Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS

We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids Jg. 64; H. 1
Hauptverfasser: Molnar, Joseph P, Venkatakrishnan, Lakshmi, Schmidt, Bryan E, Sipkens, Timothy A, Grauer, Samuel J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Nature 01.01.2023
Springer Berlin Heidelberg
Springer Nature B.V
Schlagworte:
ISSN:0723-4864, 1432-1114, 1432-1114
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrotationality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first use of a PINN to reconstruct a supersonic flow from experimental data of any kind.
NRC publication: Yes
AbstractList We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the high-speed, approximately inviscid flows of interest in this work, we specify a physics loss based on the Euler and irrotationality equations. BOS is a quantitative fluid visualization technique that is commonly used to characterize compressible flow. Images of a background pattern, positioned behind the measurement volume, are processed with computer vision and tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current methods for BOS rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which were not previously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical phantoms as well as a single pair of experimental measurements. Our physics-informed reconstructions are significantly more accurate than conventional BOS estimates. Furthermore, to the best of our knowledge, this work represents the first use of a PINN to reconstruct a supersonic flow from experimental data of any kind.
ArticleNumber 14
Author Molnar, Joseph P
Sipkens, Timothy A
Grauer, Samuel J
Venkatakrishnan, Lakshmi
Schmidt, Bryan E
Author_xml – sequence: 1
  fullname: Molnar, Joseph P
– sequence: 2
  fullname: Venkatakrishnan, Lakshmi
– sequence: 3
  fullname: Schmidt, Bryan E
– sequence: 4
  fullname: Sipkens, Timothy A
– sequence: 5
  fullname: Grauer, Samuel J
BookMark eNp9kctu1TAQhi1UJE4LL8AqElsM40viZAlVC0iVugDWxpdJcZXawU5AeXt8ThBILLqZsa3555_5fE7OYopIyEsGbxiAelsAhOwpcE5BtK2k2xNyYFJwyhiTZ-QAigsq-04-I-el3AOwdoD-QL5dlSU8mCXEu8ZjLGHZXjc_cUrudDLRN3PGUtaMzRhw8qUJsSnrjLmkGFwzTulXadZybDB_30pwhYY4pvyAvnl_-_k5eTqaqeCLP_mCfL2--nL5kd7cfvh0-e6GOqn6hcrWouicQeH7GtoecOgMjiCcGjwz3DLrEZHZQeCgZF3XgmXdYLBnFkZxQV7tfeecfqxYFn2f1hyrpeaqY5xxaLtaxfcql1MpGUc957p-3jQDfSSpd5K6ktQnknqrov4_UYVTkaW4ZBOmx6Vil5bqE-8w_5vqUZXfVTE7Z6Lx5u-YyYTqXv9Mh2PStUK7UzD7e5xNvVkBshu5rRaWaakGq63qlAYmOXDGFPRe_Aa8rK9q
CitedBy_id crossref_primary_10_1109_TIM_2024_3353864
crossref_primary_10_1007_s00348_025_04012_1
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_1016_j_measurement_2023_113710
crossref_primary_10_1016_j_oceaneng_2023_114597
crossref_primary_10_1109_ACCESS_2025_3585402
crossref_primary_10_1016_j_joei_2025_102118
crossref_primary_10_1145_3689037
crossref_primary_10_1063_5_0216479
crossref_primary_10_1007_s00348_023_03672_1
crossref_primary_10_1088_1361_6501_acc049
crossref_primary_10_1088_1361_6501_ad296a
crossref_primary_10_2514_1_J065669
crossref_primary_10_1007_s10494_025_00671_6
crossref_primary_10_1063_5_0251167
crossref_primary_10_1088_2632_2153_ad652d
crossref_primary_10_1242_jeb_244983
crossref_primary_10_1016_j_actaastro_2025_06_055
crossref_primary_10_1016_j_jqsrt_2024_109229
crossref_primary_10_1007_s00348_023_03680_1
crossref_primary_10_1063_5_0274621
crossref_primary_10_1103_9wj9_nmr8
crossref_primary_10_1615_HeatTransRes_2024055270
crossref_primary_10_1007_s00348_025_04020_1
crossref_primary_10_1063_5_0286676
crossref_primary_10_2514_1_J064095
crossref_primary_10_1063_5_0208040
crossref_primary_10_1007_s00348_023_03699_4
crossref_primary_10_3390_aerospace11040303
Cites_doi 10.1145/964965.808590
10.1016/j.cma.2019.112789
10.2514/1.J059495
10.1007/s00193-008-0142-1
10.1145/1409060.1409085
10.1007/978-3-662-03637-2
10.1007/s00348-019-2793-3
10.1088/1361-6501/ab60c8
10.1364/AO.45.004638
10.1007/11408031_23
10.1137/20M1318043
10.1364/OL.25.000457
10.1109/42.700740
10.1364/AO.21.000984
10.1007/s11263-012-0595-7
10.2514/1.C031305
10.1016/j.jcp.2022.111402
10.1007/s00348-005-0048-y
10.1364/AO.11.001822
10.1016/j.compfluid.2020.104827
10.1016/0004-3702(81)90024-2
10.1109/IEMBS.1998.745625
10.1006/jcph.1995.1084
10.1016/j.combustflame.2018.06.022
10.2514/1.J054033
10.1007/s00348-019-2685-6
10.1364/AO.48.003894
10.1088/0169-5983/47/5/051201
10.1017/jfm.2021.135
10.2514/1.J053813
10.1016/j.applthermaleng.2022.118962
10.1007/s00348-020-2912-1
10.1088/1361-6501/ac5437
10.1088/0957-0233/23/11/115302
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2022.115141
10.1007/s003480050391
10.1007/s00348-015-1919-5
10.1364/AO.449654
10.1007/s10409-021-01148-1
10.1007/s00348-015-2100-x
10.1103/PhysRevFluids.6.104607
10.1088/1361-6501/ac3f83
10.1090/psapm/027/692052
10.1016/j.jcp.2020.109951
10.1016/0010-2180(81)90124-3
10.1016/j.combustflame.2020.10.031
10.1016/j.jcp.2021.110754
10.1016/j.jcp.2022.111301
10.3997/2214-4609.202035147
10.1007/s00348-015-1927-5
10.1016/0021-9991(81)90128-5
10.1137/15M1018721
10.1364/AO.38.003394
10.1299/jfst.2021jfst0021
10.1007/s00205-008-0201-x
10.1016/j.jcp.2021.110768
10.1063/1.3072780
10.1007/s00348-008-0572-7
10.1016/j.pecs.2022.101024
10.2139/ssrn.4224074
10.1007/s00348-007-0331-1
10.1063/1.1699639
10.1017/jfm.2022.295
10.1007/s00348-019-2869-0
10.4236/jfcmv.2019.72009
10.1007/978-3-7091-7484-5_23
10.1016/j.jqsrt.2015.09.011
10.1007/s00348-004-0807-1
10.1109/TIP.2008.2001399
10.2514/1.J054991
10.2514/6.2008-2581
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID -LJ
GXV
AAYXX
CITATION
DOI 10.1007/s00348-022-03554-y
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Sciences
Physics
EISSN 1432-1114
ExternalDocumentID 10_1007_s00348_022_03554_y
oai_cisti_icist_nrc_cnrc_ca_cistinparc_b3046f2b_10b1_479b_b767_01420211708d
GrantInformation_xml – fundername: Department of Defense
  grantid: National Defense Science and Engineering Graduate Fellowship
– fundername: National Science Foundation
GroupedDBID -LJ
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
GXV
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~EX
-5B
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAAVM
AARHV
AAYTO
AAYZH
ABDEX
ABDPE
ABQSL
ABULA
ACBXY
ADINQ
AEBTG
AEFIE
AEKMD
AESKC
AFEXP
AFGCZ
AGGDS
AI.
