Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity
Abstract Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure...
Gespeichert in:
| Veröffentlicht in: | Nucleic acids research Jg. 49; H. 13; S. 7492 - 7506 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Oxford University Press
21.07.2021
|
| Schlagworte: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Abstract
Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B. |
|---|---|
| AbstractList | Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B. Abstract Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B. Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B. |
| Author | Liang, Jiachen Hammond, Ester M Bader, Samuel B Simpson, Charlotte J Olcina, Monica M Ma, Tiffany S Maezono, Sakura Eri B Buffa, Francesca M |
| Author_xml | – sequence: 1 givenname: Samuel B surname: Bader fullname: Bader, Samuel B – sequence: 2 givenname: Tiffany S surname: Ma fullname: Ma, Tiffany S – sequence: 3 givenname: Charlotte J surname: Simpson fullname: Simpson, Charlotte J – sequence: 4 givenname: Jiachen surname: Liang fullname: Liang, Jiachen – sequence: 5 givenname: Sakura Eri B surname: Maezono fullname: Maezono, Sakura Eri B – sequence: 6 givenname: Monica M surname: Olcina fullname: Olcina, Monica M – sequence: 7 givenname: Francesca M orcidid: 0000-0003-0409-406X surname: Buffa fullname: Buffa, Francesca M – sequence: 8 givenname: Ester M orcidid: 0000-0002-2335-3146 surname: Hammond fullname: Hammond, Ester M email: ester.hammond@oncology.ox.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34197599$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAQhS1URLeFE3eUE0JCoZ7YTuILUrsqFKlSEQKu1sSZdA3ZOMRORf49ht1WtEKc5jDfe09674gdDH4gxp4DfwNci5MBp5Pr79goBY_YCkRZ5FKXxQFbccFVDlzWh-wohG-cgwQln7BDIUFXSusV-_qJxt5ZjM4PWToY4uTHDWVuaGdLbdYsmV1sQrLNMvqfDrOesA1Z9AmxE2FI0OnHq7PztTjL0EZ34-LylD3usA_0bH-P2Zd355_XF_nl1fsP69PL3MqqjrnqStSyRl21XEsqqcOysRLatqlA1aLogBQo2zQIlSgbDiQtlmhJdASSxDF7u_Md52ZLraUhTtibcXJbnBbj0Zn7n8FtzLW_MXVRV1oUyeDV3mDyP2YK0WxdsNT3OJCfgymUrCWkHnVCX_yddRdyW2YCYAfYyYcwUWesi3-aTdGuN8DN78FMGszsB0ua1w80t7b_pl_uaD-P_wV_AYfMp9I |
| CitedBy_id | crossref_primary_10_1038_s41598_024_76589_2 crossref_primary_10_3390_biom13010125 crossref_primary_10_1016_j_isci_2025_112325 crossref_primary_10_3389_fonc_2022_961753 crossref_primary_10_1016_j_semcancer_2023_11_008 crossref_primary_10_1038_s41568_024_00781_9 crossref_primary_10_1080_2162402X_2021_1974233 crossref_primary_10_1016_j_jtbi_2022_111104 crossref_primary_10_1038_s41416_023_02239_5 crossref_primary_10_1038_s41419_023_05867_0 crossref_primary_10_1136_jitc_2022_005503 crossref_primary_10_1073_pnas_2505021122 crossref_primary_10_1038_s41467_025_55905_y crossref_primary_10_3389_fimmu_2022_828875 crossref_primary_10_1158_0008_5472_CAN_22_2311 crossref_primary_10_3390_cancers15041235 crossref_primary_10_1242_jcs_261844 crossref_primary_10_1038_s41416_022_01741_6 crossref_primary_10_1007_s11538_024_01359_0 |
| Cites_doi | 10.1007/978-1-4939-7568-6_20 10.4161/cc.9.13.12059 10.1038/ng.2701 10.1158/0008-5472.CAN-04-4553 10.1128/MCB.01301-08 10.1016/S0092-8674(00)00078-7 10.1101/gr.197046.115 10.1259/bjr.20180642 10.1074/jbc.M113.458661 10.1126/sciadv.1601737 10.1016/j.celrep.2016.01.021 10.1073/pnas.1210633110 10.1038/nrclinonc.2012.171 10.1039/C9OB01781J 10.1038/ng.2702 10.1186/s13059-016-1042-9 10.18632/oncoscience.155 10.1038/s41596-019-0136-8 10.1128/MCB.00409-10 10.1016/j.cell.2013.10.043 10.1158/1541-7786.MCR-17-0019 10.1093/nar/gky1316 10.1016/j.molcel.2017.03.005 10.1186/s13058-014-0498-3 10.1016/j.molcel.2017.05.001 10.1158/1535-7163.MCT-14-1037 10.1038/nrc2397 10.1038/nature12477 10.1667/RR1926.1 10.1158/0008-5472.CAN-09-2715 