Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS
We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisf...
Saved in:
| Published in: | Experiments in fluids Vol. 64; no. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Nature
01.01.2023
Springer Berlin Heidelberg Springer Nature B.V |
| Subjects: | |
| ISSN: | 0723-4864, 1432-1114, 1432-1114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrotationality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first use of a PINN to reconstruct a supersonic flow from experimental data of any kind. NRC publication: Yes |
|---|---|
| AbstractList | We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrotationality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first use of a PINN to reconstruct a supersonic flow from experimental data of any kind. |
| ArticleNumber | 14 |
| Author | Molnar, Joseph P Sipkens, Timothy A Grauer, Samuel J Venkatakrishnan, Lakshmi Schmidt, Bryan E |
| Author_xml | – sequence: 1 fullname: Molnar, Joseph P – sequence: 2 fullname: Venkatakrishnan, Lakshmi – sequence: 3 fullname: Schmidt, Bryan E – sequence: 4 fullname: Sipkens, Timothy A – sequence: 5 fullname: Grauer, Samuel J |
| BookMark | eNp9kctu1TAQhi1UJE4LL8AqElsM40viZAlVC0iVugDWxpdJcZXawU5AeXt8ThBILLqZsa3555_5fE7OYopIyEsGbxiAelsAhOwpcE5BtK2k2xNyYFJwyhiTZ-QAigsq-04-I-el3AOwdoD-QL5dlSU8mCXEu8ZjLGHZXjc_cUrudDLRN3PGUtaMzRhw8qUJsSnrjLmkGFwzTulXadZybDB_30pwhYY4pvyAvnl_-_k5eTqaqeCLP_mCfL2--nL5kd7cfvh0-e6GOqn6hcrWouicQeH7GtoecOgMjiCcGjwz3DLrEZHZQeCgZF3XgmXdYLBnFkZxQV7tfeecfqxYFn2f1hyrpeaqY5xxaLtaxfcql1MpGUc957p-3jQDfSSpd5K6ktQnknqrov4_UYVTkaW4ZBOmx6Vil5bqE-8w_5vqUZXfVTE7Z6Lx5u-YyYTqXv9Mh2PStUK7UzD7e5xNvVkBshu5rRaWaakGq63qlAYmOXDGFPRe_Aa8rK9q |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3353864 crossref_primary_10_1007_s00348_025_04012_1 crossref_primary_10_1016_j_cpc_2025_109782 crossref_primary_10_1016_j_measurement_2023_113710 crossref_primary_10_1016_j_oceaneng_2023_114597 crossref_primary_10_1109_ACCESS_2025_3585402 crossref_primary_10_1016_j_joei_2025_102118 crossref_primary_10_1145_3689037 crossref_primary_10_1063_5_0216479 crossref_primary_10_1007_s00348_023_03672_1 crossref_primary_10_1088_1361_6501_acc049 crossref_primary_10_1088_1361_6501_ad296a crossref_primary_10_2514_1_J065669 crossref_primary_10_1007_s10494_025_00671_6 crossref_primary_10_1063_5_0251167 crossref_primary_10_1088_2632_2153_ad652d crossref_primary_10_1242_jeb_244983 crossref_primary_10_1016_j_actaastro_2025_06_055 crossref_primary_10_1016_j_jqsrt_2024_109229 crossref_primary_10_1007_s00348_023_03680_1 crossref_primary_10_1063_5_0274621 crossref_primary_10_1103_9wj9_nmr8 crossref_primary_10_1615_HeatTransRes_2024055270 crossref_primary_10_1007_s00348_025_04020_1 crossref_primary_10_1063_5_0286676 crossref_primary_10_2514_1_J064095 crossref_primary_10_1063_5_0208040 crossref_primary_10_1007_s00348_023_03699_4 crossref_primary_10_3390_aerospace11040303 |
| Cites_doi | 10.1145/964965.808590 10.1016/j.cma.2019.112789 10.2514/1.J059495 10.1007/s00193-008-0142-1 10.1145/1409060.1409085 10.1007/978-3-662-03637-2 10.1007/s00348-019-2793-3 10.1088/1361-6501/ab60c8 10.1364/AO.45.004638 10.1007/11408031_23 10.1137/20M1318043 10.1364/OL.25.000457 10.1109/42.700740 10.1364/AO.21.000984 10.1007/s11263-012-0595-7 10.2514/1.C031305 10.1016/j.jcp.2022.111402 10.1007/s00348-005-0048-y 10.1364/AO.11.001822 10.1016/j.compfluid.2020.104827 10.1016/0004-3702(81)90024-2 10.1109/IEMBS.1998.745625 10.1006/jcph.1995.1084 10.1016/j.combustflame.2018.06.022 10.2514/1.J054033 10.1007/s00348-019-2685-6 10.1364/AO.48.003894 10.1088/0169-5983/47/5/051201 10.1017/jfm.2021.135 10.2514/1.J053813 10.1016/j.applthermaleng.2022.118962 10.1007/s00348-020-2912-1 10.1088/1361-6501/ac5437 10.1088/0957-0233/23/11/115302 10.1016/j.jcp.2018.10.045 10.1016/j.cma.2022.115141 10.1007/s003480050391 10.1007/s00348-015-1919-5 10.1364/AO.449654 10.1007/s10409-021-01148-1 10.1007/s00348-015-2100-x 10.1103/PhysRevFluids.6.104607 10.1088/1361-6501/ac3f83 10.1090/psapm/027/692052 10.1016/j.jcp.2020.109951 10.1016/0010-2180(81)90124-3 10.1016/j.combustflame.2020.10.031 10.1016/j.jcp.2021.110754 10.1016/j.jcp.2022.111301 10.3997/2214-4609.202035147 10.1007/s00348-015-1927-5 10.1016/0021-9991(81)90128-5 10.1137/15M1018721 10.1364/AO.38.003394 10.1299/jfst.2021jfst0021 10.1007/s00205-008-0201-x 10.1016/j.jcp.2021.110768 10.1063/1.3072780 10.1007/s00348-008-0572-7 10.1016/j.pecs.2022.101024 10.2139/ssrn.4224074 10.1007/s00348-007-0331-1 10.1063/1.1699639 10.1017/jfm.2022.295 10.1007/s00348-019-2869-0 10.4236/jfcmv.2019.72009 10.1007/978-3-7091-7484-5_23 10.1016/j.jqsrt.2015.09.011 10.1007/s00348-004-0807-1 10.1109/TIP.2008.2001399 10.2514/1.J054991 10.2514/6.2008-2581 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | -LJ GXV AAYXX CITATION |
| DOI | 10.1007/s00348-022-03554-y |
| DatabaseName | National Research Council Canada Archive CISTI Source CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Sciences Physics |
| EISSN | 1432-1114 |
| ExternalDocumentID | 10_1007_s00348_022_03554_y oai_cisti_icist_nrc_cnrc_ca_cistinparc_b3046f2b_10b1_479b_b767_01420211708d |
| GrantInformation_xml | – fundername: Department of Defense grantid: National Defense Science and Engineering Graduate Fellowship – fundername: National Science Foundation |
