LCBPA: two-stage task allocation algorithm for high-dimension data collecting in mobile crowd sensing network

Mobile crowd sensing (MCS) is a novel emerging paradigm that leverages sensor-equipped smart mobile terminals (e.g., smartphones, tablets, and intelligent wearable devices) to collect information. Compared with traditional data collection methods, such as construct wireless sensor network infrastruc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on wireless communications and networking Ročník 2019; číslo 1; s. 1 - 11
Hlavní autoři: Zhou, Ning, Zhang, Jianhui, Wang, Binqiang, Xiao, Jia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 23.12.2019
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1499, 1687-1472, 1687-1499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mobile crowd sensing (MCS) is a novel emerging paradigm that leverages sensor-equipped smart mobile terminals (e.g., smartphones, tablets, and intelligent wearable devices) to collect information. Compared with traditional data collection methods, such as construct wireless sensor network infrastructures, MCS has advantages of lower data collection costs, easier system maintenance, and better scalability. However, the limited capabilities make a mobile crowd terminal only support limited data types, which may result in a failure of supporting high-dimension data collection tasks. This paper proposed a task allocation algorithm to solve the problem of high-dimensional data collection in mobile crowd sensing network. The low-cost and balance-participating algorithm ( LCBPA ) aims to reduce the data collection cost and improve the equality of node participation by trading-off between them. The LCBPA performs in two stages: in the first stage, it divides the high-dimensional data into fine-grained and smaller dimensional data, that is, dividing an m- dimension data collection task into k sub-task by K- means, where ( k < m ). In the second stage, it assigns different nodes with different sensing capability to perform sub-tasks. Simulation results show that the proposed method can improve the task completion ratio, minimizing the cost of data collection.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-019-1610-2