10.1038/s41467-020-14568-7 10.1158/0008-5472.CAN-05-2887 10.3390/biom9080339 10.4103/2319-4170.148904 10.1172/JCI80402 10.1073/pnas.1904024116 10.1016/j.cell.2015.12.050 10.1016/j.cels.2019.06.006 10.1158/0008-5472.CAN-20-0950 10.1158/0008-5472.CAN-10-2821 10.1093/jnci/93.4.266 10.1158/0008-5472.CAN-10-1350 10.1080/15476286.2016.1184387 10.1158/0008-5472.CAN-15-2171-T 10.1038/srep39100 10.1016/j.molcel.2013.10.019 10.1158/0008-5472.CAN-18-3769 10.1093/nar/gkx721 10.1038/bjc.2017.133 10.1016/j.ijrobp.2007.08.036 10.1016/j.semcdb.2011.10.004 10.1038/nature25432 10.1038/nrc3007 10.1038/ncomms7881 10.3390/cancers13010023 10.1038/nature11881 10.1128/JVI.01089-09 10.1038/sj.bjc.6605450 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/nar/gkab551 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 7506 |
| ExternalDocumentID | PMC8287932 34197599 10_1093_nar_gkab551 10.1093/nar/gkab551 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_00001/10 – fundername: Cancer Research UK grantid: C5255/A23755 – fundername: Cancer Research UK grantid: 23969 – fundername: Cancer Research UK grantid: 19276 – fundername: Medical Research Council grantid: 4050620859 – fundername: ; grantid: 4050620859 – fundername: ; grantid: C5255/A23755 – fundername: ; grantid: 772970 |
| GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP AMNDL CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c478t-5f6a948a97d094e6efa6bc41ddb715832f1e515cbba1736b01e4ca6ace3fe14e3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685211300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 15:22:10 EDT 2025 Fri Sep 05 14:01:39 EDT 2025 Mon Jul 21 06:00:24 EDT 2025 Sat Nov 29 03:25:09 EST 2025 Tue Nov 18 22:26:03 EST 2025 Wed Aug 28 03:18:48 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-5f6a948a97d094e6efa6bc41ddb715832f1e515cbba1736b01e4ca6ace3fe14e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2335-3146 0000-0003-0409-406X |
| OpenAccessLink | https://dx.doi.org/10.1093/nar/gkab551 |
| PMID | 34197599 |
| PQID | 2548413059 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8287932 proquest_miscellaneous_2548413059 pubmed_primary_34197599 crossref_citationtrail_10_1093_nar_gkab551 crossref_primary_10_1093_nar_gkab551 oup_primary_10_1093_nar_gkab551 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-21 |
| PublicationDateYYYYMMDD | 2021-07-21 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2021 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Harris (2021071913013893300_B24) 2015; 17 Hockel (2021071913013893300_B2) 2001; 93 Land (2021071913013893300_B56) 2013; 288 Yasui (2021071913013893300_B5) 2010; 70 Pepin (2021071913013893300_B45) 2018; 1725 Burns (2021071913013893300_B26) 2013; 45 Menendez (2021071913013893300_B34) 2017; 15 Dewhirst (2021071913013893300_B3) 2008; 8 Ng (2021071913013893300_B57) 2019; 47 Roberts (2021071913013893300_B21) 2013; 45 Leszczynska (2021071913013893300_B30) 2015; 125 Koning (2021071913013893300_B58) 2009; 83 Law (2021071913013893300_B59) 2016; 2 Serebrenik (2021071913013893300_B41) 2019; 116 Matsumoto (2021071913013893300_B38) 2010; 70 Olcina (2021071913013893300_B9) 2013; 52 Toledo (2021071913013893300_B36) 2017; 66 Driscoll (2021071913013893300_B27) 2020; 11 Pires (2021071913013893300_B8) 2010; 70 Sharma (2021071913013893300_B54) 2016; 6 Barzak (2021071913013893300_B60) 2019; 17 Hoopes (2021071913013893300_B17) 2016; 14 Culver (2021071913013893300_B43) 2010; 30 Ron (2021071913013893300_B49) 2019; 79 Leonard (2021071913013893300_B42) 2015; 75 Sharma (2021071913013893300_B55) 2015; 6 Kanu (2021071913013893300_B25) 2016; 17 Gao (2021071913013893300_B31) 2019; 9 Nikkila (2021071913013893300_B40) 2017; 117 Burns (2021071913013893300_B22) 