| GroupedDBID | -LJ -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS GXV HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~EX -5B -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAAVM AARHV AAYTO AAYZH ABDEX ABDPE ABQSL ABULA ACBXY ADINQ AEBTG AEFIE AEKMD AESKC AFEXP AFGCZ AGGDS AI. AJBLW ARCEE BBWZM BDATZ CAG COF EJD FINBP FSGXE GQ6 H13 KOW N2Q NDZJH O9- PKN R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 UZXMN VFIZW VH1 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 _50 AAYXX ADHKG AGQPQ CITATION |
| ID | FETCH-LOGICAL-c478t-45be36cae3d8ae3580e96aef03c79d1a2b1bdeee1b93e974034b0b169ae81b0f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909587300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0723-4864 1432-1114 |
| IngestDate | Thu Oct 02 15:07:56 EDT 2025 Sat Nov 29 02:19:39 EST 2025 Tue Nov 18 21:33:16 EST 2025 Fri Feb 21 02:44:28 EST 2025 Fri Nov 21 15:57:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-45be36cae3d8ae3580e96aef03c79d1a2b1bdeee1b93e974034b0b169ae81b0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2761212056 |
| PQPubID | 2043745 |
| ParticipantIDs | proquest_journals_2761212056 crossref_primary_10_1007_s00348_022_03554_y crossref_citationtrail_10_1007_s00348_022_03554_y springer_journals_10_1007_s00348_022_03554_y nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_b3046f2b_10b1_479b_b767_01420211708d |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Experimental Methods and their Applications to Fluid Flow |
| PublicationTitle | Experiments in fluids |
| PublicationTitleAbbrev | Exp Fluids |
| PublicationYear | 2023 |
| Publisher | Springer Nature Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Nature – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | HowardMFowlerMLuttmanAMitchellSEHockMCBayesian Abel inversion in quantitative X-ray radiographySIAM J Sci Comput201638B396B4131339.92036 MaoZJagtapADKarniadakisGEPhysics-informed neural networks for high-speed flowsComput Methods Appl Mech Eng20203601442.76092 JagtapADMaoZAdamsNKarniadakisGEPhysics-informed neural networks for inverse problems in supersonic flowsJ Comput Phys202246607561079 SarediERameshNTSciacchitanoAScaranoFState observer data assimilation for RANS with time-averaged 3D-PIV dataComput Fluids202121807426149 SzeliskiRComputer vision: algorithms and applications2010New YorkSpringer1478.68007 DaviesERMachine vision: theory, algorithms, practicalities2004AmsterdamElsevier KolhePSAgrawalAKAbel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniquesAppl Opt20094838943902 Yamagishi M, Yahagi Y, Ota M, Hirose Y, Udagawa S, Inage T, Kubota S, Fujita K, Ohtani K, Nagai H (2021) Quantitative density measurement of wake region behind reentry capsule (Improvements in accuracy of 3D reconstruction by evaluating the view-angle of measurement system). J Fluid Sci Technol 16:JFST0021 VauhkonenMVadászDKarjalainenPASomersaloEKaipioJPTikhonov regularization and prior information in electrical impedance tomographyIEEE Trans Med Imaging199817285293 KogelschatzUSchneiderWQuantitative schlieren techniques applied to high current arc investigationsAppl Opt19721118221832 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint 1412.6980 VenkatakrishnanLMeierGDensity measurements using the background oriented schlieren techniqueExp Fluids200437237247 SchmidtBEWoikeMRWavelet-based optical flow analysis for background-oriented schlieren image processingAIAA J20215932093216 MolnarJPGrauerSJFlow field tomography with uncertainty quantification using a Bayesian physics-informed neural networkMeas Sci Technol202233 GardinerWJrHidakaYTanzawaTRefractivity of combustion gasesCombust Flame198140213219 S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E. Karniadakis, Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks, J. Fluid Mech. 915 (2021) Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: Proceedings of the 11th annual conference on computer graphics and interactive techniques, pp 137–145 De LellisCSzékelyhidiLOn admissibility criteria for weak solutions of the Euler equationsArch Ration Mech Anal20101952252601192.35138 AgrawalAKAlbersBWGriffinDWAbel inversion of deflectometric measurements in dynamic flowsAppl Opt19993833943398 CornickMHuntBOttEKurtulduHSchatzMFState and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convectionChaos Int J Nonlinear Sci200919 SchmidtBSuttonJHigh-resolution velocimetry from tracer particle fields using a wavelet-based optical flow methodExp Fluids201960117 Wang Q, Wang M, Zaki TA (2022) What is observable from wall data in turbulent channel flow? J Fluid Mech 941 DalzielSBHughesGOSutherlandBRWhole-field density measurements by ‘synthetic schlieren’Exp Fluids200028322335 HornBKSchunckBGDetermining optical flowArtif Intell1981171852031497.68488 GrauerSJSteinbergAMFast and robust volumetric refractive index measurement by unified background-oriented schlieren tomographyExp Fluids202061117 Kadri-HarounaSDérianPHéasPMéminEDivergence-free wavelets and high order regularizationInt J Comput Vision201310380991270.68348 RajendranLKZhangJBhattacharyaSBaneSPVlachosPPUncertainty quantification in density estimation from background-oriented Schlieren measurementsMeas