AJBLW
ARCEE
BBWZM
BDATZ
CAG
COF
EJD
FINBP
FSGXE
GQ6
H13
KOW
N2Q
NDZJH
O9-
PKN
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
VH1
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
_50
AAYXX
ADHKG
AGQPQ
CITATION
ID FETCH-LOGICAL-c478t-45be36cae3d8ae3580e96aef03c79d1a2b1bdeee1b93e974034b0b169ae81b0f3
IEDL.DBID RSV
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909587300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0723-4864
1432-1114
IngestDate Thu Oct 02 15:07:56 EDT 2025
Sat Nov 29 02:19:39 EST 2025
Tue Nov 18 21:33:16 EST 2025
Fri Feb 21 02:44:28 EST 2025
Fri Nov 21 15:57:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-45be36cae3d8ae3580e96aef03c79d1a2b1bdeee1b93e974034b0b169ae81b0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2761212056
PQPubID 2043745
ParticipantIDs proquest_journals_2761212056
crossref_primary_10_1007_s00348_022_03554_y
crossref_citationtrail_10_1007_s00348_022_03554_y
springer_journals_10_1007_s00348_022_03554_y
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_b3046f2b_10b1_479b_b767_01420211708d
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Experimental Methods and their Applications to Fluid Flow
PublicationTitle Experiments in fluids
PublicationTitleAbbrev Exp Fluids
PublicationYear 2023
Publisher Springer Nature
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Nature
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HowardMFowlerMLuttmanAMitchellSEHockMCBayesian Abel inversion in quantitative X-ray radiographySIAM J Sci Comput201638B396B4131339.92036
MaoZJagtapADKarniadakisGEPhysics-informed neural networks for high-speed flowsComput Methods Appl Mech Eng20203601442.76092
JagtapADMaoZAdamsNKarniadakisGEPhysics-informed neural networks for inverse problems in supersonic flowsJ Comput Phys202246607561079
SarediERameshNTSciacchitanoAScaranoFState observer data assimilation for RANS with time-averaged 3D-PIV dataComput Fluids202121807426149
SzeliskiRComputer vision: algorithms and applications2010New YorkSpringer1478.68007
DaviesERMachine vision: theory, algorithms, practicalities2004AmsterdamElsevier
KolhePSAgrawalAKAbel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniquesAppl Opt20094838943902
Yamagishi M, Yahagi Y, Ota M, Hirose Y, Udagawa S, Inage T, Kubota S, Fujita K, Ohtani K, Nagai H (2021) Quantitative density measurement of wake region behind reentry capsule (Improvements in accuracy of 3D reconstruction by evaluating the view-angle of measurement system). J Fluid Sci Technol 16:JFST0021
VauhkonenMVadászDKarjalainenPASomersaloEKaipioJPTikhonov regularization and prior information in electrical impedance tomographyIEEE Trans Med Imaging199817285293
KogelschatzUSchneiderWQuantitative schlieren techniques applied to high current arc investigationsAppl Opt19721118221832
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint 1412.6980
VenkatakrishnanLMeierGDensity measurements using the background oriented schlieren techniqueExp Fluids200437237247
SchmidtBEWoikeMRWavelet-based optical flow analysis for background-oriented schlieren image processingAIAA J20215932093216
MolnarJPGrauerSJFlow field tomography with uncertainty quantification using a Bayesian physics-informed neural networkMeas Sci Technol202233
GardinerWJrHidakaYTanzawaTRefractivity of combustion gasesCombust Flame198140213219
S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E. Karniadakis, Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks, J. Fluid Mech. 915 (2021)
Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: Proceedings of the 11th annual conference on computer graphics and interactive techniques, pp 137–145
De LellisCSzékelyhidiLOn admissibility criteria for weak solutions of the Euler equationsArch Ration Mech Anal20101952252601192.35138
AgrawalAKAlbersBWGriffinDWAbel inversion of deflectometric measurements in dynamic flowsAppl Opt19993833943398
CornickMHuntBOttEKurtulduHSchatzMFState and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convectionChaos Int J Nonlinear Sci200919
SchmidtBSuttonJHigh-resolution velocimetry from tracer particle fields using a wavelet-based optical flow methodExp Fluids201960117
Wang Q, Wang M, Zaki TA (2022) What is observable from wall data in turbulent channel flow? J Fluid Mech 941
DalzielSBHughesGOSutherlandBRWhole-field density measurements by ‘synthetic schlieren’Exp Fluids200028322335
HornBKSchunckBGDetermining optical flowArtif Intell1981171852031497.68488
GrauerSJSteinbergAMFast and robust volumetric refractive index measurement by unified background-oriented schlieren tomographyExp Fluids202061117
Kadri-HarounaSDérianPHéasPMéminEDivergence-free wavelets and high order regularizationInt J Comput Vision201310380991270.68348
RajendranLKZhangJBhattacharyaSBaneSPVlachosPPUncertainty quantification in density estimation from background-oriented Schlieren measurementsMeas Sci Technol202031
MonsVDuYZakiTAEnsemble-variational assimilation of statistical data in large-eddy simulationPhys Rev Fluids20216
AtchesonBIhrkeIHeidrichWTevsABradleyDMagnorMSeidelH-PTime-resolved 3D capture of non-stationary gas flowsACM Trans Graphics20082719
JinXCaiSLiHKarniadakisGENSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equationsJ Comput Phys202142607510065
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. (2016) TensorFlow: a system for large-scale machine learning, in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283
CorpettiTHeitzDArroyoGMéminESanta-CruzAFluid experimental flow estimation based on an optical-flow schemeExp Fluids2006408097