2013; 494 Muramatsu (2021071913013893300_B15) 2000; 102 Alexandrov (2021071913013893300_B20) 2013; 500 Buffa (2021071913013893300_B29) 2010; 102 Bader (2021071913013893300_B6) 2020; 13 Dewhirst (2021071913013893300_B4) 2009; 172 Smith (2021071913013893300_B14) 2012; 23 Rouschop (2021071913013893300_B33) 2013; 110 Dhawan (2021071913013893300_B32) 2019; 14 Dang (2021071913013893300_B28) 2006; 66 Nehmeh (2021071913013893300_B51) 2008; 70 Pires (2021071913013893300_B11) 2010; 9 Horsman (2021071913013893300_B47) 2012; 9 O’Connor (2021071913013893300_B46) 2019; 92 Sharma (2021071913013893300_B53) 2017; 14 Toledo (2021071913013893300_B12) 2013; 155 Schmitt (2021071913013893300_B39) 2018; 40 Haradhvala (2021071913013893300_B16) 2016; 164 Foskolou (2021071913013893300_B7) 2017; 66 King (2021071913013893300_B37) 2015; 14 Bakhoum (2021071913013893300_B44) 2018; 553 Periyasamy (2021071913013893300_B35) 2017; 45 Begg (2021071913013893300_B1) 2011; 11 Roberts (2021071913013893300_B19) 2013; 45 Hillestad (2021071913013893300_B48) 2020; 80 Seplyarskiy (2021071913013893300_B18) 2016; 26 Bencokova (2021071913013893300_B10) 2009; 29 Burns (2021071913013893300_B23) 2015; 38 Saxena (2021071913013893300_B52) 2019; 9 Rebhandl (2021071913013893300_B13) 2015; 2 Cao (2021071913013893300_B50) 2005; 65 |
| References_xml | – volume: 1725 start-page: 257 year: 2018 ident: 2021071913013893300_B45 article-title: Assessing the cGAS-cGAMP-STING activity of cancer cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7568-6_20 – volume: 9 start-page: 2502 year: 2010 ident: 2021071913013893300_B11 article-title: Exposure to acute hypoxia induces a transient DNA damage response which includes Chk1 and TLK1 publication-title: Cell Cycle doi: 10.4161/cc.9.13.12059 – volume: 45 start-page: 977 year: 2013 ident: 2021071913013893300_B26 article-title: Evidence for APOBEC3B mutagenesis in multiple human cancers publication-title: Nat. Genet. doi: 10.1038/ng.2701 – volume: 65 start-page: 5498 year: 2005 ident: 2021071913013893300_B50 article-title: Observation of incipient tumor angiogenesis that is independent of hypoxia and hypoxia inducible factor-1 activation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4553 – volume: 29 start-page: 526 year: 2009 ident: 2021071913013893300_B10 article-title: ATM activation and signaling under hypoxic conditions publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01301-08 – volume: 102 start-page: 553 year: 2000 ident: 2021071913013893300_B15 article-title: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme publication-title: Cell doi: 10.1016/S0092-8674(00)00078-7 – volume: 26 start-page: 174 year: 2016 ident: 2021071913013893300_B18 article-title: APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication publication-title: Genome Res. doi: 10.1101/gr.197046.115 – volume: 92 start-page: 20180642 year: 2019 ident: 2021071913013893300_B46 article-title: Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI publication-title: Br. J. Radiol. doi: 10.1259/bjr.20180642 – volume: 288 start-page: 17253 year: 2013 ident: 2021071913013893300_B56 article-title: Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and nongenotoxic publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.458661 – volume: 2 start-page: e1601737 year: 2016 ident: 2021071913013893300_B59 article-title: The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer publication-title: Sci. Adv. doi: 10.1126/sciadv.1601737 – volume: 14 start-page: 1273 year: 2016 ident: 2021071913013893300_B17 article-title: APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.021 – volume: 110 start-page: 4622 year: 2013 ident: 2021071913013893300_B33 article-title: PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1210633110 – volume: 9 start-page: 674 year: 2012 ident: 2021071913013893300_B47 article-title: Imaging hypoxia to improve radiotherapy outcome publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2012.171 – volume: 17 start-page: 9435 year: 2019 ident: 2021071913013893300_B60 article-title: Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2'-deoxyzebularine publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01781J – volume: 45 start-page: 970 year: 2013 ident: 2021071913013893300_B19 article-title: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers publication-title: Nat. Genet. doi: 10.1038/ng.2702 – volume: 17 start-page: 185 year: 2016 ident: 2021071913013893300_B25 article-title: DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer publication-title: Genome Biol. doi: 10.1186/s13059-016-1042-9 – volume: 2 start-page: 320 year: 2015 ident: 2021071913013893300_B13 article-title: AID/APOBEC deaminases and cancer publication-title: Oncoscience doi: 10.18632/oncoscience.155 – volume: 14 start-page: 1377 year: 2019 ident: 2021071913013893300_B32 article-title: Guidelines for using sigQC for systematic evaluation of gene signatures publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0136-8 – volume: 30 start-page: 4901 year: 2010 ident: 2021071913013893300_B43 article-title: Mechanism of hypoxia-induced NF-kappaB publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00409-10 – volume: 155 start-page: 1088 year: 2013 ident: 2021071913013893300_B12 article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA publication-title: Cell doi: 10.1016/j.cell.2013.10.043 – volume: 15 start-page: 735 year: 2017 ident: 2021071913013893300_B34 article-title: The Cytidine Deaminase APOBEC3 Family Is Subject to Transcriptional Regulation by p53 publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0019 – volume: 47 start-page: 1178 year: 2019 ident: 2021071913013893300_B57 article-title: Pan-cancer transcriptomic analysis dissects immune and proliferative functions of APOBEC3 cytidine deaminases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1316 – volume: 66 start-page: 206 year: 2017 ident: 2021071913013893300_B7 article-title: Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.03.005 – volume: 17 start-page: 8 year: 2015 ident: 2021071913013893300_B24 article-title: Molecular mechanism and clinical impact of APOBEC3B-catalyzed mutagenesis in breast cancer publication-title: Breast Cancer Res. doi: 10.1186/s13058-014-0498-3 – volume: 66 start-page: 735 year: 2017 ident: 2021071913013893300_B36 article-title: Replication catastrophe: when a checkpoint fails because of exhaustion publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.001 – volume: 14 start-page: 2004 year: 2015 ident: 2021071913013893300_B37 article-title: LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-1037 – volume: 8 start-page: 425 year: 2008 ident: 2021071913013893300_B3 article-title: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2397 – volume: 500 start-page: 415 year: 2013 ident: 2021071913013893300_B20 article-title: Signatures of mutational processes in human cancer publication-title: Nature doi: 10.1038/nature12477 – volume: 172 start-page: 653 year: 2009 ident: 2021071913013893300_B4 article-title: Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress publication-title: Radiat. Res. doi: 10.1667/RR1926.1 – volume: 70 start-page: 925 year: 2010 ident: 2021071913013893300_B8 article-title: Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2715 – volume: 11 start-page: 790 year: 2020 ident: 2021071913013893300_B27 article-title: APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-020-14568-7 – volume: 66 start-page: 1684 year: 2006 ident: 2021071913013893300_B28 article-title: Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-2887 – volume: 9 start-page: 339 year: 2019 ident: 2021071913013893300_B52 article-title: Acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression publication-title: Biomolecules doi: 10.3390/biom9080339 – volume: 38 start-page: 102 year: 2015 ident: 2021071913013893300_B23 article-title: APOBEC3B: pathological consequences of an innate immune DNA mutator publication-title: Biomed J doi: 10.4103/2319-4170.148904 – volume: 125 start-page: 2385 year: 2015 ident: 2021071913013893300_B30 article-title: Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT publication-title: J. Clin. Invest. doi: 10.1172/JCI80402 – volume: 116 start-page: 22158 year: 2019 ident: 2021071913013893300_B41 article-title: The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1904024116 – volume: 164 start-page: 538 year: 2016 ident: 2021071913013893300_B16 article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair publication-title: Cell doi: 10.1016/j.cell.2015.12.050 – volume: 9 start-page: 24 year: 2019 ident: 2021071913013893300_B31 article-title: Before and After: comparison of Legacy and Harmonized TCGA Genomic Data Commons' Data publication-title: Cell Syst. doi: 10.1016/j.cels.2019.06.006 – volume: 80 start-page: 3993 year: 2020 ident: 2021071913013893300_B48 article-title: MRIdistinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-0950 – volume: 70 start-page: 10019 year: 2010 ident: 2021071913013893300_B38 article-title: Imaging cycling tumor hypoxia publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2821 – volume: 93 start-page: 266 year: 2001 ident: 2021071913013893300_B2 article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/93.4.266 – volume: 70 start-page: 6427 year: 2010 ident: 2021071913013893300_B5 article-title: Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1350 – volume: 14 start-page: 603 year: 2017 ident: 2021071913013893300_B53 article-title: Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes publication-title: RNA Biol doi: 10.1080/15476286.2016.1184387 – volume: 75 start-page: 4538 year: 2015 ident: 2021071913013893300_B42 article-title: The PKC/NF-kappaB signaling pathway induces APOBEC3B expression in multiple human cancers publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2171-T – volume: 6 start-page: 39100 year: 2016 ident: 2021071913013893300_B54 article-title: The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme publication-title: Sci. Rep. doi: 10.1038/srep39100 – volume: 52 start-page: 758 year: 2013 ident: 2021071913013893300_B9 article-title: Replication stress and chromatin context link ATM activation to a role in DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.10.019 – volume: 79 start-page: 4767 year: 2019 ident: 2021071913013893300_B49 article-title: Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-3769 – volume: 45 start-page: 11056 year: 2017 ident: 2021071913013893300_B35 article-title: p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx721 – volume: 117 start-page: 113 year: 2017 ident: 2021071913013893300_B40 article-title: Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells publication-title: Br. J. Cancer doi: 10.1038/bjc.2017.133 – volume: 70 start-page: 235 year: 2008 ident: 2021071913013893300_B51 article-title: Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2007.08.036 – volume: 23 start-page: 258 year: 2012 ident: 2021071913013893300_B14 article-title: Functions and regulation of the APOBEC family of proteins publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.10.004 – volume: 