Sci Technol202031 MonsVDuYZakiTAEnsemble-variational assimilation of statistical data in large-eddy simulationPhys Rev Fluids20216 AtchesonBIhrkeIHeidrichWTevsABradleyDMagnorMSeidelH-PTime-resolved 3D capture of non-stationary gas flowsACM Trans Graphics20082719 JinXCaiSLiHKarniadakisGENSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equationsJ Comput Phys202142607510065 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. (2016) TensorFlow: a system for large-scale machine learning, in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283 CorpettiTHeitzDArroyoGMéminESanta-CruzAFluid experimental flow estimation based on an optical-flow schemeExp Fluids2006408097 SipkensTGrauerSSteinbergARogakSKirchenPNew transform to project axisymmetric deflection fields along arbitrary raysMeas Sci Technol202133 GrauerSJUnterbergerARittlerADaunKJKempfAMMohriKInstantaneous 3D flame imaging by background-oriented schlieren tomographyCombust Flame2018196284299 Lucas BD, Kanade T et al (1981) An iterative image registration technique with an application to stereo vision. In: DARPA image understanding workshop, pp 121–130 SimsJLTables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack1964National Aeronautics and Space AdministrationOffice of Scientific and Technical Information Dolvin D (2008) Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2581 DaunKJGrauerSJHadwinPJChemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior informationJ Quant Spectrosc Radiat Transfer20161725874 Basir S, Senocak I (2022) Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion. J Comput Phys 111301 DaunKJThomsonKALiuFSmallwoodGJDeconvolution of axisymmetric flame properties using Tikhonov regularizationAppl Opt20064546384646 Fuks O, Tchelepi HA (2020) Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J Mach Learn Model Comput 1 LaxPSystems of conservation laws1959Los Alamos National LabTech. rep GrauerSJMohriKYuTLiuHCaiWVolumetric emission tomography for combustion processesProg Energy Combust Sci202394 SchmidtBSuttonJImprovements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularizationExp Fluids202061117 FoiATrimecheMKatkovnikVEgiazarianKPractical Poissonian-Gaussian noise modeling and fitting for single-image raw-dataIEEE Trans Image Process200817173717541371.94492 PatelRGManickamITraskNAWoodMALeeMTomasICyrECThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ Comput Phys202244907524762 RaffelMBackground-oriented schlieren (BOS) techniquesExp Fluids201556117 HeineckJTBanksDWSmithNTSchairerETBeanPSRobillosTBackground-oriented schlieren imaging of supersonic aircraft in flightAIAA J2021591121 Anderson JD (1990) Modern compressible flow: with historical perspective, vol 12. McGraw-Hill, New York von NeumannJRichtmyerRDA method for the numerical calculation of hydrodynamic shocksJ Appl Phys1950212322370037.12002 WeiCSchwarmKKPinedaDISpearrinRMVolumetric laser absorption imaging of temperature, CO and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} in laminar flames using 3D masked Tikhonov regularizationCombust Flame2021224239247 NicolasFTodoroffVPlyerALe BesneraisGDonjatDMicheliFChampagnatFCornicPLe SantYA direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurementsExp Fluids201657121 Yuan J, Ruhnau P, Mémin E, Schnörr C (2005) Discrete orthogonal decomposition and variational fluid flow estimation. In: International conference on scale-space theories in computer vision. Springer, pp 267–278 AtchesonBHeidrichWIhrkeIAn evaluation of optical flow algorithms for background oriented schlieren imagingExp Fluids200946467476 VenkatakrishnanVConvergence to steady state solutions of the Euler equations on unstructured grids with limitersJ Comput Phys19951181201300858.76058 Liu L, Liu S, Yong H, Xiong F, Yu T (2022) Discontinuity computing with physics-informed neural network. 2206.03864 RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ Comp Phys20193786867071415.68175 J. Stam and E. Languénou, Ray tracing in non-constant media. In: Eurographics workshop on rendering techniques. Springer, pp 225–234 CastnerRExhaust nozzle plume effects on sonic boomJ Aircr201249415422 WangSYuXPerdikarisPWhen and why PINNs fail to train: a neural tangent kernel perspectiveJ Comput Phys202244907524768 HiroseYIshikawaKIshimotoYNagashimaTOtaMUdagawaSInageTKiritaniHFujitaKFujitaKThe quantitative density measurement of unsteady flow around the projectileJ Flow Control Meas Visual20197111 Kolehmainen V, Somersalo E, Vauhkonen P, Vauhkonen M, Kaipio J (1998) A Bayesian approach and total variation priors in 3D electrical impedance tomography. In: Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, (IEEE), pp.1028–1031 GeertsJSYuKHSystematic application of background-oriented schlieren for isolator shock train visualizationAIAA J20175511051117 HayaseTNumerical simulation of real-world flowsFluid Dyn Res201547 HaghighatEAminiDJuanesRPhysics-informed neural network simulation of multiphase poroelasticity using stress-split sequential trainingComput Methods Appl Mech Eng202239707543718 OtaMLeopoldFNodaRMaenoKImprovement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flowExp Fluids201556110 RajendranLKBaneSPVlachosPPDot tracking methodology for background-ori W Gardiner Jr (3554_CR27) 1981; 40 JT Heineck (3554_CR37) 2021; 59 KJ Daun (3554_CR20) 2016; 172 S Kadri-Harouna (3554_CR43) 2013; 103 3554_CR71 Z Mao (3554_CR51) 2020; 360 A Sharma (3554_CR67) 1982; 21 B Schmidt (3554_CR65) 2020; 61 3554_CR77 R Castner (3554_CR12) 2012; 49 E Saredi (3554_CR63) 2021; 218 BK Horn (3554_CR39) 1981; 17 S Wang (3554_CR80) 2021; 43 M Ota (3554_CR55) 2015; 56 S Wang (3554_CR81) 2022; 449 M Cornick (3554_CR15) 2009; 19 KM Casper (3554_CR11) 2016; 54 X Jin (3554_CR42) 2021; 426 V Venkatakrishnan (3554_CR75) 1995; 118 L Venkatakrishnan (3554_CR76) 2004; 37 3554_CR82 U Kogelschatz (3554_CR45) 1972; 11 3554_CR84 E Haghighat (3554_CR35) 2022; 397 TD Economon (3554_CR24) 2016; 54 A Foi (3554_CR25) 2008; 17 E Godlewski (3554_CR29) 2013 PS Kolhe (3554_CR47) 2009; 48 3554_CR85 3554_CR44 T Corpetti (3554_CR16) 2006; 40 C De Lellis (3554_CR22) 2010; 195 3554_CR46 3554_CR49 M Raissi (3554_CR59) 2019; 378 AK Agrawal (3554_CR2) 1999; 38 KJ Daun (3554_CR19) 2006; 45 ER Davies (3554_CR21) 2004 C Wei (3554_CR83) 2021; 224 T Sipkens (3554_CR69) 2021; 33 SB Dalziel (3554_CR18) 2000; 28 PL Roe (3554_CR62) 1981; 43 AD Jagtap (3554_CR41) 2022; 466 KT Walsh (3554_CR79) 2000; 25 P Lax (3554_CR48) 1959 3554_CR50 BE Schmidt (3554_CR66) 2021; 59 3554_CR10 3554_CR13 SJ Grauer (3554_CR33) 2018; 196 3554_CR14 3554_CR58 3554_CR17 O Sommersel (3554_CR70) 2008; 18 T Hayase (3554_CR36) 2015; 47 LK Rajendran (3554_CR60) 2019; 60 S Tokgoz (3554_CR73) 2012; 23 J von Neumann (3554_CR78) 1950; 21 M Vauhkonen (3554_CR74) 1998; 17 JL Sims (3554_CR68) 1964 SJ Grauer (3554_CR32) 2020; 61 M Howard (3554_CR40) 2016; 38 Y Hirose (3554_CR38) 2019; 7 RG Patel (3554_CR56) 2022; 449 3554_CR1 3554_CR3 3554_CR4 SJ Grauer (3554_CR34) 2023; 94 JP Molnar (3554_CR52) 2022; 33 3554_CR7 M Born (3554_CR8) 2013 B Atcheson (3554_CR5) 2008; 27 3554_CR9 3554_CR23 B Atcheson (3554_CR6) 2009; 46 3554_CR26 E Goldhahn (3554_CR30) 2007; 43 LK Rajendran (3554_CR61) 2020; 31 V Mons (3554_CR53) 2021; 6 M Gomez (3554_CR31) 2022; 61 B Schmidt (3554_CR64) 2019; 60 R Szeliski (3554_CR72) 2010 JS Geerts (3554_CR28) 2017; 55 F Nicolas (3554_CR54) 2016; 57 M Raffel (3554_CR57) 2015; 56 |
| References_xml | – reference: DaunKJGrauerSJHadwinPJChemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior informationJ Quant Spectrosc Radiat Transfer20161725874 – reference: GoldhahnESeumeJThe background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density fieldExp Fluids200743241249 – reference: LaxPSystems of conservation laws1959Los Alamos National LabTech. rep – reference: Vinnichenko NA, Plaksina YY, Pushtaev AV, Uvarov AV (2022) Obtaining velocity and pressure distributions in natural convection flows using experimental temperature fields. Appl Therm Eng 118962 – reference: Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin 1–12 – reference: CorpettiTHeitzDArroyoGMéminESanta-CruzAFluid experimental flow estimation based on an optical-flow schemeExp Fluids2006408097 – reference: Lucas BD, Kanade T et al (1981) An iterative image registration technique with an application to stereo vision. In: DARPA image understanding workshop, pp 121–130 – reference: OtaMLeopoldFNodaRMaenoKImprovement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flowExp Fluids201556110 – reference: JinXCaiSLiHKarniadakisGENSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equationsJ Comput Phys202142607510065 – reference: BornMWolfEPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light2013AmsterdamElsevier0086.41704 – reference: Basir S, Senocak I (2022) Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion. J Comput Phys 111301 – reference: Yuan J, Ruhnau P, Mémin E, Schnörr C (2005) Discrete orthogonal decomposition and variational fluid flow estimation. In: International conference on scale-space theories in computer vision. Springer, pp 267–278 – reference: SchmidtBSuttonJHigh-resolution velocimetry from tracer particle fields using a wavelet-based optical flow methodExp Fluids201960117 – reference: JagtapADMaoZAdamsNKarniadakisGEPhysics-informed neural networks for inverse problems in supersonic flowsJ Comput Phys202246607561079 – reference: Dolvin D (2008) Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2581 – reference: SchmidtBSuttonJImprovements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularizationExp Fluids202061117 – reference: GrauerSJSteinbergAMFast and robust volumetric refractive index measurement by unified background-oriented schlieren tomographyExp Fluids202061117 – reference: GodlewskiERaviartP-ANumerical approximation of hyperbolic systems of conservation laws2013New YorkSpringer0860.65075 – reference: GrauerSJUnterbergerARittlerADaunKJKempfAMMohriKInstantaneous 3D flame imaging by background-oriented schlieren tomographyCombust Flame2018196284299 – reference: WeiCSchwarmKKPinedaDISpearrinRMVolumetric laser absorption imaging of temperature, CO and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} in laminar flames using 3D masked Tikhonov regularizationCombust Flame2021224239247 – reference: S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E. Karniadakis, Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks, J. Fluid Mech. 915 (2021) – reference: GomezMGrauerSJLudwigsenJSteinbergAMSonSFRoySMeyerTRMegahertz-rate background-oriented schlieren tomography in post-detonation blastsAppl Opt20226124442458 – reference: WalshKTFieldingJLongMBEffect of light-collection geometry on reconstruction errors in Abel inversionsOpt Lett200025457459 – reference: MolnarJPGrauerSJFlow field tomography with uncertainty quantification using a Bayesian physics-informed neural networkMeas Sci Technol202233 – reference: MonsVDuYZakiTAEnsemble-variational assimilation of statistical data in large-eddy simulationPhys Rev Fluids20216 – reference: HayaseTNumerical simulation of real-world flowsFluid Dyn Res201547 – reference: SimsJLTables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack1964National Aeronautics and Space AdministrationOffice of Scientific and Technical Information – reference: Wang Q, Wang M, Zaki TA (2022) What is observable from wall data in turbulent channel flow? J Fluid Mech 941 – reference: CasperKMBereshSJHenflingJFSpillersRWPruettBOSchneiderSPHypersonic wind-tunnel measurements of boundary-layer transition on a slender coneAIAA J20165412501263 – reference: CornickMHuntBOttEKurtulduHSchatzMFState and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convectionChaos Int J Nonlinear Sci200919 – reference: GrauerSJMohriKYuTLiuHCaiWVolumetric emission tomography for combustion processesProg Energy Combust Sci202394 – reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ Comp Phys20193786867071415.68175 – reference: PatelRGManickamITraskNAWoodMALeeMTomasICyrECThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ Comput Phys202244907524762 – reference: HaghighatEAminiDJuanesRPhysics-informed neural network simulation of multiphase poroelasticity using stress-split sequential trainingComput Methods Appl Mech Eng202239707543718 – reference: Fuks O, Tchelepi HA (2020) Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J Mach Learn Model Comput 1 – reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint 1412.6980 – reference: DalzielSBHughesGOSutherlandBRWhole-field density measurements by ‘synthetic schlieren’Exp Fluids200028322335 – reference: Kadri-HarounaSDérianPHéasPMéminEDivergence-free wavelets and high order regularizationInt J Comput Vision201310380991270.68348 – reference: TokgozSGeislerRVan BokhovenLWienekeBTemperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methodsMeas Sci Technol201223 – reference: SharmaAKumarDVGhatakAKTracing rays through graded-index media: a new methodAppl Opt198221984987 – reference: AgrawalAKAlbersBWGriffinDWAbel inversion of deflectometric measurements in dynamic flowsAppl Opt19993833943398 – reference: RajendranLKBaneSPVlachosPPDot tracking methodology for background-oriented schlieren (BOS)Exp Fluids201960113 – reference: De LellisCSzékelyhidiLOn admissibility criteria for weak solutions of the Euler equationsArch Ration Mech Anal20101952252601192.35138 – reference: SarediERameshNTSciacchitanoAScaranoFState observer data assimilation for RANS with time-averaged 3D-PIV dataComput Fluids202121807426149 – reference: CastnerRExhaust nozzle plume effects on sonic boomJ Aircr201249415422 – reference: Coutinho EJR, Dall’Aqua M, McClenny L, Zhong M, Braga-Neto U, Gildin E (2022) Physics-informed neural networks with adaptive localized artificial viscosity. 2203.08802 – reference: KogelschatzUSchneiderWQuantitative schlieren techniques applied to high current arc investigationsAppl Opt19721118221832 – reference: Liu L, Liu S, Yong H, Xiong F, Yu T (2022) Discontinuity computing with physics-informed neural network. 2206.03864 – reference: Anderson JD (1990) Modern compressible flow: with historical perspective, vol 12. McGraw-Hill, New York – reference: RaffelMBackground-oriented schlieren (BOS) techniquesExp Fluids201556117 – reference: RajendranLKZhangJBhattacharyaSBaneSPVlachosPPUncertainty quantification in density estimation from background-oriented Schlieren measurementsMeas Sci Technol202031 – reference: von NeumannJRichtmyerRDA method for the numerical calculation of hydrodynamic shocksJ Appl Phys1950212322370037.12002 – reference: Ali MYB, Léon O, Donjat D, Bézard H, Laroche E, Mons V, Champagnat F (2022) Data assimilation for aerothermal mean flow reconstruction using aero-optical observations: a synthetic investigation. In: 56th 3AF international conference on applied aerodynamics, p 11 – reference: Kolehmainen V, Somersalo E, Vauhkonen P, Vauhkonen M, Kaipio J (1998) A Bayesian approach and total variation priors in 3D electrical impedance tomography. In: Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, (IEEE), pp.1028–1031 – reference: SommerselOBjerketvedtDChristensenSKrestOVaagsaetherKApplication of background oriented schlieren for quantitative measurements of shock waves from explosionsShock Waves2008182912971267.76053 – reference: SchmidtBEWoikeMRWavelet-based optical flow analysis for background-oriented schlieren image processingAIAA J20215932093216 – reference: VenkatakrishnanLMeierGDensity measurements using the background oriented schlieren techniqueExp Fluids200437237247 – reference: RoePLApproximate Riemann solvers, parameter vectors, and difference schemesJ Comput Phys1981433573720474.65066 – reference: NicolasFTodoroffVPlyerALe BesneraisGDonjatDMicheliFChampagnatFCornicPLe SantYA direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurementsExp Fluids201657121 – reference: VauhkonenMVadászDKarjalainenPASomersaloEKaipioJPTikhonov regularization and prior information in electrical impedance tomographyIEEE Trans Med Imaging199817285293 – reference: SipkensTGrauerSSteinbergARogakSKirchenPNew transform to project axisymmetric deflection fields along arbitrary raysMeas Sci Technol202133 – reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. (2016) TensorFlow: a system for large-scale machine learning, in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283 – reference: Cormack AM (1982) Computed tomography: some history and recent developments. In: Proceedings of symposia in applied mathematics. American Mathematical Society, pp 35–42 – reference: EconomonTDPalaciosFCopelandSRLukaczykTWAlonsoJJSU2: An open-source suite for multiphysics simulation and designAIAA J201654828846 – reference: SzeliskiRComputer vision: algorithms and applications2010New YorkSpringer1478.68007 – reference: KolhePSAgrawalAKAbel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniquesAppl Opt20094838943902 – reference: HowardMFowlerMLuttmanAMitchellSEHockMCBayesian Abel inversion in quantitative X-ray radiographySIAM J Sci Comput201638B396B4131339.92036 – reference: Yamagishi M, Yahagi Y, Ota M, Hirose Y, Udagawa S, Inage T, Kubota S, Fujita K, Ohtani K, Nagai H (2021) Quantitative density measurement of wake region behind reentry capsule (Improvements in accuracy of 3D reconstruction by evaluating the view-angle of measurement system). J Fluid Sci Technol 16:JFST0021 – reference: DaviesERMachine vision: theory, algorithms, practicalities2004AmsterdamElsevier – reference: GardinerWJrHidakaYTanzawaTRefractivity of combustion gasesCombust Flame198140213219 – reference: WangSTengYPerdikarisPUnderstanding and mitigating gradient flow pathologies in physics-informed neural networksSIAM J Sci Comput202143A3055A308107395804 – reference: FoiATrimecheMKatkovnikVEgiazarianKPractical Poissonian-Gaussian noise modeling and fitting for single-image raw-dataIEEE Trans Image Process200817173717541371.94492 – reference: HeineckJTBanksDWSmithNTSchairerETBeanPSRobillosTBackground-oriented schlieren imaging of supersonic aircraft in flightAIAA J2021591121 – reference: AtchesonBIhrkeIHeidrichWTevsABradleyDMagnorMSeidelH-PTime-resolved 3D capture of non-stationary gas flowsACM Trans Graphics20082719 – reference: Raffel M, Willert CE, Kompenhans J et al (1998) Particle image velocimetry: a practical guide, vol 2. Springer – reference: AtchesonBHeidrichWIhrkeIAn evaluation of optical flow algorithms for background oriented schlieren imagingExp Fluids200946467476 – reference: HiroseYIshikawaKIshimotoYNagashimaTOtaMUdagawaSInageTKiritaniHFujitaKFujitaKThe quantitative density measurement of unsteady flow around the projectileJ Flow Control Meas Visual20197111 – reference: GeertsJSYuKHSystematic application of background-oriented schlieren for isolator shock train visualizationAIAA J20175511051117 – reference: HornBKSchunckBGDetermining optical flowArtif Intell1981171852031497.68488 – reference: DaunKJThomsonKALiuFSmallwoodGJDeconvolution of axisymmetric flame properties using Tikhonov regularizationAppl Opt20064546384646 – reference: J. Stam and E. Languénou, Ray tracing in non-constant media. In: Eurographics workshop on rendering techniques. Springer, pp 225–234 – reference: Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: Proceedings of the 11th annual conference on computer graphics and interactive techniques, pp 137–145 – reference: MaoZJagtapADKarniadakisGEPhysics-informed neural networks for high-speed flowsComput Methods Appl Mech Eng20203601442.76092 – reference: VenkatakrishnanVConvergence to steady state solutions of the Euler equations on unstructured grids with limitersJ Comput Phys19951181201300858.76058 – reference: WangSYuXPerdikarisPWhen and why PINNs fail to train: a neural tangent kernel perspectiveJ Comput Phys202244907524768 – ident: 3554_CR13 doi: 10.1145/964965.808590 – volume: 360 year: 2020 ident: 3554_CR51 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.112789 – volume: 59 start-page: 11 year: 2021 ident: 3554_CR37 publication-title: AIAA J doi: 10.2514/1.J059495 – volume: 18 start-page: 291 year: 2008 ident: 3554_CR70 publication-title: Shock Waves doi: 10.1007/s00193-008-0142-1 – volume: 27 start-page: 1 year: 2008 ident: 3554_CR5 publication-title: ACM Trans Graphics doi: 10.1145/1409060.1409085 – ident: 3554_CR58 doi: 10.1007/978-3-662-03637-2 – volume: 60 start-page: 1 year: 2019 ident: 3554_CR60 publication-title: Exp Fluids doi: 10.1007/s00348-019-2793-3 – volume: 31 year: 2020 ident: 3554_CR61 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ab60c8 – volume: 45 start-page: 4638 year: 2006 ident: 3554_CR19 publication-title: Appl Opt doi: 10.1364/AO.45.004638 – ident: 3554_CR85 doi: 10.1007/11408031_23 – volume: 43 start-page: A3055 year: 2021 ident: 3554_CR80 publication-title: SIAM J Sci Comput doi: 10.1137/20M1318043 – volume: 25 start-page: 457 year: 2000 ident: 3554_CR79 publication-title: Opt Lett doi: 10.1364/OL.25.000457 – volume: 17 start-page: 285 year: 1998 ident: 3554_CR74 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.700740 – volume: 21 start-page: 984 year: 1982 ident: 3554_CR67 publication-title: Appl Opt doi: 10.1364/AO.21.000984 – volume-title: Numerical approximation of hyperbolic systems of conservation laws year: 2013 ident: 3554_CR29 – volume: 103 start-page: 80 year: 2013 ident: 3554_CR43 publication-title: Int J Comput Vision doi: 10.1007/s11263-012-0595-7 – volume: 49 start-page: 415 year: 2012 ident: 3554_CR12 publication-title: J Aircr doi: 10.2514/1.C031305 – volume: 466 year: 2022 ident: 3554_CR41 publication-title: J Comput Phys doi: 10.1016/j.jcp.2022.111402 – volume: 40 start-page: 80 year: 2006 ident: 3554_CR16 publication-title: Exp Fluids doi: 10.1007/s00348-005-0048-y – ident: 3554_CR1 – volume: 11 start-page: 1822 year: 1972 ident: 3554_CR45 publication-title: Appl Opt doi: 10.1364/AO.11.001822 – volume: 218 year: 2021 ident: 3554_CR63 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2020.104827 – volume: 17 start-page: 185 year: 1981 ident: 3554_CR39 publication-title: Artif Intell doi: 10.1016/0004-3702(81)90024-2 – ident: 3554_CR17 – volume-title: Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack year: 1964 ident: 3554_CR68 – ident: 3554_CR46 doi: 10.1109/IEMBS.1998.745625 – volume: 118 start-page: 120 year: 1995 ident: 3554_CR75 publication-title: J Comput Phys doi: 10.1006/jcph.1995.1084 – volume: 196 start-page: 284 year: 2018 ident: 3554_CR33 publication-title: Combust Flame doi: 10.1016/j.combustflame.2018.06.022 – volume: 54 start-page: 1250 year: 2016 ident: 3554_CR11 publication-title: AIAA J doi: 10.2514/1.J054033 – volume: 60 start-page: 1 year: 2019 ident: 3554_CR64 publication-title: Exp Fluids doi: 10.1007/s00348-019-2685-6 – volume: 48 start-page: 3894 year: 2009 ident: 3554_CR47 publication-title: Appl Opt doi: 10.1364/AO.48.003894 – ident: 3554_CR4 – ident: 3554_CR50 – volume-title: Machine vision: theory, algorithms, practicalities year: 2004 ident: 3554_CR21 – volume-title: Systems of conservation laws year: 1959 ident: 3554_CR48 – volume: 47 year: 2015 ident: 3554_CR36 publication-title: Fluid Dyn Res doi: 10.1088/0169-5983/47/5/051201 – ident: 3554_CR44 – ident: 3554_CR9 doi: 10.1017/jfm.2021.135 – volume: 54 start-page: 828 year: 2016 ident: 3554_CR24 publication-title: AIAA J doi: 10.2514/1.J053813 – ident: 3554_CR77 doi: 10.1016/j.applthermaleng.2022.118962 – volume: 59 start-page: 3209 year: 2021 ident: 3554_CR66 publication-title: AIAA J – volume: 61 start-page: 1 year: 2020 ident: 3554_CR32 publication-title: Exp Fluids doi: 10.1007/s00348-020-2912-1 – volume: 33 year: 2022 ident: 3554_CR52 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac5437 – volume: 23 year: 2012 ident: 3554_CR73 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/23/11/115302 – volume: 378 start-page: 686 year: 2019 ident: 3554_CR59 publication-title: J Comp Phys doi: 10.1016/j.jcp.2018.10.045 – volume: 397 year: 2022 ident: 3554_CR35 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.115141 – volume: 28 start-page: 322 year: 2000 ident: 3554_CR18 publication-title: Exp Fluids doi: 10.1007/s003480050391 – volume: 56 start-page: 1 year: 2015 ident: 3554_CR55 publication-title: Exp Fluids doi: 10.1007/s00348-015-1919-5 – volume: 61 start-page: 2444 year: 2022 ident: 3554_CR31 publication-title: Appl Opt doi: 10.1364/AO.449654 – ident: 3554_CR10 doi: 10.1007/s10409-021-01148-1 – volume: 57 start-page: 1 year: 2016 ident: 3554_CR54 publication-title: Exp Fluids doi: 10.1007/s00348-015-2100-x – volume: 6 year: 2021 ident: 3554_CR53 publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.6.104607 – volume: 33 year: 2021 ident: 3554_CR69 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac3f83 – ident: 3554_CR3 – ident: 3554_CR14 doi: 10.1090/psapm/027/692052 – volume: 426 year: 2021 ident: 3554_CR42 publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109951 – volume: 40 start-page: 213 year: 1981 ident: 3554_CR27 publication-title: Combust Flame doi: 10.1016/0010-2180(81)90124-3 – volume-title: Computer vision: algorithms and applications year: 2010 ident: 3554_CR72 – volume: 224 start-page: 239 year: 2021 ident: 3554_CR83 publication-title: Combust Flame doi: 10.1016/j.combustflame.2020.10.031 – volume: 449 year: 2022 ident: 3554_CR56 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110754 – ident: 3554_CR7 doi: 10.1016/j.jcp.2022.111301 – ident: 3554_CR26 doi: 10.3997/2214-4609.202035147 – volume: 56 start-page: 1 year: 2015 ident: 3554_CR57 publication-title: Exp Fluids doi: 10.1007/s00348-015-1927-5 – volume: 43 start-page: 357 year: 1981 ident: 3554_CR62 publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90128-5 – volume: 38 start-page: B396 year: 2016 ident: 3554_CR40 publication-title: SIAM J Sci Comput doi: 10.1137/15M1018721 – volume-title: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light year: 2013 ident: 3554_CR8 – volume: 38 start-page: 3394 year: 1999 ident: 3554_CR2 publication-title: Appl Opt doi: 10.1364/AO.38.003394 – ident: 3554_CR84 doi: 10.1299/jfst.2021jfst0021 – volume: 195 start-page: 225 year: 2010 ident: 3554_CR22 publication-title: Arch Ration Mech Anal doi: 10.1007/s00205-008-0201-x – volume: 449 year: 2022 ident: 3554_CR81 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110768 – volume: 19 year: 2009 ident: 3554_CR15 publication-title: Chaos Int J Nonlinear Sci doi: 10.1063/1.3072780 – volume: 46 start-page: 467 year: 2009 ident: 3554_CR6 publication-title: Exp Fluids doi: 10.1007/s00348-008-0572-7 – volume: 94 year: 2023 ident: 3554_CR34 publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2022.101024 – ident: 3554_CR49 doi: 10.2139/ssrn.4224074 – volume: 43 start-page: 241 year: 2007 ident: 3554_CR30 publication-title: Exp Fluids doi: 10.1007/s00348-007-0331-1 – volume: 21 start-page: 232 year: 1950 ident: 3554_CR78 publication-title: J Appl Phys doi: 10.1063/1.1699639 – ident: 3554_CR82 doi: 10.1017/jfm.2022.295 – volume: 61 start-page: 1 year: 2020 ident: 3554_CR65 publication-title: Exp Fluids doi: 10.1007/s00348-019-2869-0 – volume: 7 start-page: 111 year: 2019 ident: 3554_CR38 publication-title: J Flow Control Meas Visual doi: 10.4236/jfcmv.2019.72009 – ident: 3554_CR71 doi: 10.1007/978-3-7091-7484-5_23 – volume: 172 start-page: 58 year: 2016 ident: 3554_CR20 publication-title: J Quant Spectrosc Radiat Transfer doi: 10.1016/j.jqsrt.2015.09.011 – volume: 37 start-page: 237 year: 2004 ident: 3554_CR76 publication-title: Exp Fluids doi: 10.1007/s00348-004-0807-1 – volume: 17 start-page: 1737 year: 2008 ident: 3554_CR25 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2001399 – volume: 55 start-page: 1105 year: 2017 ident: 3554_CR28 publication-title: AIAA J doi: 10.2514/1.J054991 – ident: 3554_CR23 doi: 10.2514/6.2008-2581 |
| SSID | ssj0015908 |
| Score | 2.5823185 |
| Snippet | We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair... |
| SourceID | proquest crossref springer nrccanada |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Compressible flow Computer vision Density Engineering Engineering Fluid Dynamics Engineering Thermodynamics Estimates Fluid- and Aerodynamics Heat and Mass Transfer Image reconstruction Interpolation Inverse problems Inviscid flow Neural networks Physics Research Article Supersonic flow Workflow |
| Title | Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS |
| URI | https://nrc-publications.canada.ca/eng/view/object/?id=b3046f2b-10b1-479b-b767-01420211708d https://link.springer.com/article/10.1007/s00348-022-03554-y https://www.proquest.com/docview/2761212056 |
| Volume | 64 |
| WOSCitedRecordID | wos000909587300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015908 issn: 1432-1114 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQQIOFAqIhYJ84EYt2XHWsY-AWnFABVFAvSBjO5NqpSpdbXZB--8ZOw8oAiS4OFHi2I4fM589488Az6JA05Q6clErxZOhiBuJyGvtg5AYmkLkjcJvquNjc3pq3w2bwrrR2300SWZJPW12S1Qqhifvc5GUJN9ehWuk7kw6sOH9yafJdpBO8c7kmwVlbnQ5bJX5fRqX1NGNdhWzr5W_hDd_MZFmzXO0-39lvgO3B6TJXvRd4y5cwXYPdgfUyYYx3e3BrZ8oCe_Bl0Ma8wnFtmesTs7t6-0BS35FMd_5tmbZdXazQpa93zq2aFm3WWbkvoisOb_41rHkTn_G-mWTjvfsrJTry7cn9-Hj0eGHV6_5cAoDj2Vl1rycB1Q6elS1oWBuBFrtsREqVraWvggy1Igog1VIsxP64yCC1NYjQWLRqAew0160-BCYjQQmCC9ZT0DIGm3DfB4aH7RSkYRuMQM5NoaLA0V5Oinj3E3kyrlCHVWoyxXqtjN4Pn2z7Ak6_hr789TGU_TEsB2TRHWLdHEUw8Uc-P55uySh40IyIjdFoLSDdGVlgwuVrhxNMgtCSrISpp7B_thv3CAMOldUiaatIKg5g4Oxn_x4_efSPvq36I_hJhVE9QtE-7CzXm3wCVyPX9eLbvU0D5LvuTQNnA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQSocWigglhbwgRu1ZMdZxz4CalXEsiBaUC_I2I5TrVSlq80u1f77jp0HFAESXJwocWzHj5nPnvFngBeeBVXl0lNWCkGjoYgqHgItpXWMB1dlLG0UnhTTqTo91R-7TWFN7-3emySTpB42u0UqFUWj9zmLSpKub8KtHDVWZMz_dPxlsB3EU7wT-WaGmSuZd1tlfp_GNXW0WS988rWy1_DmLybSpHkOt_-vzPdgq0Oa5FXbNe7DjVDvwHaHOkk3ppsduPsTJeED-HaAYz6i2PqMlNG5fbneJ9GvyKc7W5ckuc6uFoEk77eGzGrSrOYJuc88qc4vLhsS3enPSLts0tCWnRVzff3h-CF8Pjw4eXNEu1MYqM8LtaT52AUhvQ2iVBiMFQta2lAx4Qtdcps57soQAndaBJyd4B875rjUNiAkZpV4BBv1RR0eA9EewQTiJW0RCGkltRuPXWWdFMKj0M1GwPvGML6jKI8nZZybgVw5VajBCjWpQs16BC-Hb-YtQcdfY38d2niIHhm2fZSoZhYvBmMYnwLbPq_nKHSMi0bkKnOYtuMmL7QzrpCFwUlmhkiJF0yVI9jr-43phEFjsiLStGUINUew3_eTH6__XNon_xb9OWwenbyfmMnb6btduIOFEu1i0R5sLBer8BRu--_LWbN4lgbMFWG-EIA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQVAOFFoQCwV84Eat2nE2sY98dAWiWioVUC_I2I5TrVS5q022aP89YycbWgRIiEsSJU7i-GP8nHnzDPDCMS_rvHCUVULQ6CiikntPq8JYxr2tM5YChQ_L6VSenKijS1H8ie2-dkl2MQ1RpSm0-_Oq3h8C36KsiqSRic7igElX1-FGHon0cb5-_GXwI8QVvZMQZ4YZkUXeh838_hlXhqbbYeES78pcwZ6_uEvTKDTZ-v_834O7PQIlr7omcx-u-bANWz0aJX1fb7bhziWpwh34doC2IKLbcEqqSHpvV3sk8o1cOjKhIolSu1x4klhxDZkF0iznCdHPHKnPzr83JNLsT0n3O6WhnWorvvX1x-MH8Hly8OnNO9qvzkBdXsqW5mPrReGMF5XEzVgyrwrjayZcqSpuMstt5b3nVgmPsxb8YsssL5TxCJVZLR7CRjgP_hEQ5RBkII5SBgGSkoWy47GtjS2EcGiMsxHwdcVo10uXxxU0zvQgupwKVGOB6lSgejWCl8M9806446-pvw71PSSPytsuWlo9izuNKbRLG9OdD3M0RtpG53KdWXy25TovldW2LEqNk88MERQvmaxGsLtuQ7o3Eo3OyijfliEEHcHeus38vPzn3D7-t-TP4dbR24k-fD_98AQ2MU-i-4e0CxvtYumfwk130c6axbPUd34Am0AZZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+density%2C+velocity%2C+and+pressure+fields+in+supersonic+flows+using+physics-informed+BOS&rft.jtitle=Experiments+in+fluids&rft.au=Molnar%2C+Joseph+P.&rft.au=Venkatakrishnan%2C+Lakshmi&rft.au=Schmidt%2C+Bryan+E.&rft.au=Sipkens%2C+Timothy+A.&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0723-4864&rft.eissn=1432-1114&rft.volume=64&rft.issue=1&rft_id=info:doi/10.1007%2Fs00348-022-03554-y&rft.externalDocID=10_1007_s00348_022_03554_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-4864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-4864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-4864&client=summon |