SipkensTGrauerSSteinbergARogakSKirchenPNew transform to project axisymmetric deflection fields along arbitrary raysMeas Sci Technol202133
GrauerSJUnterbergerARittlerADaunKJKempfAMMohriKInstantaneous 3D flame imaging by background-oriented schlieren tomographyCombust Flame2018196284299
Lucas BD, Kanade T et al (1981) An iterative image registration technique with an application to stereo vision. In: DARPA image understanding workshop, pp 121–130
SimsJLTables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack1964National Aeronautics and Space AdministrationOffice of Scientific and Technical Information
Dolvin D (2008) Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2581
DaunKJGrauerSJHadwinPJChemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior informationJ Quant Spectrosc Radiat Transfer20161725874
Basir S, Senocak I (2022) Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion. J Comput Phys 111301
DaunKJThomsonKALiuFSmallwoodGJDeconvolution of axisymmetric flame properties using Tikhonov regularizationAppl Opt20064546384646
Fuks O, Tchelepi HA (2020) Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J Mach Learn Model Comput 1
LaxPSystems of conservation laws1959Los Alamos National LabTech. rep
GrauerSJMohriKYuTLiuHCaiWVolumetric emission tomography for combustion processesProg Energy Combust Sci202394
SchmidtBSuttonJImprovements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularizationExp Fluids202061117
FoiATrimecheMKatkovnikVEgiazarianKPractical Poissonian-Gaussian noise modeling and fitting for single-image raw-dataIEEE Trans Image Process200817173717541371.94492
PatelRGManickamITraskNAWoodMALeeMTomasICyrECThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ Comput Phys202244907524762
RaffelMBackground-oriented schlieren (BOS) techniquesExp Fluids201556117
HeineckJTBanksDWSmithNTSchairerETBeanPSRobillosTBackground-oriented schlieren imaging of supersonic aircraft in flightAIAA J2021591121
Anderson JD (1990) Modern compressible flow: with historical perspective, vol 12. McGraw-Hill, New York
von NeumannJRichtmyerRDA method for the numerical calculation of hydrodynamic shocksJ Appl Phys1950212322370037.12002
WeiCSchwarmKKPinedaDISpearrinRMVolumetric laser absorption imaging of temperature, CO and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} in laminar flames using 3D masked Tikhonov regularizationCombust Flame2021224239247
NicolasFTodoroffVPlyerALe BesneraisGDonjatDMicheliFChampagnatFCornicPLe SantYA direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurementsExp Fluids201657121
Yuan J, Ruhnau P, Mémin E, Schnörr C (2005) Discrete orthogonal decomposition and variational fluid flow estimation. In: International conference on scale-space theories in computer vision. Springer, pp 267–278
AtchesonBHeidrichWIhrkeIAn evaluation of optical flow algorithms for background oriented schlieren imagingExp Fluids200946467476
VenkatakrishnanVConvergence to steady state solutions of the Euler equations on unstructured grids with limitersJ Comput Phys19951181201300858.76058
Liu L, Liu S, Yong H, Xiong F, Yu T (2022) Discontinuity computing with physics-informed neural network. 2206.03864
RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ Comp Phys20193786867071415.68175
J. Stam and E. Languénou, Ray tracing in non-constant media. In: Eurographics workshop on rendering techniques. Springer, pp 225–234
CastnerRExhaust nozzle plume effects on sonic boomJ Aircr201249415422
WangSYuXPerdikarisPWhen and why PINNs fail to train: a neural tangent kernel perspectiveJ Comput Phys202244907524768
HiroseYIshikawaKIshimotoYNagashimaTOtaMUdagawaSInageTKiritaniHFujitaKFujitaKThe quantitative density measurement of unsteady flow around the projectileJ Flow Control Meas Visual20197111
Kolehmainen V, Somersalo E, Vauhkonen P, Vauhkonen M, Kaipio J (1998) A Bayesian approach and total variation priors in 3D electrical impedance tomography. In: Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, (IEEE), pp.1028–1031
GeertsJSYuKHSystematic application of background-oriented schlieren for isolator shock train visualizationAIAA J20175511051117
HayaseTNumerical simulation of real-world flowsFluid Dyn Res201547
HaghighatEAminiDJuanesRPhysics-informed neural network simulation of multiphase poroelasticity using stress-split sequential trainingComput Methods Appl Mech Eng202239707543718
OtaMLeopoldFNodaRMaenoKImprovement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flowExp Fluids201556110
RajendranLKBaneSPVlachosPPDot tracking methodology for background-ori
W Gardiner Jr (3554_CR27) 1981; 40
JT Heineck (3554_CR37) 2021; 59
KJ Daun (3554_CR20) 2016; 172
S Kadri-Harouna (3554_CR43) 2013; 103
3554_CR71
Z Mao (3554_CR51) 2020; 360
A Sharma (3554_CR67) 1982; 21
B Schmidt (3554_CR65) 2020; 61
3554_CR77
R Castner (3554_CR12) 2012; 49
E Saredi (3554_CR63) 2021; 218
BK Horn (3554_CR39) 1981; 17
S Wang (3554_CR80) 2021; 43
M Ota (3554_CR55) 2015; 56
S Wang (3554_CR81) 2022; 449
M Cornick (3554_CR15) 2009; 19
KM Casper (3554_CR11) 2016; 54
X Jin (3554_CR42) 2021; 426
V Venkatakrishnan (3554_CR75) 1995; 118
L Venkatakrishnan (3554_CR76) 2004; 37
3554_CR82
U Kogelschatz (3554_CR45) 1972; 11
3554_CR84
E Haghighat (3554_CR35) 2022; 397
TD Economon (3554_CR24) 2016; 54
A Foi (3554_CR25) 2008; 17
E Godlewski (3554_CR29) 2013
PS Kolhe (3554_CR47) 2009; 48
3554_CR85
3554_CR44
T Corpetti (3554_CR16) 2006; 40
C De Lellis (3554_CR22) 2010; 195
3554_CR46
3554_CR49
M Raissi (3554_CR59) 2019; 378
AK Agrawal (3554_CR2) 1999; 38
KJ Daun (3554_CR19) 2006; 45
ER Davies (3554_CR21) 2004
C Wei (3554_CR83) 2021; 224
T Sipkens (3554_CR69) 2021; 33
SB Dalziel (3554_CR18) 2000; 28
PL Roe (3554_CR62) 1981; 43
AD Jagtap (3554_CR41) 2022; 466
KT Walsh (3554_CR79) 2000; 25
P Lax (3554_CR48) 1959
3554_CR50
BE Schmidt (3554_CR66) 2021; 59
3554_CR10
3554_CR13
SJ Grauer (3554_CR33) 2018; 196
3554_CR14
3554_CR58
3554_CR17
O Sommersel (3554_CR70) 2008; 18
T Hayase (3554_CR36) 2015; 47
LK Rajendran (3554_CR60) 2019; 60
S Tokgoz (3554_CR73) 2012; 23
J von Neumann (3554_CR78) 1950; 21
M Vauhkonen (3554_CR74) 1998; 17
JL Sims (3554_CR68) 1964
SJ Grauer (3554_CR32) 2020; 61
M Howard (3554_CR40) 2016; 38
Y Hirose (3554_CR38) 2019; 7
RG Patel (3554_CR56) 2022; 449
3554_CR1
3554_CR3
3554_CR4
SJ Grauer (3554_CR34) 2023; 94
JP Molnar (3554_CR52) 2022; 33
3554_CR7
M Born (3554_CR8) 2013
B Atcheson (3554_CR5) 2008; 27
3554_CR9
3554_CR23
B Atcheson (3554_CR6) 2009; 46
3554_CR26
E Goldhahn (3554_CR30) 2007; 43
LK Rajendran (3554_CR61) 2020; 31
V Mons (3554_CR53) 2021; 6
M Gomez (3554_CR31) 2022; 61
B Schmidt (3554_CR64) 2019; 60
R Szeliski (3554_CR72) 2010
JS Geerts (3554_CR28) 2017; 55
F Nicolas (3554_CR54) 2016; 57
M Raffel (3554_CR57) 2015; 56
References_xml – reference: DaunKJGrauerSJHadwinPJChemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior informationJ Quant Spectrosc Radiat Transfer20161725874
– reference: GoldhahnESeumeJThe background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density fieldExp Fluids200743241249
– reference: LaxPSystems of conservation laws1959Los Alamos National LabTech. rep
– reference: Vinnichenko NA, Plaksina YY, Pushtaev AV, Uvarov AV (2022) Obtaining velocity and pressure distributions in natural convection flows using experimental temperature fields. Appl Therm Eng 118962
– reference: Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin 1–12
– reference: CorpettiTHeitzDArroyoGMéminESanta-CruzAFluid experimental flow estimation based on an optical-flow schemeExp Fluids2006408097
– reference: Lucas BD, Kanade T et al (1981) An iterative image registration technique with an application to stereo vision. In: DARPA image understanding workshop, pp 121–130
– reference: OtaMLeopoldFNodaRMaenoKImprovement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flowExp Fluids201556110
– reference: JinXCaiSLiHKarniadakisGENSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equationsJ Comput Phys202142607510065
– reference: BornMWolfEPrinciples of optics: electromagnetic theory of propagation, interference and diffraction of light2013AmsterdamElsevier0086.41704
– reference: Basir S, Senocak I (2022) Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion. J Comput Phys 111301
– reference: Yuan J, Ruhnau P, Mémin E, Schnörr C (2005) Discrete orthogonal decomposition and variational fluid flow estimation. In: International conference on scale-space theories in computer vision. Springer, pp 267–278
– reference: SchmidtBSuttonJHigh-resolution velocimetry from tracer particle fields using a wavelet-based optical flow methodExp Fluids201960117
– reference: JagtapADMaoZAdamsNKarniadakisGEPhysics-informed neural networks for inverse problems in supersonic flowsJ Comput Phys202246607561079
– reference: Dolvin D (2008) Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2581
– reference: SchmidtBSuttonJImprovements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularizationExp Fluids202061117
– reference: GrauerSJSteinbergAMFast and robust volumetric refractive index measurement by unified background-oriented schlieren tomographyExp Fluids202061117
– reference: GodlewskiERaviartP-ANumerical approximation of hyperbolic systems of conservation laws2013New YorkSpringer0860.65075
– reference: GrauerSJUnterbergerARittlerADaunKJKempfAMMohriKInstantaneous 3D flame imaging by background-oriented schlieren tomographyCombust Flame2018196284299
– reference: WeiCSchwarmKKPinedaDISpearrinRMVolumetric laser absorption imaging of temperature, CO and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} in laminar flames using 3D masked Tikhonov regularizationCombust Flame2021224239247
– reference: S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E. Karniadakis, Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks, J. Fluid Mech. 915 (2021)
– reference: GomezMGrauerSJLudwigsenJSteinbergAMSonSFRoySMeyerTRMegahertz-rate background-oriented schlieren tomography in post-detonation blastsAppl Opt20226124442458
– reference: WalshKTFieldingJLongMBEffect of light-collection geometry on reconstruction errors in Abel inversionsOpt Lett200025457459
– reference: MolnarJPGrauerSJFlow field tomography with uncertainty quantification using a Bayesian physics-informed neural networkMeas Sci Technol202233
– reference: MonsVDuYZakiTAEnsemble-variational assimilation of statistical data in large-eddy simulationPhys Rev Fluids20216
– reference: HayaseTNumerical simulation of real-world flowsFluid Dyn Res201547
– reference: SimsJLTables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack1964National Aeronautics and Space AdministrationOffice of Scientific and Technical Information
– reference: Wang Q, Wang M, Zaki TA (2022) What is observable from wall data in turbulent channel flow? J Fluid Mech 941
– reference: CasperKMBereshSJHenflingJFSpillersRWPruettBOSchneiderSPHypersonic wind-tunnel measurements of boundary-layer transition on a slender coneAIAA J20165412501263
– reference: CornickMHuntBOttEKurtulduHSchatzMFState and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convectionChaos Int J Nonlinear Sci200919
– reference: GrauerSJMohriKYuTLiuHCaiWVolumetric emission tomography for combustion processesProg Energy Combust Sci202394
– reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ Comp Phys20193786867071415.68175
– reference: PatelRGManickamITraskNAWoodMALeeMTomasICyrECThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ Comput Phys202244907524762
– reference: HaghighatEAminiDJuanesRPhysics-informed neural network simulation of multiphase poroelasticity using stress-split sequential trainingComput Methods Appl Mech Eng202239707543718
– reference: Fuks O, Tchelepi HA (2020) Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J Mach Learn Model Comput 1
– reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint 1412.6980
– reference: DalzielSBHughesGOSutherlandBRWhole-field density measurements by ‘synthetic schlieren’Exp Fluids200028322335
– reference: Kadri-HarounaSDérianPHéasPMéminEDivergence-free wavelets and high order regularizationInt J Comput Vision201310380991270.68348
– reference: TokgozSGeislerRVan BokhovenLWienekeBTemperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methodsMeas Sci Technol201223
– reference: SharmaAKumarDVGhatakAKTracing rays through graded-index media: a new methodAppl Opt198221984987
– reference: AgrawalAKAlbersBWGriffinDWAbel inversion of deflectometric measurements in dynamic flowsAppl Opt19993833943398
– reference: RajendranLKBaneSPVlachosPPDot tracking methodology for background-oriented schlieren (BOS)Exp Fluids201960113
– reference: De LellisCSzékelyhidiLOn admissibility criteria for weak solutions of the Euler equationsArch Ration Mech Anal20101952252601192.35138
– reference: SarediERameshNTSciacchitanoAScaranoFState observer data assimilation for RANS with time-averaged 3D-PIV dataComput Fluids202121807426149
– reference: CastnerRExhaust nozzle plume effects on sonic boomJ Aircr201249415422
– reference: Coutinho EJR, Dall’Aqua M, McClenny L, Zhong M, Braga-Neto U, Gildin E (2022) Physics-informed neural networks with adaptive localized artificial viscosity. 2203.08802
– reference: KogelschatzUSchneiderWQuantitative schlieren techniques applied to high current arc investigationsAppl Opt19721118221832
– reference: Liu L, Liu S, Yong H, Xiong F, Yu T (2022) Discontinuity computing with physics-informed neural network. 2206.03864
– reference: Anderson JD (1990) Modern compressible flow: with historical perspective, vol 12. McGraw-Hill, New York
– reference: RaffelMBackground-oriented schlieren (BOS) techniquesExp Fluids201556117
– reference: RajendranLKZhangJBhattacharyaSBaneSPVlachosPPUncertainty quantification in density estimation from background-oriented Schlieren measurementsMeas Sci Technol202031
– reference: von NeumannJRichtmyerRDA method for the numerical calculation of hydrodynamic shocksJ Appl Phys1950212322370037.12002
– reference: Ali MYB, Léon O, Donjat D, Bézard H, Laroche E, Mons V, Champagnat F (2022) Data assimilation for aerothermal mean flow reconstruction using aero-optical observations: a synthetic investigation. In: 56th 3AF international conference on applied aerodynamics, p 11
– reference: Kolehmainen V, Somersalo E, Vauhkonen P, Vauhkonen M, Kaipio J (1998) A Bayesian approach and total variation priors in 3D electrical impedance tomography. In: Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, (IEEE), pp.1028–1031
– reference: SommerselOBjerketvedtDChristensenSKrestOVaagsaetherKApplication of background oriented schlieren for quantitative measurements of shock waves from explosionsShock Waves2008182912971267.76053
– reference: SchmidtBEWoikeMRWavelet-based optical flow analysis for background-oriented schlieren image processingAIAA J20215932093216
– reference: VenkatakrishnanLMeierGDensity measurements using the background oriented schlieren techniqueExp Fluids200437237247
– reference: RoePLApproximate Riemann solvers, parameter vectors, and difference schemesJ Comput Phys1981433573720474.65066
– reference: NicolasFTodoroffVPlyerALe BesneraisGDonjatDMicheliFChampagnatFCornicPLe SantYA direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurementsExp Fluids201657121
– reference: VauhkonenMVadászDKarjalainenPASomersaloEKaipioJPTikhonov regularization and prior information in electrical impedance tomographyIEEE Trans Med Imaging199817285293
– reference: SipkensTGrauerSSteinbergARogakSKirchenPNew transform to project axisymmetric deflection fields along arbitrary raysMeas Sci Technol202133
– reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al. (2016) TensorFlow: a system for large-scale machine learning, in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283
– reference: Cormack AM (1982) Computed tomography: some history and recent developments. In: Proceedings of symposia in applied mathematics. American Mathematical Society, pp 35–42
– reference: EconomonTDPalaciosFCopelandSRLukaczykTWAlonsoJJSU2: An open-source suite for multiphysics simulation and designAIAA J201654828846
– reference: SzeliskiRComputer vision: algorithms and applications2010New YorkSpringer1478.68007
– reference: KolhePSAgrawalAKAbel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniquesAppl Opt20094838943902
– reference: HowardMFowlerMLuttmanAMitchellSEHockMCBayesian Abel inversion in quantitative X-ray radiographySIAM J Sci Comput201638B396B4131339.92036
– reference: Yamagishi M, Yahagi Y, Ota M, Hirose Y, Udagawa S, Inage T, Kubota S, Fujita K, Ohtani K, Nagai H (2021) Quantitative density measurement of wake region behind reentry capsule (Improvements in accuracy of 3D reconstruction by evaluating the view-angle of measurement system). J Fluid Sci Technol 16:JFST0021
– reference: DaviesERMachine vision: theory, algorithms, practicalities2004AmsterdamElsevier
– reference: GardinerWJrHidakaYTanzawaTRefractivity of combustion gasesCombust Flame198140213219
– reference: WangSTengYPerdikarisPUnderstanding and mitigating gradient flow pathologies in physics-informed neural networksSIAM J Sci Comput202143A3055A308107395804
– reference: FoiATrimecheMKatkovnikVEgiazarianKPractical Poissonian-Gaussian noise modeling and fitting for single-image raw-dataIEEE Trans Image Process200817173717541371.94492
– reference: HeineckJTBanksDWSmithNTSchairerETBeanPSRobillosTBackground-oriented schlieren imaging of supersonic aircraft in flightAIAA J2021591121
– reference: AtchesonBIhrkeIHeidrichWTevsABradleyDMagnorMSeidelH-PTime-resolved 3D capture of non-stationary gas flowsACM Trans Graphics20082719
– reference: Raffel M, Willert CE, Kompenhans J et al (1998) Particle image velocimetry: a practical guide, vol 2. Springer
– reference: AtchesonBHeidrichWIhrkeIAn evaluation of optical flow algorithms for background oriented schlieren imagingExp Fluids200946467476
– reference: HiroseYIshikawaKIshimotoYNagashimaTOtaMUdagawaSInageTKiritaniHFujitaKFujitaKThe quantitative density measurement of unsteady flow around the projectileJ Flow Control Meas Visual20197111
– reference: GeertsJSYuKHSystematic application of background-oriented schlieren for isolator shock train visualizationAIAA J20175511051117
– reference: HornBKSchunckBGDetermining optical flowArtif Intell1981171852031497.68488
– reference: DaunKJThomsonKALiuFSmallwoodGJDeconvolution of axisymmetric flame properties using Tikhonov regularizationAppl Opt20064546384646
– reference: J. Stam and E. Languénou, Ray tracing in non-constant media. In: Eurographics workshop on rendering techniques. Springer, pp 225–234
– reference: Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: Proceedings of the 11th annual conference on computer graphics and interactive techniques, pp 137–145
– reference: MaoZJagtapADKarniadakisGEPhysics-informed neural networks for high-speed flowsComput Methods Appl Mech Eng20203601442.76092
– reference: VenkatakrishnanVConvergence to steady state solutions of the Euler equations on unstructured grids with limitersJ Comput Phys19951181201300858.76058
– reference: WangSYuXPerdikarisPWhen and why PINNs fail to train: a neural tangent kernel perspectiveJ Comput Phys202244907524768
– ident: 3554_CR13
  doi: 10.1145/964965.808590
– volume: 360
  year: 2020
  ident: 3554_CR51
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112789
– volume: 59
  start-page: 11
  year: 2021
  ident: 3554_CR37
  publication-title: AIAA J
  doi: 10.2514/1.J059495
– volume: 18
  start-page: 291
  year: 2008
  ident: 3554_CR70
  publication-title: Shock Waves
  doi: 10.1007/s00193-008-0142-1
– volume: 27
  start-page: 1
  year: 2008
  ident: 3554_CR5
  publication-title: ACM Trans Graphics
  doi: 10.1145/1409060.1409085
– ident: 3554_CR58
  doi: 10.1007/978-3-662-03637-2
– volume: 60
  start-page: 1
  year: 2019
  ident: 3554_CR60
  publication-title: Exp Fluids
  doi: 10.1007/s00348-019-2793-3
– volume: 31
  year: 2020
  ident: 3554_CR61
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ab60c8
– volume: 45
  start-page: 4638
  year: 2006
  ident: 3554_CR19
  publication-title: Appl Opt
  doi: 10.1364/AO.45.004638
– ident: 3554_CR85
  doi: 10.1007/11408031_23
– volume: 43
  start-page: A3055
  year: 2021
  ident: 3554_CR80
  publication-title: SIAM J Sci Comput
  doi: 10.1137/20M1318043
– volume: 25
  start-page: 457
  year: 2000
  ident: 3554_CR79
  publication-title: Opt Lett
  doi: 10.1364/OL.25.000457
– volume: 17
  start-page: 285
  year: 1998
  ident: 3554_CR74
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.700740
– volume: 21
  start-page: 984
  year: 1982
  ident: 3554_CR67
  publication-title: Appl Opt
  doi: 10.1364/AO.21.000984
– volume-title: Numerical approximation of hyperbolic systems of conservation laws
  year: 2013
  ident: 3554_CR29
– volume: 103
  start-page: 80
  year: 2013
  ident: 3554_CR43
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-012-0595-7
– volume: 49
  start-page: 415
  year: 2012
  ident: 3554_CR12
  publication-title: J Aircr
  doi: 10.2514/1.C031305
– volume: 466
  year: 2022
  ident: 3554_CR41
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111402
– volume: 40
  start-page: 80
  year: 2006
  ident: 3554_CR16
  publication-title: Exp Fluids
  doi: 10.1007/s00348-005-0048-y
– ident: 3554_CR1
– volume: 11
  start-page: 1822
  year: 1972
  ident: 3554_CR45
  publication-title: Appl Opt
  doi: 10.1364/AO.11.001822
– volume: 218
  year: 2021
  ident: 3554_CR63
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2020.104827
– volume: 17
  start-page: 185
  year: 1981
  ident: 3554_CR39
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(81)90024-2
– ident: 3554_CR17
– volume-title: Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack
  year: 1964
  ident: 3554_CR68
– ident: 3554_CR46
  doi: 10.1109/IEMBS.1998.745625
– volume: 118
  start-page: 120
  year: 1995
  ident: 3554_CR75
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1084
– volume: 196
  start-page: 284
  year: 2018
  ident: 3554_CR33
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2018.06.022
– volume: 54
  start-page: 1250
  year: 2016
  ident: 3554_CR11
  publication-title: AIAA J
  doi: 10.2514/1.J054033
– volume: 60
  start-page: 1
  year: 2019
  ident: 3554_CR64
  publication-title: Exp Fluids
  doi: 10.1007/s00348-019-2685-6
– volume: 48
  start-page: 3894
  year: 2009
  ident: 3554_CR47
  publication-title: Appl Opt
  doi: 10.1364/AO.48.003894
– ident: 3554_CR4
– ident: 3554_CR50
– volume-title: Machine vision: theory, algorithms, practicalities
  year: 2004
  ident: 3554_CR21
– volume-title: Systems of conservation laws
  year: 1959
  ident: 3554_CR48
– volume: 47
  year: 2015
  ident: 3554_CR36
  publication-title: Fluid Dyn Res
  doi: 10.1088/0169-5983/47/5/051201
– ident: 3554_CR44
– ident: 3554_CR9
  doi: 10.1017/jfm.2021.135
– volume: 54
  start-page: 828
  year: 2016
  ident: 3554_CR24
  publication-title: AIAA J
  doi: 10.2514/1.J053813
– ident: 3554_CR77
  doi: 10.1016/j.applthermaleng.2022.118962
– volume: 59
  start-page: 3209
  year: 2021
  ident: 3554_CR66
  publication-title: AIAA J
– volume: 61
  start-page: 1
  year: 2020
  ident: 3554_CR32
  publication-title: Exp Fluids
  doi: 10.1007/s00348-020-2912-1
– volume: 33
  year: 2022
  ident: 3554_CR52
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac5437
– volume: 23
  year: 2012
  ident: 3554_CR73
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/23/11/115302
– volume: 378
  start-page: 686
  year: 2019
  ident: 3554_CR59
  publication-title: J Comp Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 397
  year: 2022
  ident: 3554_CR35
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.115141
– volume: 28
  start-page: 322
  year: 2000
  ident: 3554_CR18
  publication-title: Exp Fluids
  doi: 10.1007/s003480050391
– volume: 56
  start-page: 1
  year: 2015
  ident: 3554_CR55
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-1919-5
– volume: 61
  start-page: 2444
  year: 2022
  ident: 3554_CR31
  publication-title: Appl Opt
  doi: 10.1364/AO.449654
– ident: 3554_CR10
  doi: 10.1007/s10409-021-01148-1
– volume: 57
  start-page: 1
  year: 2016
  ident: 3554_CR54
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-2100-x
– volume: 6
  year: 2021
  ident: 3554_CR53
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.6.104607
– volume: 33
  year: 2021
  ident: 3554_CR69
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac3f83
– ident: 3554_CR3
– ident: 3554_CR14
  doi: 10.1090/psapm/027/692052
– volume: 426
  year: 2021
  ident: 3554_CR42
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109951
– volume: 40
  start-page: 213
  year: 1981
  ident: 3554_CR27
  publication-title: Combust Flame
  doi: 10.1016/0010-2180(81)90124-3
– volume-title: Computer vision: algorithms and applications
  year: 2010
  ident: 3554_CR72
– volume: 224
  start-page: 239
  year: 2021
  ident: 3554_CR83
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2020.10.031
– volume: 449
  year: 2022
  ident: 3554_CR56
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110754
– ident: 3554_CR7
  doi: 10.1016/j.jcp.2022.111301
– ident: 3554_CR26
  doi: 10.3997/2214-4609.202035147
– volume: 56
  start-page: 1
  year: 2015
  ident: 3554_CR57
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-1927-5
– volume: 43
  start-page: 357
  year: 1981
  ident: 3554_CR62
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90128-5
– volume: 38
  start-page: B396
  year: 2016
  ident: 3554_CR40
  publication-title: SIAM J Sci Comput
  doi: 10.1137/15M1018721
– volume-title: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
  year: 2013
  ident: 3554_CR8
– volume: 38
  start-page: 3394
  year: 1999
  ident: 3554_CR2
  publication-title: Appl Opt
  doi: 10.1364/AO.38.003394
– ident: 3554_CR84
  doi: 10.1299/jfst.2021jfst0021
– volume: 195
  start-page: 225
  year: 2010
  ident: 3554_CR22
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/s00205-008-0201-x
– volume: 449
  year: 2022
  ident: 3554_CR81
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110768
– volume: 19
  year: 2009
  ident: 3554_CR15
  publication-title: Chaos Int J Nonlinear Sci
  doi: 10.1063/1.3072780
– volume: 46
  start-page: 467
  year: 2009
  ident: 3554_CR6
  publication-title: Exp Fluids
  doi: 10.1007/s00348-008-0572-7
– volume: 94
  year: 2023
  ident: 3554_CR34
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2022.101024
– ident: 3554_CR49
  doi: 10.2139/ssrn.4224074
– volume: 43
  start-page: 241
  year: 2007
  ident: 3554_CR30
  publication-title: Exp Fluids
  doi: 10.1007/s00348-007-0331-1
– volume: 21
  start-page: 232
  year: 1950
  ident: 3554_CR78
  publication-title: J Appl Phys
  doi: 10.1063/1.1699639
– ident: 3554_CR82
  doi: 10.1017/jfm.2022.295
– volume: 61
  start-page: 1
  year: 2020
  ident: 3554_CR65
  publication-title: Exp Fluids
  doi: 10.1007/s00348-019-2869-0
– volume: 7
  start-page: 111
  year: 2019
  ident: 3554_CR38
  publication-title: J Flow Control Meas Visual
  doi: 10.4236/jfcmv.2019.72009
– ident: 3554_CR71
  doi: 10.1007/978-3-7091-7484-5_23
– volume: 172
  start-page: 58
  year: 2016
  ident: 3554_CR20
  publication-title: J Quant Spectrosc Radiat Transfer
  doi: 10.1016/j.jqsrt.2015.09.011
– volume: 37
  start-page: 237
  year: 2004
  ident: 3554_CR76
  publication-title: Exp Fluids
  doi: 10.1007/s00348-004-0807-1
– volume: 17
  start-page: 1737
  year: 2008
  ident: 3554_CR25
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2001399
– volume: 55
  start-page: 1105
  year: 2017
  ident: 3554_CR28
  publication-title: AIAA J
  doi: 10.2514/1.J054991
– ident: 3554_CR23
  doi: 10.2514/6.2008-2581
SSID ssj0015908
Score 2.582379
Snippet We report a new workflow for background-oriented schlieren (BOS), termed “physics-informed BOS,” to extract density, velocity, and pressure fields from a pair...
SourceID proquest
crossref
springer
nrccanada
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Compressible flow
Computer vision
Density
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Estimates
Fluid- and Aerodynamics
Heat and Mass Transfer
Image reconstruction
Interpolation
Inverse problems
Inviscid flow
Neural networks
Physics
Research Article
Supersonic flow
Workflow
Title Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS
URI https://nrc-publications.canada.ca/eng/view/object/?id=b3046f2b-10b1-479b-b767-01420211708d
https://link.springer.com/article/10.1007/s00348-022-03554-y
https://www.proquest.com/docview/2761212056
Volume 64
WOSCitedRecordID wos000909587300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015908
  issn: 1432-1114
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQQIOFAqIhYJ84EYtxbE3to-AWnFABVFAvSBjO5NqpSpdbXZB--8ZOx9QBEhwSaLEcZzx17Pn-RngmZ2rWmCi4hgZuRKIPARUXMvS6zI0jY05p9_o42NzemrfDYvCupHtProkc0s9LXZLUiqGJ_Z5kTpJvr0K16i7M2nDhvcnnybfQdrFO4tvlpIrU6lhqczv47jUHd1oVzFzrfwlvPmLizT3PEe7_5fmO3B7QJrsRV807sIVbPdgd0CdbKjT3R7c-kmS8B58OaQ6n1Bse8bqRG5fbw9Y4hXFfOXbmmXq7GaFLLPfOrZoWbdZZuS-iKw5v_jWsUSnP2P9tEnHe3VW-urLtyf34ePR4YdXr_mwCwOPSps1V_OAsooeZW3oMDcF2spjU8iobS18GUSoEVEEK5FGJ_THoQiish4JEheNfAA77UWLD4H5ImITlCqQQIXRjTXJSjSO9dEKAk4zEGNmuDhIlKedMs7dJK6cDerIoC4b1G1n8Hx6Z9kLdPw19Ocpj6fgSWE7phbVLdLJUQgX88H399slNTouJCdyUwaKOwintA0u6Eo7GmSWhJSELkw9g_2x3LihMehcqZNMW0lQcwYHYzn58fjPqX30b8Efw01KiOwniPZhZ73a4BO4Hr-uF93qaa4k3wG7xg27
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQSocWigglhbwgRu1FMfe2D4CalXEsiBaUC_I2M6kWqlKV5tdqv33tZ0PKAIkuCRRMnEcfz57np8BXuixKBlGKo7ingqGSJ1DQSXPrcxdVWmfcnoip1N1eqo_dovCmp7t3rskU0s9LHaLUiqKRvZ5FjtJur4Jt0TosaJi_qfjL4PvIO7incQ3c06FKkS3VOb3YVzrjjbrhU9cK3sNb_7iIk09z-H2_8X5Hmx1SJO8aovGfbiB9Q5sd6iTdHW62YG7P0kSPoBvB6HORxRbn5EyktuX630SeUU-Xdm6JIk6u1ogSey3hsxq0qzmCbnPPKnOLy4bEun0Z6SdNmloq84avvr6w_FD-Hx4cPLmiHa7MFAvpFpSMXbIC2-RlyocxipDXVisMu6lLpnNHXMlIjKnOYbRSfhjlzlWaIsBEmcVfwQb9UWNj4HYzGPlhMgwgAolK61iKoVxrPWaBeA0AtZnhvGdRHncKePcDOLKKUFNSFCTEtSsR_ByeGfeCnT81frrkMeDeVTY9rFFNbN4MsHC-HSw7f16Hhod46ITucpdCNsxI6R2xslCmjDIzANSYjJT5Qj2-nJjusagMbmMMm15gJoj2O_LyY_Hf47tk38zfw6bRyfvJ2bydvpuF-6ESPF2smgPNpaLFT6F2_77ctYsnqUKcwVlxBCf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQVAOFFoQCwV84Eatxok3to98dAWiWioVUC_I2M64WqlKV5ts0f57bCcbWgRIiEsSJRPH8ecb-_kZ4IUa84phpOLIwlHOEKm1yKkociNy671yKacPxXQqT07U0aVV_Intvp6S7NY0RJWmut2fV35_WPgWZVUkjUz0LHaYdHUdbvBIpI_--vGXYR4h7uidhDjzgnJZ8n7ZzO_DuNI13a4XLvGuzBXs-ct0aeqFJlv_H_97cLdHoORVV2TuwzWst2GrR6Okr-vNNty5JFW4A98OQlsQ0W19SqpIem9XeyTyjVy6MnVFEqV2uUCSWHENmdWkWc4Top854s_Ovzck0uxPSTec0tBOtTV89fXH4wfweXLw6c072u_OQB0XsqV8bLEoncGikuEwlhmq0qDPCidUxUxuma0QkVlVYPBawh_bzLJSGQxQOfPFQ9ioz2t8BMRkDr3lPMMANqTwSsZUCv6tcYoFQDUCts4Y7Xrp8riDxpkeRJdTguqQoDolqF6N4OXwzrwT7vir9dchvwfzqLztYkurZ_Gkg4V26WC6-_U8NEbaxslln9sQtmWaC2W1FaXQwfnMA4JiIpPVCHbXZUj3jUSjcxHl2_IAQUewty4zPx__ObaP_838Odw6ejvRh--nH57AZohT0Y0h7cJGu1jiU7jpLtpZs3iW6s4PnOcZgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+density%2C+velocity%2C+and+pressure+fields+in+supersonic+flows+using+physics-informed+BOS&rft.jtitle=Experiments+in+fluids&rft.au=Molnar%2C+Joseph+P.&rft.au=Venkatakrishnan%2C+Lakshmi&rft.au=Schmidt%2C+Bryan+E.&rft.au=Sipkens%2C+Timothy+A.&rft.date=2023-01-01&rft.issn=0723-4864&rft.eissn=1432-1114&rft.volume=64&rft.issue=1&rft_id=info:doi/10.1007%2Fs00348-022-03554-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00348_022_03554_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-4864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-4864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-4864&client=summon