40 start-page: 2742 year: 2018 ident: 2021071913013893300_B39 article-title: APOBEC3B is expressed in human glioma, and influences cell proliferation and temozolomide resistance publication-title: Oncol. Rep. – volume: 553 start-page: 467 year: 2018 ident: 2021071913013893300_B44 article-title: Chromosomal instability drives metastasis through a cytosolic DNA response publication-title: Nature doi: 10.1038/nature25432 – volume: 11 start-page: 239 year: 2011 ident: 2021071913013893300_B1 article-title: Strategies to improve radiotherapy with targeted drugs publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3007 – volume: 6 start-page: 6881 year: 2015 ident: 2021071913013893300_B55 article-title: APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages publication-title: Nat. Commun. doi: 10.1038/ncomms7881 – volume: 45 start-page: 970 year: 2013 ident: 2021071913013893300_B21 article-title: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers publication-title: Nat. Genet. doi: 10.1038/ng.2702 – volume: 13 start-page: 23 year: 2020 ident: 2021071913013893300_B6 article-title: Cyclic hypoxia: an update on its characteristics, methods to measure it and biological implications in cancer publication-title: Cancers (Basel) doi: 10.3390/cancers13010023 – volume: 494 start-page: 366 year: 2013 ident: 2021071913013893300_B22 article-title: APOBEC3B is an enzymatic source of mutation in breast cancer publication-title: Nature doi: 10.1038/nature11881 – volume: 83 start-page: 9474 year: 2009 ident: 2021071913013893300_B58 article-title: Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets publication-title: J. Virol. doi: 10.1128/JVI.01089-09 – volume: 102 start-page: 428 year: 2010 ident: 2021071913013893300_B29 article-title: Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6605450 |
| SSID | ssj0014154 |
| Score | 2.4926906 |
| Snippet | Abstract
Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors.... Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7492 |
| SubjectTerms | APOBEC Deaminases - metabolism Cell Hypoxia Cell Line, Tumor Cytidine Deaminase - metabolism Deamination DNA Replication Genome Integrity, Repair and Humans Hydroxyurea - toxicity Minor Histocompatibility Antigens - metabolism Neoplasms - enzymology Stress, Physiological - genetics |
| Title | Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34197599 https://www.proquest.com/docview/2548413059 https://pubmed.ncbi.nlm.nih.gov/PMC8287932 |
| Volume | 49 |
| WOSCitedRecordID | wos000685211300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90CPri98f8mBHEB6HYrGmSPs6h-CDqg8reSpombqidrJu4_95L2w0nor42lxLuDu77dwDHVFEXaQQeequ-x6g1ntTWer6wOuVGc1nkdB-vxc2N7HSiu6pBNv-hhB8FZ5kanD09qyQsJqVpKJ063992psUCtEElSlQBqslkNYb37e6M4ZkZZvviU35vjfxiay5X_vvKVViuvEnSKsW_BnMmW4eNVoaR9OuYnJCiv7NInK_DYnuy220DHtHvnmTriMvg4GcHMEAwQkdZpyQZEz3WSEK647f-R0-RF1SGnAz7SOIczRyJWne35xft4Jy44Qi3g2ITHi4v7ttXXrVhwdNMyKEXWq4iJlUkUgzzDDdW8UQzmqaJcIxuWmrQ4dFJoqgIeOJTw7TiSpvAGspMsAW1rJ-ZHSBcaylEyvzUN0yEViaMu7JrU1slMKapw-mE_bGu4MfdFoyXuCyDBzFyMK44WIfjKfFbibrxM9khyvF3iqOJjGNksSuGqMz0R3mMgbF0BjyM6rBdynz6I4dxJ8IIT8SMNkwJHCb37EnW6xbY3G5_ALrEu3--bA-Wmq49xhdek-5DbTgYmQNY0O_DXj5owLzoyEaRIGgUyv4JZlL8xw |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+catastrophe+induced+by+cyclic+hypoxia+leads+to+increased+APOBEC3B+activity&rft.jtitle=Nucleic+acids+research&rft.au=Bader%2C+Samuel+B&rft.au=Ma%2C+Tiffany+S&rft.au=Simpson%2C+Charlotte+J&rft.au=Liang%2C+Jiachen&rft.date=2021-07-21&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=13&rft.spage=7492&rft.epage=7506&rft_id=info:doi/10.1093%2Fnar%2Fgkab551&rft.externalDocID=10.1093%2Fnar%2Fgkab551 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |