Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28357 – volume: 13 start-page: 179 year: 2011 ident: ref_110 article-title: Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2010.0060 – volume: 285 start-page: 2708 year: 2018 ident: ref_184 article-title: Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency publication-title: FEBS J. doi: 10.1111/febs.14515 – volume: 551 start-page: 51 year: 2017 ident: ref_192 article-title: Two independent modes of chromatin organization revealed by cohesin removal publication-title: Nature doi: 10.1038/nature24281 – volume: 20 start-page: e31 year: 2019 ident: ref_231 article-title: Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment publication-title: J. Vet. Sci. doi: 10.4142/jvs.2019.20.e31 – volume: 45 start-page: 211 year: 1975 ident: ref_52 article-title: Biochemical studies of growing mouse oocytes: Preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities publication-title: Dev. Biol. doi: 10.1016/0012-1606(75)90061-5 – volume: 25 start-page: 446 year: 2018 ident: ref_236 article-title: RPA and RAD51: Fork reversal, fork protection, and genome stability publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0075-z – volume: 77 start-page: 1007 year: 2007 ident: ref_98 article-title: Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos publication-title: Biol. Reprod. doi: 10.1095/biolreprod.107.063149 – volume: 21 start-page: 221 year: 2019 ident: ref_185 article-title: Overexpression of MBD3 improves reprogramming of cloned pig embryos publication-title: Cell. Reprogram. doi: 10.1089/cell.2019.0008 – volume: 116 start-page: 253 year: 1999 ident: ref_86 article-title: Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer publication-title: J. Reprod. Fertil. doi: 10.1530/jrf.0.1160253 – volume: 76 start-page: 1215 year: 2011 ident: ref_56 article-title: G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.05.025 – volume: 130 start-page: 559 year: 2005 ident: ref_40 article-title: Somatic cell nuclear transfer in horses: Effect of oocyte morphology, embryo reconstruction method and donor cell type publication-title: Reproduction doi: 10.1530/rep.1.00772 – volume: 20 start-page: 535 year: 2019 ident: ref_187 article-title: The role of 3D genome organization in development and cell differentiation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0132-4 – volume: 28 start-page: 1703 year: 2015 ident: ref_71 article-title: Subcellular characterization of porcine oocytes with different glucose-6-phosphate dehydrogenase activities publication-title: Asian-Australas. J. Anim. Sci. doi: 10.5713/ajas.15.0051 – volume: 28 start-page: 824 year: 2016 ident: ref_137 article-title: Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2′-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos publication-title: Reprod. Fertil. Dev. doi: 10.1071/RD14176 – volume: 13 start-page: 263 year: 2011 ident: ref_42 article-title: Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts publication-title: Cell Reprogram. doi: 10.1089/cell.2010.0094 – volume: 69 start-page: 289 year: 2017 ident: ref_62 article-title: Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos publication-title: Cytotechnology doi: 10.1007/s10616-016-0057-0 – volume: 6 start-page: 415 year: 2017 ident: ref_150 article-title: Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules publication-title: Biol. Open. doi: 10.1242/bio.023473 – volume: 142 start-page: 517 year: 2011 ident: ref_59 article-title: Brilliant cresyl blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep publication-title: Reproduction doi: 10.1530/REP-10-0528 – volume: 146 start-page: 162 year: 2020 ident: ref_169 article-title: Improvement in the in vitro development of cloned pig embryos after KDM4A overexpression and an H3K9me3 methyltransferase inhibitor treatment publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.11.027 – volume: 18 start-page: 623 year: 2018 ident: ref_14 article-title: Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals?—A review publication-title: Ann. Anim. Sci. doi: 10.2478/aoas-2018-0015 – volume: 2 start-page: 157 year: 2000 ident: ref_87 article-title: Mitochondrial DNA transmission in cattle cloned by nuclear transfer of adult and fetal cells publication-title: Cloning – ident: ref_178 doi: 10.1371/journal.pone.0064705 – volume: 49 start-page: 935 year: 2017 ident: ref_240 article-title: Conservation and innovation in the DUX4-family gene network publication-title: Nat. Genet. doi: 10.1038/ng.3846 – volume: 17 start-page: 109 year: 2009 ident: ref_105 article-title: The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine publication-title: Zygote doi: 10.1017/S0967199408005133 – volume: 159 start-page: 884 year: 2014 ident: ref_116 article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation publication-title: Cell doi: 10.1016/j.cell.2014.09.055 – volume: 231 start-page: 75 year: 2019 ident: ref_80 article-title: Transmission of dysfunctional mitochondrial DNA and its implications for mammalian reproduction publication-title: Adv. Anat. Embryol. Cell Biol. doi: 10.1007/102_2018_3 – volume: 31 start-page: 155 year: 2020 ident: ref_139 article-title: Effect of supplementation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos publication-title: Anim. Biotechnol. doi: 10.1080/10495398.2018.1559846 – volume: 56 start-page: 291 year: 2010 ident: ref_222 article-title: Beneficial effects of Reversine on in vitro development of miniature pig somatic cell nuclear transfer embryos publication-title: J. Reprod. Dev. doi: 10.1262/jrd.09-149A – ident: ref_174 doi: 10.1371/journal.pone.0233880 |
| SSID | ssj0023259 |
| Score | 2.513353 |
| SecondaryResourceType | review_article |
| Snippet | Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning.... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1969 |
| SubjectTerms | Animals Cattle Cellular Reprogramming - genetics Cellular Reprogramming - physiology Chromatin Chromosomes Cloning Cloning, Organism - methods Cytoplasm DNA methylation DNA Methylation - genetics DNA Methylation - physiology Efficiency Embryo, Mammalian - physiology Embryonic Development - genetics Embryonic Development - physiology Embryos Epigenesis, Genetic - genetics Epigenetics Gene expression Humans Light Mitochondrial DNA Nuclear Transfer Techniques Oocytes - physiology Review Sheep |
| Title | Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35216087 https://www.proquest.com/docview/2632764105 https://www.proquest.com/docview/2633867663 https://pubmed.ncbi.nlm.nih.gov/PMC8879641 |
| Volume | 23 |
| WOSCitedRecordID | wos000767286900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXZC48H4ElpWR4ISsTWNjuycEq67gsKXiIZVT5PghikqyNF0k_j0zThq2ILhwiWR5FFse2_ONPf4G4EmweRWMEtwYa7j0IfLKVYELkyubO8Sw0qZkE3o2M4vFZN4fuLV9WOV2T0wbtW8cnZEfEa-4VhSU-OLsG6esUXS72qfQ2IN9YiqTI9h_NZ3N3w0ulyhSurQxWiGunk9UF_ou0NE_Wn752tKJKPHD7BqlP5Dm7wGTFyzQyfX_7fsNuNZjT_aymyw34VKob8GVLhvlj9sw3TLVhpZtGtYdNwSGCJFNE9EEvdJkTWTvm8Tzyo7DasVmRIhs1ywZvRjWd-DjyfTD8WveZ1ngTmqz4SqXXnjtfEBs4AICtBARI0VFTPna2eAmzivsvRPOIr7U3hVCiKpAWW-iFHdhVDd1uA9sXEnrCvyLklEqr41F7zMqFfPcVT6qDJ5th7l0PQU5ZcJYleiKkFLKi0rJ4OkgfdZRb_xF7mA76mW_ANvy15Bn8HioxqVD9yG2Ds15khFGacRcGdzrFDw0hLh0rHKjM9A7qh8EiJZ7t6Zefk703LhtT7DlB__u1kO4WtBLCsotkx_AaLM-D4_gsvu-WbbrQ9jTC52-5rCf01g6Ld5iaf7mdP7pJxy-An0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceD8CBYxET8iqNw62c0AIla26artaiSKVU3D8EFstSdlsQf1T_EbGedEFwa0Hzh7FSWY88409_gbghdMsd0pwqpRWNLHO09zkjnLFhGYGMWyi62YTcjJRx8fpdA1-dHdhQlll5xNrR21LE_bItwOvuBShKPHN6VcaukaF09WuhUZjFvvu_DumbNXr8TvU71Yc746OdvZo21WAmkSqJRUssdxKYx3GQuMQkDiPmMCLwAwvjXYmNVbgTIYbjXhKWhNzzvMYZa3yCcfnXoH1BI1dDWB9Oj6cfuxTPB7X7dmGGPWoeJWKptSe85Rtz06-VGEHNvDRrAbBP5Dt7wWaFyLe7s3_7V_dghsttiZvm8VwG9ZccQeuNd02z-_CqGPidRVZlqTZTnEEETAZ1UQa4RYqKT15X9Y8tmTHzedkEgif9YLUQd27xT34cCnfcB8GRVm4h0CGeaJNjE8RiU-ElUpjdu2F8IyZ3HoRwctOrZlpKdZDp495hqlWMILsohFEsNVLnzbUIn-R2-y0nLUOpsp-qTiC5_0wuoZw3qMLV57VMlwJiZgyggeNQfUTIe4eCqZkBHLF1HqBQDu-OlLMPtf04xiWUpz50b9f6xls7B0dHmQH48n-Y7geh1sjoY8O24TBcnHmnsBV8205qxZP2zVE4NNlm-JPrsZb8w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXngUCBYxET8hab2xs54AQandFVbRUAqTeguOHWLQkZbMF9a_x6xjnRRcEtx44exQnmfHMN_b4G4Cn3rDCa8mp1kZT4XyghS085ZpJwyxiWGGaZhNqNtNHR9nhBvzo78LEssreJzaO2lU27pGPIq-4krEocRS6sojDvenL4680dpCKJ619O43WRA786XdM3-oX-3uo6500nU7e776mXYcBaoXSKyqZcNwp6zzGResRnPiA-CDIyBKvrPE2s07irJZbg9hKOZtyzosUZZ0OguNzL8BFJTAox7LB9O2Q7PG0adQ2xvhH5fNMtkX3nGdsNP_8pY57sZGZZj0c_oFxfy_VPBP7ptf_5792A651iJu8apfITdjw5S243PbgPL0Nk56f19dkVZF2k8UTxMVk0tBrxLuppArkXdWw25Jdv1iQWaSBNkvShPrgl1vw4Vy-4Q5sllXp7wEZF8LYFJ8iRRDSKW0w5w5SBsZs4YJM4Fmv4tx2xOux_8cixwQsGkR-1iAS2Bmkj1vCkb_Ibfcazzu3U-e_1J3Ak2EYHUY8BTKlr04aGa6lQqSZwN3WuIaJEI2PJdMqAbVmdoNAJCNfHynnnxpScgxWGc58_9-v9RiuoP3lb_ZnBw_gahqvksTmOmwbNlfLE_8QLtlvq3m9fNQsJgIfz9sOfwIn8GMt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+Improve+the+Efficiency+of+Somatic+Cell+Nuclear+Transfer&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Srirattana%2C+Kanokwan&rft.au=Kaneda%2C+Masahiro&rft.au=Parnpai%2C+Rangsun&rft.date=2022-02-10&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fijms23041969&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |